Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional and Translational Landscape of Equine Torovirus

Identifieur interne : 001235 ( Pmc/Corpus ); précédent : 001234; suivant : 001236

Transcriptional and Translational Landscape of Equine Torovirus

Auteurs : Hazel Stewart ; Katherine Brown ; Adam M. Dinan ; Nerea Irigoyen ; Eric J. Snijder ; Andrew E. Firth

Source :

RBID : PMC:6096809

Abstract

Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames “hidden” within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.


Url:
DOI: 10.1128/JVI.00589-18
PubMed: 29950409
PubMed Central: 6096809

Links to Exploration step

PMC:6096809

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional and Translational Landscape of Equine Torovirus</title>
<author>
<name sortKey="Stewart, Hazel" sort="Stewart, Hazel" uniqKey="Stewart H" first="Hazel" last="Stewart">Hazel Stewart</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Katherine" sort="Brown, Katherine" uniqKey="Brown K" first="Katherine" last="Brown">Katherine Brown</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dinan, Adam M" sort="Dinan, Adam M" uniqKey="Dinan A" first="Adam M." last="Dinan">Adam M. Dinan</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Irigoyen, Nerea" sort="Irigoyen, Nerea" uniqKey="Irigoyen N" first="Nerea" last="Irigoyen">Nerea Irigoyen</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J." last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:aff id="aff2">Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Firth, Andrew E" sort="Firth, Andrew E" uniqKey="Firth A" first="Andrew E." last="Firth">Andrew E. Firth</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29950409</idno>
<idno type="pmc">6096809</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096809</idno>
<idno type="RBID">PMC:6096809</idno>
<idno type="doi">10.1128/JVI.00589-18</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">001235</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001235</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Transcriptional and Translational Landscape of Equine Torovirus</title>
<author>
<name sortKey="Stewart, Hazel" sort="Stewart, Hazel" uniqKey="Stewart H" first="Hazel" last="Stewart">Hazel Stewart</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brown, Katherine" sort="Brown, Katherine" uniqKey="Brown K" first="Katherine" last="Brown">Katherine Brown</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dinan, Adam M" sort="Dinan, Adam M" uniqKey="Dinan A" first="Adam M." last="Dinan">Adam M. Dinan</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Irigoyen, Nerea" sort="Irigoyen, Nerea" uniqKey="Irigoyen N" first="Nerea" last="Irigoyen">Nerea Irigoyen</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J." last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:aff id="aff2">Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Firth, Andrew E" sort="Firth, Andrew E" uniqKey="Firth A" first="Andrew E." last="Firth">Andrew E. Firth</name>
<affiliation>
<nlm:aff id="aff1">Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Virology</title>
<idno type="ISSN">0022-538X</idno>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames “hidden” within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Lauber, C" uniqKey="Lauber C">C Lauber</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Junglen, S" uniqKey="Junglen S">S Junglen</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Zirkel, F" uniqKey="Zirkel F">F Zirkel</name>
</author>
<author>
<name sortKey="Nga, Pt" uniqKey="Nga P">PT Nga</name>
</author>
<author>
<name sortKey="Morita, K" uniqKey="Morita K">K Morita</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
<author>
<name sortKey="Gorbalenya, Ae" uniqKey="Gorbalenya A">AE Gorbalenya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoet, Ae" uniqKey="Hoet A">AE Hoet</name>
</author>
<author>
<name sortKey="Saif, Lj" uniqKey="Saif L">LJ Saif</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Dw" uniqKey="Brown D">DW Brown</name>
</author>
<author>
<name sortKey="Beards, Gm" uniqKey="Beards G">GM Beards</name>
</author>
<author>
<name sortKey="Flewett, Th" uniqKey="Flewett T">TH Flewett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alonso Padilla, J" uniqKey="Alonso Padilla J">J Alonso-Padilla</name>
</author>
<author>
<name sortKey="Pignatelli, J" uniqKey="Pignatelli J">J Pignatelli</name>
</author>
<author>
<name sortKey="Simon Grife, M" uniqKey="Simon Grife M">M Simon-Grife</name>
</author>
<author>
<name sortKey="Plazuelo, S" uniqKey="Plazuelo S">S Plazuelo</name>
</author>
<author>
<name sortKey="Casal, J" uniqKey="Casal J">J Casal</name>
</author>
<author>
<name sortKey="Rodriguez, D" uniqKey="Rodriguez D">D Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanke, D" uniqKey="Hanke D">D Hanke</name>
</author>
<author>
<name sortKey="Pohlmann, A" uniqKey="Pohlmann A">A Pohlmann</name>
</author>
<author>
<name sortKey="Sauter Louis, C" uniqKey="Sauter Louis C">C Sauter-Louis</name>
</author>
<author>
<name sortKey="Hoper, D" uniqKey="Hoper D">D Hoper</name>
</author>
<author>
<name sortKey="Stadler, J" uniqKey="Stadler J">J Stadler</name>
</author>
<author>
<name sortKey="Ritzmann, M" uniqKey="Ritzmann M">M Ritzmann</name>
</author>
<author>
<name sortKey="Steinrigl, A" uniqKey="Steinrigl A">A Steinrigl</name>
</author>
<author>
<name sortKey="Schwarz, Ba" uniqKey="Schwarz B">BA Schwarz</name>
</author>
<author>
<name sortKey="Akimkin, V" uniqKey="Akimkin V">V Akimkin</name>
</author>
<author>
<name sortKey="Fux, R" uniqKey="Fux R">R Fux</name>
</author>
<author>
<name sortKey="Blome, S" uniqKey="Blome S">S Blome</name>
</author>
<author>
<name sortKey="Beer, M" uniqKey="Beer M">M Beer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pignatelli, J" uniqKey="Pignatelli J">J Pignatelli</name>
</author>
<author>
<name sortKey="Grau Roma, L" uniqKey="Grau Roma L">L Grau-Roma</name>
</author>
<author>
<name sortKey="Jimenez, M" uniqKey="Jimenez M">M Jimenez</name>
</author>
<author>
<name sortKey="Segales, J" uniqKey="Segales J">J Segales</name>
</author>
<author>
<name sortKey="Rodriguez, D" uniqKey="Rodriguez D">D Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Lavazza, A" uniqKey="Lavazza A">A Lavazza</name>
</author>
<author>
<name sortKey="Matiz, K" uniqKey="Matiz K">K Matiz</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
<author>
<name sortKey="Koopmans, Mp" uniqKey="Koopmans M">MP Koopmans</name>
</author>
<author>
<name sortKey="De Groot, Rj" uniqKey="De Groot R">RJ de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sawicki, Sg" uniqKey="Sawicki S">SG Sawicki</name>
</author>
<author>
<name sortKey="Sawicki, Dl" uniqKey="Sawicki D">DL Sawicki</name>
</author>
<author>
<name sortKey="Siddell, Sg" uniqKey="Siddell S">SG Siddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sola, I" uniqKey="Sola I">I Sola</name>
</author>
<author>
<name sortKey="Almazan, F" uniqKey="Almazan F">F Almazan</name>
</author>
<author>
<name sortKey="Zuniga, S" uniqKey="Zuniga S">S Zuniga</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Marle, G" uniqKey="Van Marle G">G van Marle</name>
</author>
<author>
<name sortKey="Dobbe, Jc" uniqKey="Dobbe J">JC Dobbe</name>
</author>
<author>
<name sortKey="Gultyaev, Ap" uniqKey="Gultyaev A">AP Gultyaev</name>
</author>
<author>
<name sortKey="Luytjes, W" uniqKey="Luytjes W">W Luytjes</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasternak, Ao" uniqKey="Pasternak A">AO Pasternak</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowley, Ja" uniqKey="Cowley J">JA Cowley</name>
</author>
<author>
<name sortKey="Dimmock, Cm" uniqKey="Dimmock C">CM Dimmock</name>
</author>
<author>
<name sortKey="Walker, Pj" uniqKey="Walker P">PJ Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zirkel, F" uniqKey="Zirkel F">F Zirkel</name>
</author>
<author>
<name sortKey="Roth, H" uniqKey="Roth H">H Roth</name>
</author>
<author>
<name sortKey="Kurth, A" uniqKey="Kurth A">A Kurth</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Junglen, S" uniqKey="Junglen S">S Junglen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Vliet, Al" uniqKey="Van Vliet A">AL van Vliet</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Rottier, Pj" uniqKey="Rottier P">PJ Rottier</name>
</author>
<author>
<name sortKey="De Groot, Rj" uniqKey="De Groot R">RJ de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, M" uniqKey="Weiss M">M Weiss</name>
</author>
<author>
<name sortKey="Steck, F" uniqKey="Steck F">F Steck</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuwabara, M" uniqKey="Kuwabara M">M Kuwabara</name>
</author>
<author>
<name sortKey="Wada, K" uniqKey="Wada K">K Wada</name>
</author>
<author>
<name sortKey="Maeda, Y" uniqKey="Maeda Y">Y Maeda</name>
</author>
<author>
<name sortKey="Miyazaki, A" uniqKey="Miyazaki A">A Miyazaki</name>
</author>
<author>
<name sortKey="Tsunemitsu, H" uniqKey="Tsunemitsu H">H Tsunemitsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irigoyen, N" uniqKey="Irigoyen N">N Irigoyen</name>
</author>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
<author>
<name sortKey="Jones, Jd" uniqKey="Jones J">JD Jones</name>
</author>
<author>
<name sortKey="Chung, By" uniqKey="Chung B">BY Chung</name>
</author>
<author>
<name sortKey="Siddell, Sg" uniqKey="Siddell S">SG Siddell</name>
</author>
<author>
<name sortKey="Brierley, I" uniqKey="Brierley I">I Brierley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
<author>
<name sortKey="Den Boon, Ja" uniqKey="Den Boon J">JA den Boon</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
<author>
<name sortKey="Den Boon, Ja" uniqKey="Den Boon J">JA den Boon</name>
</author>
<author>
<name sortKey="Bredenbeek, Pj" uniqKey="Bredenbeek P">PJ Bredenbeek</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
<author>
<name sortKey="Rijnbrand, R" uniqKey="Rijnbrand R">R Rijnbrand</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, D" uniqKey="Yang D">D Yang</name>
</author>
<author>
<name sortKey="Leibowitz, Jl" uniqKey="Leibowitz J">JL Leibowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
<author>
<name sortKey="Den Boon, Ja" uniqKey="Den Boon J">JA den Boon</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerashchenko, Mv" uniqKey="Gerashchenko M">MV Gerashchenko</name>
</author>
<author>
<name sortKey="Gladyshev, Vn" uniqKey="Gladyshev V">VN Gladyshev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreev, De" uniqKey="Andreev D">DE Andreev</name>
</author>
<author>
<name sortKey="O Connor, Pb" uniqKey="O Connor P">PB O'Connor</name>
</author>
<author>
<name sortKey="Loughran, G" uniqKey="Loughran G">G Loughran</name>
</author>
<author>
<name sortKey="Dmitriev, Se" uniqKey="Dmitriev S">SE Dmitriev</name>
</author>
<author>
<name sortKey="Baranov, Pv" uniqKey="Baranov P">PV Baranov</name>
</author>
<author>
<name sortKey="Shatsky, In" uniqKey="Shatsky I">IN Shatsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
<author>
<name sortKey="Brown, Cm" uniqKey="Brown C">CM Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
<author>
<name sortKey="Atkins, Jf" uniqKey="Atkins J">JF Atkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keese, Pk" uniqKey="Keese P">PK Keese</name>
</author>
<author>
<name sortKey="Gibbs, A" uniqKey="Gibbs A">A Gibbs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rancurel, C" uniqKey="Rancurel C">C Rancurel</name>
</author>
<author>
<name sortKey="Khosravi, M" uniqKey="Khosravi M">M Khosravi</name>
</author>
<author>
<name sortKey="Dunker, Ak" uniqKey="Dunker A">AK Dunker</name>
</author>
<author>
<name sortKey="Romero, Pr" uniqKey="Romero P">PR Romero</name>
</author>
<author>
<name sortKey="Karlin, D" uniqKey="Karlin D">D Karlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soding, J" uniqKey="Soding J">J Soding</name>
</author>
<author>
<name sortKey="Biegert, A" uniqKey="Biegert A">A Biegert</name>
</author>
<author>
<name sortKey="Lupas, An" uniqKey="Lupas A">AN Lupas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozak, M" uniqKey="Kozak M">M Kozak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haas, J" uniqKey="Haas J">J Haas</name>
</author>
<author>
<name sortKey="Roth, S" uniqKey="Roth S">S Roth</name>
</author>
<author>
<name sortKey="Arnold, K" uniqKey="Arnold K">K Arnold</name>
</author>
<author>
<name sortKey="Kiefer, F" uniqKey="Kiefer F">F Kiefer</name>
</author>
<author>
<name sortKey="Schmidt, T" uniqKey="Schmidt T">T Schmidt</name>
</author>
<author>
<name sortKey="Bordoli, L" uniqKey="Bordoli L">L Bordoli</name>
</author>
<author>
<name sortKey="Schwede, T" uniqKey="Schwede T">T Schwede</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelley, La" uniqKey="Kelley L">LA Kelley</name>
</author>
<author>
<name sortKey="Mezulis, S" uniqKey="Mezulis S">S Mezulis</name>
</author>
<author>
<name sortKey="Yates, Cm" uniqKey="Yates C">CM Yates</name>
</author>
<author>
<name sortKey="Wass, Mn" uniqKey="Wass M">MN Wass</name>
</author>
<author>
<name sortKey="Sternberg, Mj" uniqKey="Sternberg M">MJ Sternberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcguffin, Lj" uniqKey="Mcguffin L">LJ McGuffin</name>
</author>
<author>
<name sortKey="Bryson, K" uniqKey="Bryson K">K Bryson</name>
</author>
<author>
<name sortKey="Jones, Dt" uniqKey="Jones D">DT Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Van Vliet, Al" uniqKey="Van Vliet A">AL van Vliet</name>
</author>
<author>
<name sortKey="Segeren, K" uniqKey="Segeren K">K Segeren</name>
</author>
<author>
<name sortKey="El Azzouzi, H" uniqKey="El Azzouzi H">H el Azzouzi</name>
</author>
<author>
<name sortKey="Van Essen, M" uniqKey="Van Essen M">M van Essen</name>
</author>
<author>
<name sortKey="De Groot, Rj" uniqKey="De Groot R">RJ de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schutze, H" uniqKey="Schutze H">H Schutze</name>
</author>
<author>
<name sortKey="Ulferts, R" uniqKey="Ulferts R">R Ulferts</name>
</author>
<author>
<name sortKey="Schelle, B" uniqKey="Schelle B">B Schelle</name>
</author>
<author>
<name sortKey="Bayer, S" uniqKey="Bayer S">S Bayer</name>
</author>
<author>
<name sortKey="Granzow, H" uniqKey="Granzow H">H Granzow</name>
</author>
<author>
<name sortKey="Hoffmann, B" uniqKey="Hoffmann B">B Hoffmann</name>
</author>
<author>
<name sortKey="Mettenleiter, Tc" uniqKey="Mettenleiter T">TC Mettenleiter</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sola, I" uniqKey="Sola I">I Sola</name>
</author>
<author>
<name sortKey="Alonso, S" uniqKey="Alonso S">S Alonso</name>
</author>
<author>
<name sortKey="Zuniga, S" uniqKey="Zuniga S">S Zuniga</name>
</author>
<author>
<name sortKey="Balasch, M" uniqKey="Balasch M">M Balasch</name>
</author>
<author>
<name sortKey="Plana Duran, J" uniqKey="Plana Duran J">J Plana-Duran</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuniga, S" uniqKey="Zuniga S">S Zuniga</name>
</author>
<author>
<name sortKey="Sola, I" uniqKey="Sola I">I Sola</name>
</author>
<author>
<name sortKey="Alonso, S" uniqKey="Alonso S">S Alonso</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Vries, Aaf" uniqKey="De Vries A">AAF de Vries</name>
</author>
<author>
<name sortKey="Horzinek, Mc" uniqKey="Horzinek M">MC Horzinek</name>
</author>
<author>
<name sortKey="Rottier, Pjm" uniqKey="Rottier P">PJM Rottier</name>
</author>
<author>
<name sortKey="De Groot, Rj" uniqKey="De Groot R">RJ de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di, H" uniqKey="Di H">H Di</name>
</author>
<author>
<name sortKey="Mcintyre, Aa" uniqKey="Mcintyre A">AA McIntyre</name>
</author>
<author>
<name sortKey="Brinton, Ma" uniqKey="Brinton M">MA Brinton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di, H" uniqKey="Di H">H Di</name>
</author>
<author>
<name sortKey="Madden, Jc" uniqKey="Madden J">JC Madden</name>
</author>
<author>
<name sortKey="Morantz, Ek" uniqKey="Morantz E">EK Morantz</name>
</author>
<author>
<name sortKey="Tang, Hy" uniqKey="Tang H">HY Tang</name>
</author>
<author>
<name sortKey="Graham, Rl" uniqKey="Graham R">RL Graham</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
<author>
<name sortKey="Brinton, Ma" uniqKey="Brinton M">MA Brinton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cong, F" uniqKey="Cong F">F Cong</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Han, Z" uniqKey="Han Z">Z Han</name>
</author>
<author>
<name sortKey="Shao, Y" uniqKey="Shao Y">Y Shao</name>
</author>
<author>
<name sortKey="Kong, X" uniqKey="Kong X">X Kong</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raaben, M" uniqKey="Raaben M">M Raaben</name>
</author>
<author>
<name sortKey="Groot Koerkamp, Mj" uniqKey="Groot Koerkamp M">MJ Groot Koerkamp</name>
</author>
<author>
<name sortKey="Rottier, Pj" uniqKey="Rottier P">PJ Rottier</name>
</author>
<author>
<name sortKey="De Haan, Ca" uniqKey="De Haan C">CA de Haan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Xue, C" uniqKey="Xue C">C Xue</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Kong, Q" uniqKey="Kong Q">Q Kong</name>
</author>
<author>
<name sortKey="Ren, X" uniqKey="Ren X">X Ren</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Shu, D" uniqKey="Shu D">D Shu</name>
</author>
<author>
<name sortKey="Bi, Y" uniqKey="Bi Y">Y Bi</name>
</author>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanleuven, Jt" uniqKey="Vanleuven J">JT VanLeuven</name>
</author>
<author>
<name sortKey="Ridenhour, Bj" uniqKey="Ridenhour B">BJ Ridenhour</name>
</author>
<author>
<name sortKey="Gonzalez, Aj" uniqKey="Gonzalez A">AJ Gonzalez</name>
</author>
<author>
<name sortKey="Miller, Cr" uniqKey="Miller C">CR Miller</name>
</author>
<author>
<name sortKey="Miura, Ta" uniqKey="Miura T">TA Miura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beura, Lk" uniqKey="Beura L">LK Beura</name>
</author>
<author>
<name sortKey="Dinh, Px" uniqKey="Dinh P">PX Dinh</name>
</author>
<author>
<name sortKey="Osorio, Fa" uniqKey="Osorio F">FA Osorio</name>
</author>
<author>
<name sortKey="Pattnaik, Ak" uniqKey="Pattnaik A">AK Pattnaik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maestre, Am" uniqKey="Maestre A">AM Maestre</name>
</author>
<author>
<name sortKey="Garzon, A" uniqKey="Garzon A">A Garzon</name>
</author>
<author>
<name sortKey="Rodriguez, D" uniqKey="Rodriguez D">D Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Touriol, C" uniqKey="Touriol C">C Touriol</name>
</author>
<author>
<name sortKey="Bornes, S" uniqKey="Bornes S">S Bornes</name>
</author>
<author>
<name sortKey="Bonnal, S" uniqKey="Bonnal S">S Bonnal</name>
</author>
<author>
<name sortKey="Audigier, S" uniqKey="Audigier S">S Audigier</name>
</author>
<author>
<name sortKey="Prats, H" uniqKey="Prats H">H Prats</name>
</author>
<author>
<name sortKey="Prats, Ac" uniqKey="Prats A">AC Prats</name>
</author>
<author>
<name sortKey="Vagner, S" uniqKey="Vagner S">S Vagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
<author>
<name sortKey="Brierley, I" uniqKey="Brierley I">I Brierley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Draker, R" uniqKey="Draker R">R Draker</name>
</author>
<author>
<name sortKey="Roper, Rl" uniqKey="Roper R">RL Roper</name>
</author>
<author>
<name sortKey="Petric, M" uniqKey="Petric M">M Petric</name>
</author>
<author>
<name sortKey="Tellier, R" uniqKey="Tellier R">R Tellier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ito, M" uniqKey="Ito M">M Ito</name>
</author>
<author>
<name sortKey="Tsuchiaka, S" uniqKey="Tsuchiaka S">S Tsuchiaka</name>
</author>
<author>
<name sortKey="Naoi, Y" uniqKey="Naoi Y">Y Naoi</name>
</author>
<author>
<name sortKey="Otomaru, K" uniqKey="Otomaru K">K Otomaru</name>
</author>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M Sato</name>
</author>
<author>
<name sortKey="Masuda, T" uniqKey="Masuda T">T Masuda</name>
</author>
<author>
<name sortKey="Haga, K" uniqKey="Haga K">K Haga</name>
</author>
<author>
<name sortKey="Oka, T" uniqKey="Oka T">T Oka</name>
</author>
<author>
<name sortKey="Yamasato, H" uniqKey="Yamasato H">H Yamasato</name>
</author>
<author>
<name sortKey="Omatsu, T" uniqKey="Omatsu T">T Omatsu</name>
</author>
<author>
<name sortKey="Sugimura, S" uniqKey="Sugimura S">S Sugimura</name>
</author>
<author>
<name sortKey="Aoki, H" uniqKey="Aoki H">H Aoki</name>
</author>
<author>
<name sortKey="Furuya, T" uniqKey="Furuya T">T Furuya</name>
</author>
<author>
<name sortKey="Katayama, Y" uniqKey="Katayama Y">Y Katayama</name>
</author>
<author>
<name sortKey="Oba, M" uniqKey="Oba M">M Oba</name>
</author>
<author>
<name sortKey="Shirai, J" uniqKey="Shirai J">J Shirai</name>
</author>
<author>
<name sortKey="Katayama, K" uniqKey="Katayama K">K Katayama</name>
</author>
<author>
<name sortKey="Mizutani, T" uniqKey="Mizutani T">T Mizutani</name>
</author>
<author>
<name sortKey="Nagai, M" uniqKey="Nagai M">M Nagai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
<author>
<name sortKey="Lan, D" uniqKey="Lan D">D Lan</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
<author>
<name sortKey="Hua, X" uniqKey="Hua X">X Hua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nieto Torres, Jl" uniqKey="Nieto Torres J">JL Nieto-Torres</name>
</author>
<author>
<name sortKey="Dediego, Ml" uniqKey="Dediego M">ML DeDiego</name>
</author>
<author>
<name sortKey="Verdia Baguena, C" uniqKey="Verdia Baguena C">C Verdia-Baguena</name>
</author>
<author>
<name sortKey="Jimenez Guardeno, Jm" uniqKey="Jimenez Guardeno J">JM Jimenez-Guardeno</name>
</author>
<author>
<name sortKey="Regla Nava, Ja" uniqKey="Regla Nava J">JA Regla-Nava</name>
</author>
<author>
<name sortKey="Fernandez Delgado, R" uniqKey="Fernandez Delgado R">R Fernandez-Delgado</name>
</author>
<author>
<name sortKey="Castano Rodriguez, C" uniqKey="Castano Rodriguez C">C Castano-Rodriguez</name>
</author>
<author>
<name sortKey="Alcaraz, A" uniqKey="Alcaraz A">A Alcaraz</name>
</author>
<author>
<name sortKey="Torres, J" uniqKey="Torres J">J Torres</name>
</author>
<author>
<name sortKey="Aguilella, Vm" uniqKey="Aguilella V">VM Aguilella</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruch, Tr" uniqKey="Ruch T">TR Ruch</name>
</author>
<author>
<name sortKey="Machamer, Ce" uniqKey="Machamer C">CE Machamer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, F" uniqKey="Fischer F">F Fischer</name>
</author>
<author>
<name sortKey="Peng, D" uniqKey="Peng D">D Peng</name>
</author>
<author>
<name sortKey="Hingley, St" uniqKey="Hingley S">ST Hingley</name>
</author>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
<author>
<name sortKey="Masters, Ps" uniqKey="Masters P">PS Masters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senanayake, Sd" uniqKey="Senanayake S">SD Senanayake</name>
</author>
<author>
<name sortKey="Hofmann, Ma" uniqKey="Hofmann M">MA Hofmann</name>
</author>
<author>
<name sortKey="Maki, Jl" uniqKey="Maki J">JL Maki</name>
</author>
<author>
<name sortKey="Brian, Da" uniqKey="Brian D">DA Brian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irigoyen, N" uniqKey="Irigoyen N">N Irigoyen</name>
</author>
<author>
<name sortKey="Dinan, Am" uniqKey="Dinan A">AM Dinan</name>
</author>
<author>
<name sortKey="Brierley, I" uniqKey="Brierley I">I Brierley</name>
</author>
<author>
<name sortKey="Firth, Ae" uniqKey="Firth A">AE Firth</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pruitt, Kd" uniqKey="Pruitt K">KD Pruitt</name>
</author>
<author>
<name sortKey="Tatusova, T" uniqKey="Tatusova T">T Tatusova</name>
</author>
<author>
<name sortKey="Brown, Gr" uniqKey="Brown G">GR Brown</name>
</author>
<author>
<name sortKey="Maglott, Dr" uniqKey="Maglott D">DR Maglott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flicek, P" uniqKey="Flicek P">P Flicek</name>
</author>
<author>
<name sortKey="Amode, Mr" uniqKey="Amode M">MR Amode</name>
</author>
<author>
<name sortKey="Barrell, D" uniqKey="Barrell D">D Barrell</name>
</author>
<author>
<name sortKey="Beal, K" uniqKey="Beal K">K Beal</name>
</author>
<author>
<name sortKey="Brent, S" uniqKey="Brent S">S Brent</name>
</author>
<author>
<name sortKey="Carvalho Silva, D" uniqKey="Carvalho Silva D">D Carvalho-Silva</name>
</author>
<author>
<name sortKey="Clapham, P" uniqKey="Clapham P">P Clapham</name>
</author>
<author>
<name sortKey="Coates, G" uniqKey="Coates G">G Coates</name>
</author>
<author>
<name sortKey="Fairley, S" uniqKey="Fairley S">S Fairley</name>
</author>
<author>
<name sortKey="Fitzgerald, S" uniqKey="Fitzgerald S">S Fitzgerald</name>
</author>
<author>
<name sortKey="Gil, L" uniqKey="Gil L">L Gil</name>
</author>
<author>
<name sortKey="Gordon, L" uniqKey="Gordon L">L Gordon</name>
</author>
<author>
<name sortKey="Hendrix, M" uniqKey="Hendrix M">M Hendrix</name>
</author>
<author>
<name sortKey="Hourlier, T" uniqKey="Hourlier T">T Hourlier</name>
</author>
<author>
<name sortKey="Johnson, N" uniqKey="Johnson N">N Johnson</name>
</author>
<author>
<name sortKey="Kahari, Ak" uniqKey="Kahari A">AK Kahari</name>
</author>
<author>
<name sortKey="Keefe, D" uniqKey="Keefe D">D Keefe</name>
</author>
<author>
<name sortKey="Keenan, S" uniqKey="Keenan S">S Keenan</name>
</author>
<author>
<name sortKey="Kinsella, R" uniqKey="Kinsella R">R Kinsella</name>
</author>
<author>
<name sortKey="Komorowska, M" uniqKey="Komorowska M">M Komorowska</name>
</author>
<author>
<name sortKey="Koscielny, G" uniqKey="Koscielny G">G Koscielny</name>
</author>
<author>
<name sortKey="Kulesha, E" uniqKey="Kulesha E">E Kulesha</name>
</author>
<author>
<name sortKey="Larsson, P" uniqKey="Larsson P">P Larsson</name>
</author>
<author>
<name sortKey="Longden, I" uniqKey="Longden I">I Longden</name>
</author>
<author>
<name sortKey="Mclaren, W" uniqKey="Mclaren W">W McLaren</name>
</author>
<author>
<name sortKey="Muffato, M" uniqKey="Muffato M">M Muffato</name>
</author>
<author>
<name sortKey="Overduin, B" uniqKey="Overduin B">B Overduin</name>
</author>
<author>
<name sortKey="Pignatelli, M" uniqKey="Pignatelli M">M Pignatelli</name>
</author>
<author>
<name sortKey="Pritchard, B" uniqKey="Pritchard B">B Pritchard</name>
</author>
<author>
<name sortKey="Riat, Hs" uniqKey="Riat H">HS Riat</name>
</author>
<author>
<name sortKey="Ritchie, Gr" uniqKey="Ritchie G">GR Ritchie</name>
</author>
<author>
<name sortKey="Ruffier, M" uniqKey="Ruffier M">M Ruffier</name>
</author>
<author>
<name sortKey="Schuster, M" uniqKey="Schuster M">M Schuster</name>
</author>
<author>
<name sortKey="Sobral, D" uniqKey="Sobral D">D Sobral</name>
</author>
<author>
<name sortKey="Tang, Ya" uniqKey="Tang Y">YA Tang</name>
</author>
<author>
<name sortKey="Taylor, K" uniqKey="Taylor K">K Taylor</name>
</author>
<author>
<name sortKey="Trevanion, S" uniqKey="Trevanion S">S Trevanion</name>
</author>
<author>
<name sortKey="Vandrovcova, J" uniqKey="Vandrovcova J">J Vandrovcova</name>
</author>
<author>
<name sortKey="White, S" uniqKey="White S">S White</name>
</author>
<author>
<name sortKey="Wilson, M" uniqKey="Wilson M">M Wilson</name>
</author>
<author>
<name sortKey="Wilder, Sp" uniqKey="Wilder S">SP Wilder</name>
</author>
<author>
<name sortKey="Aken, Bl" uniqKey="Aken B">BL Aken</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
<author>
<name sortKey="Cunningham, F" uniqKey="Cunningham F">F Cunningham</name>
</author>
<author>
<name sortKey="Dunham, I" uniqKey="Dunham I">I Dunham</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
<author>
<name sortKey="Fernandez Suarez, Xm" uniqKey="Fernandez Suarez X">XM Fernandez-Suarez</name>
</author>
<author>
<name sortKey="Harrow, J" uniqKey="Harrow J">J Harrow</name>
</author>
<author>
<name sortKey="Herrero, J" uniqKey="Herrero J">J Herrero</name>
</author>
<author>
<name sortKey="Hubbard, Tj" uniqKey="Hubbard T">TJ Hubbard</name>
</author>
<author>
<name sortKey="Parker, A" uniqKey="Parker A">A Parker</name>
</author>
<author>
<name sortKey="Proctor, G" uniqKey="Proctor G">G Proctor</name>
</author>
<author>
<name sortKey="Spudich, G" uniqKey="Spudich G">G Spudich</name>
</author>
<author>
<name sortKey="Vogel, J" uniqKey="Vogel J">J Vogel</name>
</author>
<author>
<name sortKey="Yates, A" uniqKey="Yates A">A Yates</name>
</author>
<author>
<name sortKey="Zadissa, A" uniqKey="Zadissa A">A Zadissa</name>
</author>
<author>
<name sortKey="Searle, Sm" uniqKey="Searle S">SM Searle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Pp" uniqKey="Chan P">PP Chan</name>
</author>
<author>
<name sortKey="Lowe, Tm" uniqKey="Lowe T">TM Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B Langmead</name>
</author>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pop, M" uniqKey="Pop M">M Pop</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dobin, A" uniqKey="Dobin A">A Dobin</name>
</author>
<author>
<name sortKey="Davis, Ca" uniqKey="Davis C">CA Davis</name>
</author>
<author>
<name sortKey="Schlesinger, F" uniqKey="Schlesinger F">F Schlesinger</name>
</author>
<author>
<name sortKey="Drenkow, J" uniqKey="Drenkow J">J Drenkow</name>
</author>
<author>
<name sortKey="Zaleski, C" uniqKey="Zaleski C">C Zaleski</name>
</author>
<author>
<name sortKey="Jha, S" uniqKey="Jha S">S Jha</name>
</author>
<author>
<name sortKey="Batut, P" uniqKey="Batut P">P Batut</name>
</author>
<author>
<name sortKey="Chaisson, M" uniqKey="Chaisson M">M Chaisson</name>
</author>
<author>
<name sortKey="Gingeras, Tr" uniqKey="Gingeras T">TR Gingeras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabherr, Mg" uniqKey="Grabherr M">MG Grabherr</name>
</author>
<author>
<name sortKey="Haas, Bj" uniqKey="Haas B">BJ Haas</name>
</author>
<author>
<name sortKey="Yassour, M" uniqKey="Yassour M">M Yassour</name>
</author>
<author>
<name sortKey="Levin, Jz" uniqKey="Levin J">JZ Levin</name>
</author>
<author>
<name sortKey="Thompson, Da" uniqKey="Thompson D">DA Thompson</name>
</author>
<author>
<name sortKey="Amit, I" uniqKey="Amit I">I Amit</name>
</author>
<author>
<name sortKey="Adiconis, X" uniqKey="Adiconis X">X Adiconis</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
<author>
<name sortKey="Raychowdhury, R" uniqKey="Raychowdhury R">R Raychowdhury</name>
</author>
<author>
<name sortKey="Zeng, Q" uniqKey="Zeng Q">Q Zeng</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Mauceli, E" uniqKey="Mauceli E">E Mauceli</name>
</author>
<author>
<name sortKey="Hacohen, N" uniqKey="Hacohen N">N Hacohen</name>
</author>
<author>
<name sortKey="Gnirke, A" uniqKey="Gnirke A">A Gnirke</name>
</author>
<author>
<name sortKey="Rhind, N" uniqKey="Rhind N">N Rhind</name>
</author>
<author>
<name sortKey="Di Palma, F" uniqKey="Di Palma F">F di Palma</name>
</author>
<author>
<name sortKey="Birren, Bw" uniqKey="Birren B">BW Birren</name>
</author>
<author>
<name sortKey="Nusbaum, C" uniqKey="Nusbaum C">C Nusbaum</name>
</author>
<author>
<name sortKey="Lindblad Toh, K" uniqKey="Lindblad Toh K">K Lindblad-Toh</name>
</author>
<author>
<name sortKey="Friedman, N" uniqKey="Friedman N">N Friedman</name>
</author>
<author>
<name sortKey="Regev, A" uniqKey="Regev A">A Regev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K Katoh</name>
</author>
<author>
<name sortKey="Standley, Dm" uniqKey="Standley D">DM Standley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sievers, F" uniqKey="Sievers F">F Sievers</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernhart, Sh" uniqKey="Bernhart S">SH Bernhart</name>
</author>
<author>
<name sortKey="Hofacker, Il" uniqKey="Hofacker I">IL Hofacker</name>
</author>
<author>
<name sortKey="Will, S" uniqKey="Will S">S Will</name>
</author>
<author>
<name sortKey="Gruber, Ar" uniqKey="Gruber A">AR Gruber</name>
</author>
<author>
<name sortKey="Stadler, Pf" uniqKey="Stadler P">PF Stadler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darty, K" uniqKey="Darty K">K Darty</name>
</author>
<author>
<name sortKey="Denise, A" uniqKey="Denise A">A Denise</name>
</author>
<author>
<name sortKey="Ponty, Y" uniqKey="Ponty Y">Y Ponty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
<author>
<name sortKey="Pyl, Pt" uniqKey="Pyl P">PT Pyl</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Love, Mi" uniqKey="Love M">MI Love</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strimmer, K" uniqKey="Strimmer K">K Strimmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashburner, M" uniqKey="Ashburner M">M Ashburner</name>
</author>
<author>
<name sortKey="Ball, Ca" uniqKey="Ball C">CA Ball</name>
</author>
<author>
<name sortKey="Blake, Ja" uniqKey="Blake J">JA Blake</name>
</author>
<author>
<name sortKey="Botstein, D" uniqKey="Botstein D">D Botstein</name>
</author>
<author>
<name sortKey="Butler, H" uniqKey="Butler H">H Butler</name>
</author>
<author>
<name sortKey="Cherry, Jm" uniqKey="Cherry J">JM Cherry</name>
</author>
<author>
<name sortKey="Davis, Ap" uniqKey="Davis A">AP Davis</name>
</author>
<author>
<name sortKey="Dolinski, K" uniqKey="Dolinski K">K Dolinski</name>
</author>
<author>
<name sortKey="Dwight, Ss" uniqKey="Dwight S">SS Dwight</name>
</author>
<author>
<name sortKey="Eppig, Jt" uniqKey="Eppig J">JT Eppig</name>
</author>
<author>
<name sortKey="Harris, Ma" uniqKey="Harris M">MA Harris</name>
</author>
<author>
<name sortKey="Hill, Dp" uniqKey="Hill D">DP Hill</name>
</author>
<author>
<name sortKey="Issel Tarver, L" uniqKey="Issel Tarver L">L Issel-Tarver</name>
</author>
<author>
<name sortKey="Kasarskis, A" uniqKey="Kasarskis A">A Kasarskis</name>
</author>
<author>
<name sortKey="Lewis, S" uniqKey="Lewis S">S Lewis</name>
</author>
<author>
<name sortKey="Matese, Jc" uniqKey="Matese J">JC Matese</name>
</author>
<author>
<name sortKey="Richardson, Je" uniqKey="Richardson J">JE Richardson</name>
</author>
<author>
<name sortKey="Ringwald, M" uniqKey="Ringwald M">M Ringwald</name>
</author>
<author>
<name sortKey="Rubin, Gm" uniqKey="Rubin G">GM Rubin</name>
</author>
<author>
<name sortKey="Sherlock, G" uniqKey="Sherlock G">G Sherlock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durinck, S" uniqKey="Durinck S">S Durinck</name>
</author>
<author>
<name sortKey="Spellman, Pt" uniqKey="Spellman P">PT Spellman</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
<author>
<name sortKey="Huber, W" uniqKey="Huber W">W Huber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, Z" uniqKey="Xiao Z">Z Xiao</name>
</author>
<author>
<name sortKey="Zou, Q" uniqKey="Zou Q">Q Zou</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anbalagan, S" uniqKey="Anbalagan S">S Anbalagan</name>
</author>
<author>
<name sortKey="Peterson, J" uniqKey="Peterson J">J Peterson</name>
</author>
<author>
<name sortKey="Wassman, B" uniqKey="Wassman B">B Wassman</name>
</author>
<author>
<name sortKey="Elston, J" uniqKey="Elston J">J Elston</name>
</author>
<author>
<name sortKey="Schwartz, K" uniqKey="Schwartz K">K Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rice, P" uniqKey="Rice P">P Rice</name>
</author>
<author>
<name sortKey="Longden, I" uniqKey="Longden I">I Longden</name>
</author>
<author>
<name sortKey="Bleasby, A" uniqKey="Bleasby A">A Bleasby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guindon, S" uniqKey="Guindon S">S Guindon</name>
</author>
<author>
<name sortKey="Gascuel, O" uniqKey="Gascuel O">O Gascuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocsits, Rr" uniqKey="Stocsits R">RR Stocsits</name>
</author>
<author>
<name sortKey="Hofacker, Il" uniqKey="Hofacker I">IL Hofacker</name>
</author>
<author>
<name sortKey="Fried, C" uniqKey="Fried C">C Fried</name>
</author>
<author>
<name sortKey="Stadler, Pf" uniqKey="Stadler P">PF Stadler</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Virol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Virol</journal-id>
<journal-id journal-id-type="hwp">jvi</journal-id>
<journal-id journal-id-type="pmc">jvi</journal-id>
<journal-id journal-id-type="publisher-id">JVI</journal-id>
<journal-title-group>
<journal-title>Journal of Virology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-538X</issn>
<issn pub-type="epub">1098-5514</issn>
<publisher>
<publisher-name>American Society for Microbiology</publisher-name>
<publisher-loc>1752 N St., N.W., Washington, DC</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29950409</article-id>
<article-id pub-id-type="pmc">6096809</article-id>
<article-id pub-id-type="publisher-id">00589-18</article-id>
<article-id pub-id-type="doi">10.1128/JVI.00589-18</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Genome Replication and Regulation of Viral Gene Expression</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Transcriptional and Translational Landscape of Equine Torovirus</article-title>
<alt-title alt-title-type="running-head">Transcription and Translation of Equine Torovirus</alt-title>
<alt-title alt-title-type="short-authors">Stewart et al.</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Stewart</surname>
<given-names>Hazel</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Brown</surname>
<given-names>Katherine</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="no">
<name>
<surname>Dinan</surname>
<given-names>Adam M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="author-notes" rid="fn1">*</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="no">
<name>
<surname>Irigoyen</surname>
<given-names>Nerea</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="no">
<name>
<surname>Snijder</surname>
<given-names>Eric J.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes" equal-contrib="no">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0002-7986-9520</contrib-id>
<name>
<surname>Firth</surname>
<given-names>Andrew E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
</contrib>
<aff id="aff1">
<label>a</label>
Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom</aff>
<aff id="aff2">
<label>b</label>
Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Pfeiffer</surname>
<given-names>Julie K.</given-names>
</name>
<role>Editor</role>
<aff>University of Texas Southwestern Medical Center</aff>
</contrib>
</contrib-group>
<author-notes>
<corresp id="cor1">Address correspondence to Andrew E. Firth,
<email>aef24@cam.ac.uk</email>
.</corresp>
<fn id="fn1" fn-type="present-address">
<label>*</label>
<p>Present address: Adam M. Dinan, Fios Genomics, Edinburgh, United Kingdom.</p>
</fn>
<fn fn-type="equal">
<p>H.S. and K.B. contributed equally to this work.</p>
</fn>
<fn fn-type="other">
<p>
<bold>Citation</bold>
Stewart H, Brown K, Dinan AM, Irigoyen N, Snijder EJ, Firth AE. 2018. Transcriptional and translational landscape of equine torovirus. J Virol 92:e00589-18.
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.00589-18">https://doi.org/10.1128/JVI.00589-18</ext-link>
.</p>
</fn>
</author-notes>
<pub-date pub-type="epreprint">
<day>27</day>
<month>6</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>8</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="collection">
<day>1</day>
<month>9</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>8</month>
<year>2018</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>92</volume>
<issue>17</issue>
<elocation-id>e00589-18</elocation-id>
<history>
<date date-type="received">
<day>6</day>
<month>4</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>6</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2018 Stewart et al.</copyright-statement>
<copyright-year>2018</copyright-year>
<copyright-holder>Stewart et al.</copyright-holder>
<license license-type="open-access" xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International license</ext-link>
.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="zjv017183828001.pdf"></self-uri>
<abstract abstract-type="precis">
<p>Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames “hidden” within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.</p>
</abstract>
<abstract>
<title>ABSTRACT</title>
<p>The genus
<named-content content-type="genus-species">Torovirus</named-content>
(subfamily
<named-content content-type="genus-species">Torovirinae</named-content>
, family
<named-content content-type="genus-species">Coronaviridae</named-content>
, order
<named-content content-type="genus-species">Nidovirales</named-content>
) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5′ untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.</p>
<p>
<bold>IMPORTANCE</bold>
Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames “hidden” within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.</p>
</abstract>
<kwd-group>
<title>KEYWORDS</title>
<kwd>nidovirus</kwd>
<kwd>coronavirus</kwd>
<kwd>ribosomes</kwd>
<kwd>transcription</kwd>
<kwd>veterinary pathogens</kwd>
</kwd-group>
<funding-group>
<award-group id="award1">
<funding-source id="gs1">
<institution-wrap>
<institution>Wellcome Trust</institution>
</institution-wrap>
</funding-source>
<award-id rid="gs1">106207</award-id>
<principal-award-recipient>
<name>
<surname>Firth</surname>
<given-names>Andrew</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award2">
<funding-source id="gs2">
<institution-wrap>
<institution>NWO-CW ECHO</institution>
</institution-wrap>
</funding-source>
<award-id rid="gs2">711.014.004</award-id>
<principal-award-recipient>
<name>
<surname>Snijder</surname>
<given-names>Eric J.</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="award3">
<funding-source id="gs3">
<institution-wrap>
<institution>EC | European Research Council (ERC)</institution>
<institution-id>https://doi.org/10.13039/501100000781</institution-id>
</institution-wrap>
</funding-source>
<award-id rid="gs3">646891</award-id>
<principal-award-recipient>
<name>
<surname>Firth</surname>
<given-names>Andrew</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<counts>
<count count="2" count-type="supplementary-material"></count>
<fig-count count="15"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="80"></ref-count>
<page-count count="24"></page-count>
<word-count count="12997"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>September 2018</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1">
<title>INTRODUCTION</title>
<p>The order
<named-content content-type="genus-species">Nidovirales</named-content>
currently contains four families of positive-sense, single-stranded RNA viruses: the
<named-content content-type="genus-species">Coronaviridae</named-content>
,
<named-content content-type="genus-species">Arteriviridae</named-content>
,
<named-content content-type="genus-species">Roniviridae</named-content>
, and
<named-content content-type="genus-species">Mesoniviridae</named-content>
(
<xref rid="B1" ref-type="bibr">1</xref>
). Their grouping into the one taxonomic order is based upon replicase protein conservation, genome organization, and replication strategy. However, these viral families are nonetheless very diverse with respect to their virion structure, host range, pathogenic potential, and genome size.</p>
<p>The genus
<named-content content-type="genus-species">Torovirus</named-content>
(family
<named-content content-type="genus-species">Coronaviridae</named-content>
, subfamily
<named-content content-type="genus-species">Torovirinae</named-content>
) encompasses a range of species with worldwide distribution that infect domestic ungulates, including cattle, goats, sheep, pigs, and horses, causing an acute self-limiting gastroenteritis. Approximately 55% of cattle within the United Kingdom are seropositive for bovine torovirus, and this pathogen represents a significant burden to the industry (
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B3" ref-type="bibr">3</xref>
). Similarly, porcine torovirus is endemic to Europe and causes disease in production herds (
<xref rid="B4" ref-type="bibr">4</xref>
<xref ref-type="bibr" rid="B5"></xref>
<xref rid="B6" ref-type="bibr">6</xref>
). Despite this, limited research has been conducted on these pathogens, and neither specific antiviral treatments nor vaccines are available. The prevalence of toroviruses in nondomestic reservoirs and potential for cross-species transmission have not been assessed, although they are known to undergo recombination events (
<xref rid="B7" ref-type="bibr">7</xref>
). The extensive research conducted upon the related coronaviruses would not necessarily be relevant in the event of an emerging torovirus infection due to the divergent nature of these viruses.</p>
<p>The genomes of members of the order
<named-content content-type="genus-species">Nidovirales</named-content>
are positive-sense, polycistronic RNAs. One of the hallmarks of this virus order is the utilization of an unusual transcription mechanism to express the genes encoding structural and accessory proteins, which reside downstream of the large replicase open reading frames (ORFs) 1a and 1b (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). These proteins are typically translated from a nested set of 3′-coterminal subgenomic mRNAs (sg mRNAs). Although, with the exception of the smallest species, these sgRNAs are structurally polycistronic, translation is normally limited to the 5′ ORF of each mRNA. Studies of coronaviruses and arteriviruses have revealed that they produce negative-sense subgenome-sized RNAs via a mechanism of discontinuous extension (
<xref rid="B8" ref-type="bibr">8</xref>
) (recently reviewed by Sola et al. [
<xref rid="B9" ref-type="bibr">9</xref>
]). This process may resemble homology-assisted copy-choice recombination (
<xref rid="B10" ref-type="bibr">10</xref>
) and requires the presence of multiple copies of a species-specific short motif, the transcription regulatory sequence (TRS). TRS motifs are located immediately upstream of the structural protein-coding ORFs (body TRSs) and within the 5′-untranslated region (UTR; leader TRS).</p>
<fig id="F1" orientation="portrait" position="float">
<label>FIG 1</label>
<caption>
<p>Schematic of the equine torovirus genome (EToV). Open reading frames (ORFs) are colored according to their respective reading frames (pink, phase 0; yellow, phase −1; blue, phase +1). Polyproteins pp1a and pp1ab are translated from genomic RNA, with pp1ab generated via −1 programmed ribosomal frameshifting. Structural proteins are translated from a series of sgRNAs. Untranslated regions of sgRNAs are represented by black bars. The leader transcription regulatory sequence (TRS) (green) and putative body TRSs (blue) are displayed below the viral genome. The frameshift site and a putative RNA hairpin involved in S sgRNA synthesis are indicated above the genome.</p>
</caption>
<graphic xlink:href="zjv0171838280001"></graphic>
</fig>
<p>Negative-strand RNA synthesis initiates at the 3′ end of the positive-sense viral genome. When the RNA-dependent RNA polymerase (RdRp) has copied a TRS sequence, a template-switching event may occur during which the anti-TRS at the 3′ end of the nascent strand base pairs with the leader TRS within the 5′ UTR. Transcription reinitiates and continues to the 5′ end of the genomic template. The resulting “anti-leader” sequence that is added ranges from 55 to 92 nucleotides (nt) in coronaviruses to ∼200 nt in arteriviruses. These negative-sense transcripts are therefore 5′- and 3′-coterminal with the full-length negative RNA strand and are identifiable as chimeras with distinct flanking sequences adjacent to the core TRS. The anti-leader sequence in each of the negative-sense templates then functions as a promoter to drive synthesis of a mirror set of positive-sense sgRNAs that are translated to produce the structural proteins.</p>
<p>However, not all details of the mechanism outlined above are wholly conserved across the
<named-content content-type="genus-species">Nidovirales</named-content>
(
<xref rid="B11" ref-type="bibr">11</xref>
). Specifically, the two sg mRNAs of roniviruses (pathogens of shrimp) do not possess conserved 5′ leader sequences, indicative of the lack of a discontinuous step during their production (
<xref rid="B12" ref-type="bibr">12</xref>
). Despite the presence of a conserved body TRS in each subgenomic mRNA, an equivalent leader TRS is not readily identifiable in the 5′ UTR. It may therefore be reasoned that the ronivirus body TRSs stimulate termination of negative-strand RNA synthesis without a subsequent RdRp template switch and reinitiation. Mesoniviruses (a branch of
<named-content content-type="genus-species">Nidovirales</named-content>
recently identified in insects) are thought to produce two major sgRNAs possessing leader sequences of different lengths, indicating that the nidoviral mechanism for discontinuous RNA synthesis can allow two very different leader/body TRS pairs to be utilized in a single viral species (
<xref rid="B13" ref-type="bibr">13</xref>
).</p>
<p>Toroviruses appear to represent a nidovirus subgroup with a remarkably flexible transcription strategy: equine torovirus (EToV) possesses a leader TRS-like sequence (CUUUAGA), but it is only involved in the synthesis of the mRNA used for expression of the spike (S) protein gene (
<xref rid="B14" ref-type="bibr">14</xref>
). Despite similarities to the corona- and arteriviral mechanism, the preceding leader sequence incorporated into this mRNA is merely 6 nt in length (ACGUAU). Additionally, this case is unusual in that the template switch event is thought to be prompted by an RNA structure, a predicted RNA hairpin upstream of the S protein gene, rather than a body TRS (
<xref rid="B14" ref-type="bibr">14</xref>
). Conventional body TRSs are located upstream of the three remaining structural protein genes, yet a nondiscontinuous mechanism is utilized for the production of the corresponding sgRNAs, as is the case for roniviruses. As a result, the sg mRNAs for membrane (M), nucleocapsid (N), and hemagglutinin-esterase (HE) do not normally possess a common 5′ leader sequence; they each possess a variable and unique extended version of the TRS at their 5′ end. It is clear there are significant differences between the various
<named-content content-type="genus-species">Nidovirales</named-content>
families in how they synthesize their sgRNAs.</p>
<p>Here, we describe the first high-resolution analysis of viral transcription during infection by EToV, which is one of the few toroviruses that can be propagated in cell culture (
<xref rid="B15" ref-type="bibr">15</xref>
,
<xref rid="B16" ref-type="bibr">16</xref>
). RNA sequencing (RNA-seq) confirmed previous reports that EToV utilizes a unique combination of both discontinuous and nondiscontinuous RNA synthesis to generate its repertoire of sgRNAs. Strikingly, we also identified a small proportion of chimeric transcripts spanning from the leader to the body TRS of the N protein gene, indicating that discontinuous and nondiscontinuous mechanisms compete in this location. We also identified numerous locations across the genome where noncanonical RdRp template-switching occurs, leading to a vast array of (presumably mostly defective or nonfunctional) chimeric transcripts.</p>
<p>Ribosome profiling (Ribo-seq) conducted in tandem with the RNA-seq indicated that ribosomes actively translate within the so-called 5′ UTR. Further analysis confirmed the existence of two novel ORFs in this region, which are conserved in all torovirus genome sequences analyzed to date. The specific function(s) of these proteins will be the topic of future work. Together, these results provide an overview of the transcriptional and translational events that accompany infection by this wide-ranging pathogen.</p>
</sec>
<sec sec-type="results" id="sec2">
<title>RESULTS</title>
<sec id="sec2-1">
<title>Tandem RNA-seq and Ribo-seq of EToV-infected cells.</title>
<p>We conducted tandem RNA-seq and Ribo-seq of EToV-infected equine dermal (ED) cells. Two biological replicates of virus-infected and mock-infected cells were analyzed, generating 25 to 53 million reads per sample. For RNA-seq, 77 to 92% of reads mapped to the host genome, of which a mean of 1.5% mapped to rRNA, 19% to mRNA, 32% to noncoding RNA (ncRNA), and 47% elsewhere in the genome. For Ribo-seq, 46 to 60% of reads mapped to the host genome, of which a mean of 56% mapped to rRNA, 13% to mRNA, 4.9% to ncRNA, and 26% elsewhere in the genome (see Table S1 in the supplemental material). Totals of 1.3% and 2.3% of reads mapped to the virus genome in the two EToV-infected RNA-seq replicates and 0.41% and 0.21% in the two EToV-infected Ribo-seq replicates.</p>
<p>The viral genome was assembled
<italic>de novo</italic>
from RNA-seq reads and confirmed as EToV, Berne isolate. A single 27,694-nt contig was assembled representing almost the entire viral genome. Only 18 nt at the 5′ terminus and 300 nt at the 3′ terminus failed to assemble automatically; however, these regions were clearly covered by reads consistent with the reference sequence on inspection and so were added manually to the consensus sequence. Four single-nucleotide changes were present in all reads, but not the reference sequence compiled from previous sequencing data, at positions 18078 (ORF 1b, C>U), 21429 (ORF S, A>U), 21814 (ORF S, C>A), and 25596 (ORF S, C>U).</p>
<p>The distribution of reads on the virus genome and the phasing of these reads are shown in
<xref ref-type="fig" rid="F2">Fig. 2</xref>
. There was good coverage across the viral genome for both RNA-seq and Ribo-seq. The Ribo-seq/RNA-seq ratio along the genome was calculated (
<xref ref-type="fig" rid="F2">Fig. 2C</xref>
) to estimate translation efficiency (note that this simple estimate is naïve, since it does not account for the fact that the genomic RNA and different sgRNA species overlap one another). Ribo-seq density, RNA-seq density, and translational efficiency were also calculated separately for each ORF (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
), based on the density of Ribo-seq reads in each ORF divided by the density of the RNA-seq reads for either the same region (for sgRNAs) or the region of the genome which does not overlap the sgRNAs (for genomic RNA [gRNA]). RNA-seq density was adjusted based on the “decumulation” methodology described previously (
<xref rid="B17" ref-type="bibr">17</xref>
) (see Materials and Methods) to account for the fact that not all of the RNA-seq density in the 3′ ORFs derives from transcripts from which the ORFs can be expressed. Ribo-seq coverage is much higher toward the 3′ end of the genome, particularly across the M and N genes, reflecting the translation of abundant sgRNAs in this region (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
and
<xref ref-type="fig" rid="F3">3</xref>
). ORFs 1a and 1b contain a considerably lower density of Ribo-seq reads. The relatively low translation efficiencies calculated for ORFs 1a and 1b may be partly due to some gRNA being packaged (or destined for packaging) and unavailable for translation but still contributing to the estimate of gRNA RNA-seq density. They may also represent regulation of expression to control the amount of the replicase proteins, which are generally required at a lower level than structural proteins. ORF1a has a higher Ribo-seq density and a higher translational efficiency than ORF1b, reflecting the proportion of ribosomes terminating at the ORF1a stop codon and not undergoing the −1 frameshift into ORF1b (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
and
<xref ref-type="fig" rid="F3">3</xref>
). As expected, RNA-seq density is similar across ORF1a and ORF1b, as both are present only on the full-length genomic RNA (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
). The region covering the HE ORF also has low ribosomal coverage (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
), which may be due to the fact that, in contrast to other toroviruses, the EToV HE gene is nonfunctional due to a large deletion, including the canonical AUG (
<xref rid="B18" ref-type="bibr">18</xref>
). HE is not shown in
<xref ref-type="fig" rid="F3">Fig. 3</xref>
, as the HE transcript is much less abundant than the upstream M transcript, which makes the decumulation procedure susceptible to noise (
<xref rid="B17" ref-type="bibr">17</xref>
). Translational efficiency appears highest for the M and S sgRNAs. The high RNA-seq density in the 5′ UTR may be indicative of one or more defective interfering (DI) RNAs in the sample (see below). Ribosome-protected fragments (RPFs) were also identified mapping to the second half of the 5′ UTR, mostly in the +2/−1 frame with respect to ORF1a (
<xref ref-type="fig" rid="F2">Fig. 2A</xref>
).</p>
<fig id="F2" orientation="portrait" position="float">
<label>FIG 2</label>
<caption>
<p>Read density of Ribo-seq (A) and RNA-seq (B) reads across the viral genome from EToV-infected cells. Red lines represent total reads per million mapped reads at each position; pink, reads in phase 0; yellow, phase −1; blue, phase +1. Densities are smoothed with a 15-nt running mean filter and plotted on a log
<sub>10</sub>
(1 +
<italic>x</italic>
) scale. Negative-sense reads (gray) are displayed below the
<italic>x</italic>
axis for total reads only. Each line represents a single replicate. For Ribo-seq reads, a +12-nt offset has been applied to read 5′-end positions to map approximate P-site positions. (C) The positive-sense Ribo-seq/RNA-seq ratio after applying a 100-nt running mean filter to each distribution. Each line represents one of the two paired Ribo-seq and RNA-seq replicates.</p>
</caption>
<graphic xlink:href="zjv0171838280002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>FIG 3</label>
<caption>
<p>Relative gene expression levels. (A) Ribo-seq density, in reads per kilobase per million mapped reads (RPKM), for each ORF in the EToV genome. For each ORF, only reads mapping in the predominant phase (i.e., mapping to first positions of codons) were included. (B) Decumulated RNA-seq density in RPKM for each ORF. For sgRNAs, density was calculated across the regions used for Ribo-seq in panel A; for genomic RNAs the regions for ORF1a and ORF1b were combined, as these ORFs are both translated from gRNA. A decumulation strategy was used to correct for the fact that the measured RNA density in 3′ ORFs derives from multiple 3′-coterminal transcripts (see Materials and Methods). (C) Translation efficiency for each gene in the EToV genome, calculated as Ribo-seq density/decumulated RNA-seq density. For each ORF, the two bars represent two repeats.</p>
</caption>
<graphic xlink:href="zjv0171838280003"></graphic>
</fig>
<p>To calculate the length distributions of host- and virus-mapped RPFs, we used reads mapping within coding regions. After adaptor trimming, the majority (75%) of Ribo-seq reads were 27 to 29 nt in length, which is consistent with the expected size of mammalian ribosome footprints. As expected, the distribution of read lengths for RNA-seq was much broader, peaking between 60 and 70 nt (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
). For quality control, histograms of the 5′ end positions of host mRNA Ribo-seq and RNA-seq reads relative to initiation and termination codons were constructed (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
and
<xref ref-type="fig" rid="F6">6</xref>
). This confirmed we had high-quality RPFs arising from host transcripts, with strong triplet periodicity (phasing) and very few reads mapping to 3′ UTRs. As in other data sets, a ramp effect of decreased RPF density was seen over a region of ∼30 codons following initiation sites; however, unusually, in this data set we did not observe a density peak at the initiation site itself (see Irigoyen et al. [
<xref rid="B17" ref-type="bibr">17</xref>
]). This may be due to the flash freezing without cycloheximide pretreatment used for these samples, as for a later cycloheximide-treated sample this peak is present (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
). Within coding sequences, the 5′ ends of the majority of reads from the host (65 to 81%) and virus (60 to 75%) mapped to the first codon positions (
<xref ref-type="fig" rid="F7">Fig. 7</xref>
).</p>
<fig id="F4" orientation="portrait" position="float">
<label>FIG 4</label>
<caption>
<p>Comparison of read length distributions for reads mapping to EToV in infected cells (orange), host mRNAs in noninfected cells (blue), and host mRNAs in infected cells (red) for Ribo-seq data in non-drug-treated cells (A), RNA-seq data in non-drug-treated cells (B), Ribo-seq data in cycloheximide-treated cells (C), and Ribo-seq data in harringtonine-treated cells (D).</p>
</caption>
<graphic xlink:href="zjv0171838280004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>FIG 5</label>
<caption>
<p>Histograms of Ribo-seq read 5′-end positions (in nucleotides) relative to annotated initiation (left) and termination (right) sites, summed across all host mRNAs. Bars are colored by phase relative to the first base of the start codon (pink, phase 0; blue, phase +1; yellow, phase −1). Histograms are scaled so that the maximum value is 1. For clarity, the
<italic>y</italic>
axis is cropped at 0.3 for non-drug-treated and 0.1 for drug-treated cells; bars which extended beyond this point are marked with an asterisk.</p>
</caption>
<graphic xlink:href="zjv0171838280005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>FIG 6</label>
<caption>
<p>Histograms of RNA-seq read 5′-end positions (in nucleotides) relative to annotated initiation (left) and termination (right) sites, summed across all host mRNAs. Bars are colored by phase relative to the first base of the start codon (pink, phase 0; blue, phase +1; yellow, phase −1). Histograms are scaled so that the maximum value is 1.</p>
</caption>
<graphic xlink:href="zjv0171838280006"></graphic>
</fig>
<fig id="F7" orientation="portrait" position="float">
<label>FIG 7</label>
<caption>
<p>Phasing of the 5′ ends of reads (pink, phase 0; blue, phase +1; yellow, phase −1) for Ribo-seq reads mapping to host mRNA coding regions (A), RNA-seq reads mapping to host mRNA coding regions (B), Ribo-seq reads mapping to virus mRNA coding regions (C), and RNA-seq reads mapping to virus mRNA coding regions (D).</p>
</caption>
<graphic xlink:href="zjv0171838280007"></graphic>
</fig>
<p>The relative RPF density allowed us to estimate the efficiency of ribosomal frameshifting in the context of virus infection. After translating ORF1a, a proportion of ribosomes undergo a −1 ribosomal frameshift to translate ORF1b (
<xref rid="B19" ref-type="bibr">19</xref>
). This is (presumably) required to produce a specific ratio of pp1a to pp1ab, thereby controlling the ratio of RNA-synthesizing enzymes, such as RdRp and helicase, to other components of the replicase complex, including the proteinases and transmembrane subunits in ORF1a. The ORF1a/1b −1 ribosomal frameshifting event is stimulated by a pseudoknot structure 3′ adjacent to the U_UUA_AAC slippery heptanucleotide frameshift site. The efficiency of −1 ribosomal frameshifting (measured by dividing the mean RPF density in ORF1b by the mean density in ORF1a) was estimated to be 29.9% for replicate 1 and 27.5% for replicate 2, which is in accordance with the rates measured previously outside the context of virus infection (20 to 30%) (
<xref rid="B19" ref-type="bibr">19</xref>
).</p>
</sec>
<sec id="sec2-2">
<title>RNA sequencing indicates both discontinuous and nondiscontinuous mechanisms are utilized for N protein gene sgRNA synthesis.</title>
<p>RNA sequencing reads that did not map to either the viral genome or host databases were analyzed for containing potential viral chimeric junctions, indicative of leader-to-body joining during discontinuous sgRNA synthesis (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
). Relative abundances were calculated by normalizing read counts to the number of nonchimeric reads spanning each junction. Between the two replicates combined, 8,330 reads were identified as chimeras, mapping to 2,837 putative junction sites. Of these, 213 were considered to be highly supported by the data, either due to being identified in at least 10 chimeric reads or containing the full 5′ leader and TRS sequence. Adjacent donor or acceptor sites were then merged (see Materials and Methods), leaving 70 unique junctions (
<xref ref-type="fig" rid="F8">Fig. 8</xref>
).</p>
<fig id="F8" orientation="portrait" position="float">
<label>FIG 8</label>
<caption>
<p>Analysis of chimeric viral reads. (A) Sashimi plot showing junctions in the EToV genome, across which chimeric RNA-seq reads were identified in EToV-infected, non-drug-treated samples. Chimeric reads were defined as reads for which the intact read could not be mapped but for which the 5′ and 3′ ends could be uniquely mapped to noncontiguous regions of the EToV genome. Junctions that were covered by at least 10 chimeric reads (gray) and/or for which the 5′ section of the read contained the full 5′ leader sequence and leader TRS (red) were identified and adjacent positions merged. These junctions are shown as curved lines connecting the position of the 3′ end of the 5′-mapped segment of the read and the 5′ end of the 3′-mapped segment of the read. The apical height of each curved line shows the absolute number of reads spanning this junction on a log
<sub>10</sub>
(1 +
<italic>x</italic>
) scale. (B) Inverted bar chart showing, for the 5′ (orange) and 3′ (blue) breakpoints for each junction, the number of chimeric reads as a fraction of the total number of chimeric and nonchimeric reads at each site.</p>
</caption>
<graphic xlink:href="zjv0171838280008"></graphic>
</fig>
<p>Three chimeric junctions were identified where the first nucleotide of the corresponding read mapped to the first nucleotide of the viral genome. Of these, one junction was consistent with the previously characterized sgRNA produced via discontinuous RNA synthesis encoding the S gene (280 reads, or 3% of total chimeric reads) (
<xref rid="B14" ref-type="bibr">14</xref>
). These reads spanned the entire leader-body junction of the S gene, possessing 14 to 18 nt of the 5′ UTR (i.e., the actual 5′-derived sequence is at least 14 nt, ACGUAUCUUUAGAA, comprising the so-called 6-nt leader, the leader TRS CUUUAGA, and an additional A), followed by the stretch of ORF1b just upstream of the S gene. A second set of transcripts containing 5′ leader sequence was identified by four unique reads starting with the 5′ leader (ACGUAU) and TRS sequence (CUUUAGA), where the remainder of the read mapped to the start of the N gene. This indicates that, contrary to previous reports, low levels of discontinuous RNA synthesis are used during production of the N gene negative-strand RNA. The final chimaera, which included the 6-nt leader, was represented by three reads. These reads included 44 to 46 nt of the 5′ UTR (i.e., significantly more than the normal leader TRS) followed by a sequence mapping to positions 19,987 to 19,989, which is within ORF1b.</p>
<p>A substantial number of additional chimeric reads were identified, indicative of non-TRS-driven cases of discontinuous RNA synthesis, although formally it is possible that some of these are template-switching artifacts introduced during library preparation and/or sequencing. Additionally, a large number of reads spanning from the 5′ UTR to either within the N protein gene or the 3′ UTR were identified. Indeed, the only junction represented by over 1,000 reads spanned nucleotides 673 to 27649; similarly, the second most commonly identified junction, with 642 reads, spanned 687 to 27550. If chimeric reads were predominantly a sequencing artifact, the abundance of any particular chimaera would be approximately proportional to the product of the abundances of the sequences from which the 5′ and 3′ ends of the chimera are derived (with some variation due to sequence-specific biases), thus a high density of chimeras would be expected to fall entirely within the N transcript. In contrast, most of the observed chimeric reads were between N and the 5′ UTR. The relative paucity of reads mapping to generic locations in the ORF1ab region also argues against the majority of chimeras being simply artifactual. The 5′ UTR preference may be due to genome circularization during negative-sense synthesis, as has been proposed for coronaviruses (
<xref rid="B20" ref-type="bibr">20</xref>
). Alternatively, these may derive from autonomously replicating defective interfering RNAs rather than multiple independent RNA translocation and reinitiation events. Such defective interfering RNAs have been extensively analyzed previously and are a common complication of EToV studies relying on high-multiplicity-of-infection (MOI) infections in cell culture (
<xref rid="B21" ref-type="bibr">21</xref>
). Consistent with the high level of 5′ UTR:N chimeric sequences, there was high RNA-seq density throughout much of the 5′ UTR, with the 3′ extent of the region of high density coinciding approximately with the region to which a large number of the chimeric 5′ ends mapped (
<xref ref-type="fig" rid="F2">Fig. 2</xref>
and
<xref ref-type="fig" rid="F8">8</xref>
).</p>
</sec>
<sec id="sec2-3">
<title>Gene expression analysis indicates multiple pathways are perturbed by EToV infection.</title>
<p>The RNA-seq data were analyzed to identify genes that were differentially expressed between virus-infected and mock-infected ED cells. We identified 61 genes that were upregulated in virus-infected cells, among which eight gene ontology (GO) terms were overrepresented, mostly related to the nucleosome or immune responses (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
). We found 24 genes that were downregulated in infected cells, among which four GO terms were overrepresented, two of which were related to the ribosome. We also analyzed differential translational efficiency (based on the RPF/mRNA ratio) between mock- and virus-infected cells. We identified 22 genes that were translated more efficiently in infected cells; GO analysis indicated that these genes tend to encode proteins that are involved in RNA binding. Only two genes were found to be translated less efficiently in infected cells than mock-infected cells (
<xref ref-type="fig" rid="F9">Fig. 9</xref>
and Table S2). Note that these analyses measure changes in individual genes relative to the global mean and do not inform on global changes in host transcription or translation as a result of virus infection.</p>
<fig id="F9" orientation="portrait" position="float">
<label>FIG 9</label>
<caption>
<p>Volcano plots showing the results of differential transcription analysis performed using DESeq2 (
<xref rid="B43" ref-type="bibr">43</xref>
) (A) and differential translation efficiency analysis performed using Xtail (B) between cells infected with EToV (infected) and uninfected cells (mock). Genes which were expressed at significantly higher levels (FDR of ≤0.05 and absolute log
<sub>2</sub>
fold change of ≥1) in infected cells are highlighted in pink (transcription) (A) and blue (translational efficiency) (B). Genes which were expressed at significantly higher levels in mock-infected cells are highlighted in green (transcription) (A) and orange (translational efficiency) (B). The five most significant genes in each category are labeled with the gene symbol, where available, and otherwise with the Ensembl gene identifier. (C) Absolute log
<sub>2</sub>
fold change for all gene ontology (GO) terms which were significantly overrepresented compared to a background of all horse protein-coding genes for genes significantly more transcribed in infected cells (pink), genes significantly more efficiently translated in infected cells (blue), and genes significantly more transcribed in mock cells (green). No terms were identified for genes significantly more efficiently translated in mock cells.</p>
</caption>
<graphic xlink:href="zjv0171838280009"></graphic>
</fig>
</sec>
<sec id="sec2-4">
<title>Two additional proteins are translated from 5′ CUG-initiated ORFs.</title>
<p>Our initial data set indicated an excess density of ribosomes translating within the +2/−1 frame upstream of ORF1a and overlapping the 5′ end of ORF1a (
<xref ref-type="fig" rid="F2">Fig. 2A</xref>
). To further investigate this, we repeated the ribosome profiling using infected cells treated with translation inhibitors prior to flash freezing (harringtonine, or HAR, and/or cycloheximide, or CHX). HAR specifically arrests initiating ribosomes while allowing runoff of elongating ribosomes; conversely, CHX stalls elongating ribosomes while allowing ongoing accumulation at initiation sites. Our quality control analysis confirmed the data sets were of similar quality to our previous experiment (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
,
<xref ref-type="fig" rid="F5">5</xref>
, and
<xref ref-type="fig" rid="F7">7</xref>
), and mapping of the RPFs provided good coverage of the EToV genome (
<xref ref-type="fig" rid="F10">Fig. 10</xref>
).</p>
<fig id="F10" orientation="portrait" position="float">
<label>FIG 10</label>
<caption>
<p>Read density of Ribo-seq reads along the viral genome for EToV-infected cells pretreated with cycloheximide (A) or harringtonine (B). Red lines represent total reads per million mapped reads (RPM) at each position. Densities are smoothed with a 15-nt running mean filter and plotted on a log
<sub>10</sub>
(1 +
<italic>x</italic>
) scale. Negative-sense reads (gray) are displayed below the
<italic>x</italic>
axis. A +12-nt offset has been applied to read 5′-end positions to map approximate P-site positions.</p>
</caption>
<graphic xlink:href="zjv0171838280010"></graphic>
</fig>
<p>This Ribo-seq data confirmed translation of two ORFs located within the so-called 5′ UTR and overlapping the 5′ end of ORF1a. We have termed these U1 (80 codons) and U2 (258 codons). We predict that translation of both U1 and U2 is initiated from CUG codons, as a close inspection indicated that ribosomes accumulate at these two sites (
<xref ref-type="fig" rid="F11">Fig. 11</xref>
). It must be noted that pretreatment with CHX or HAR can introduce artifacts into ribosome profiling data: CHX can lead to an excess of RPF density over ∼30 codons following initiation sites when cells are stressed (
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B22" ref-type="bibr">22</xref>
). It has also been suggested that both drugs can promote upstream initiation due to scanning preinitiation complexes stacking behind ribosomes paused at canonical initiation sites (
<xref rid="B23" ref-type="bibr">23</xref>
). However, the distance between the U1 CUG, the U2 CUG, and the ORF1a initiation site, besides observation of efficient translation of U2 downstream of the ORF1a initiation site (
<xref ref-type="fig" rid="F11">Fig. 11A</xref>
), makes these artifacts unlikely to be significant confounding factors in the case of U1 and U2.</p>
<fig id="F11" orientation="portrait" position="float">
<label>FIG 11</label>
<caption>
<p>Read density of Ribo-seq reads across U1, U2, and ORF1a (A), the U1 ORF and surrounding regions (B), and the U2 ORF and surrounding regions (C) for EToV-infected cells with no drug treatment or with cycloheximide or harringtonine pretreatment. Pink, reads in phase 0; yellow, phase −1; blue, phase +1. Graphs show total reads per million mapped reads (RPM) at each position. In panel A densities are smoothed with a 15-nt running mean filter, while panels B and C show the RPM counts at single-nucleotide resolution. Each plot represents a single replicate. A +12-nt offset has been applied to read 5′-end positions to map approximate P-site positions.</p>
</caption>
<graphic xlink:href="zjv0171838280011"></graphic>
</fig>
<p>Revisiting our first nondrug-treated data set, we calculated the RPF densities and translational efficiencies within the U1 and U2 ORFs (
<xref ref-type="fig" rid="F12">Fig. 12</xref>
). U1 has a higher translational efficiency than any of the other ORFs translated from the genomic RNA, whereas U2 has a translational efficiency similar to that of ORF1a.</p>
<fig id="F12" orientation="portrait" position="float">
<label>FIG 12</label>
<caption>
<p>Relative translation efficiencies for U1, U2, ORF1a, and ORF1b. To reduce misassignment of reads in the U2/ORF1a overlap region, for all ORFs only reads mapping in the predominant phase (i.e., mapping to first positions of codons) were included. Ribo-seq densities were divided by the ORF1ab RNA-seq densities for the corresponding paired sample. For each ORF, the two bars represent two repeats.</p>
</caption>
<graphic xlink:href="zjv0171838280012"></graphic>
</fig>
<p>To assess the coding potential of U1, we calculated the ratio of nonsynonymous to synonymous substitutions (
<italic>dN</italic>
/
<italic>dS</italic>
), where
<italic>dN</italic>
/
<italic>dS</italic>
of <1 indicates selection against nonsynonymous substitutions, which is a strong indicator that a sequence encodes a functional protein. Application of codeml (
<xref rid="B24" ref-type="bibr">24</xref>
) to a codon alignment of eight torovirus U1 nucleotide sequences resulted in a
<italic>dN</italic>
/
<italic>dS</italic>
estimate of 0.31 ± 0.08, indicating that the U1 ORF encodes a functional protein. MLOGD (
<xref rid="B25" ref-type="bibr">25</xref>
) uses a principle similar to the
<italic>dN</italic>
/
<italic>dS</italic>
statistic but also accounts for conservative amino acid substitutions (i.e., similar physicochemical properties), being more probable than nonconservative substitutions in biologically functional polypeptides. MLOGD 3-frame “sliding window” analysis of a full-genome alignment revealed a strong coding signature in the known protein-coding ORFs (as expected) and also in the U1 ORF (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
).</p>
<fig id="F13" orientation="portrait" position="float">
<label>FIG 13</label>
<caption>
<p>Coding potential statistics for the torovirus genome. A map of the torovirus genome is shown at the top. Breda virus (
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/AY427798.1" assigning-authority="genbank">AY427798.1</ext-link>
) was used as the reference genome for this analysis, since EToV has a deletion in the HE gene. In Breda virus, U1 is in frame with ORF1a due to a 2-nt insertion relative to EToV in the short noncoding region between U1 and U2. The next four panels show an analysis of synonymous site conservation in the concatenated coding ORFs (with the reading frame of the longer ORF being used wherever two ORFs overlap). Red lines show the probability that the degree of conservation within a given window (25 or 65 codons, as indicated) could be obtained under a null model of neutral evolution at synonymous sites, whereas brown lines depict the absolute amount of conservation, as represented by the ratio of the observed number of substitutions within a given window to the number expected under the null model (obs/exp). Greatly enhanced synonymous site conservation is seen in the region of ORF1a that is overlapped by the U2 ORF. The next three panels show MLOGD coding potential scores and stop codon plots for each of the three reading frames. The positions of stop codons are shown for each of the eight torovirus sequences mapped onto the Breda virus reference sequence coordinates. Note the conserved absence of stop codons in the U1 and U2 ORFs. MLOGD was applied in a 40-codon sliding window (5-codon step size). Positive scores indicate that the sequence is likely to be coding in the given reading frame. Note the positive scores within the U1 and U2 ORFs besides the previously known ORFs. The bottom panel (green line) indicates the total amount of phylogenetic divergence contributing to the analyses at each alignment position (regions containing alignment gaps have reduced summed divergence, leading to reduced statistical power). Pink regions in the stop codon plots (e.g., EToV sequence in the HE region) indicate regions excluded from the analyses due to poor or locally out-of-frame mapping to the Breda reference sequence (see Firth for details [
<xref rid="B31" ref-type="bibr">31</xref>
]).</p>
</caption>
<graphic xlink:href="zjv0171838280013"></graphic>
</fig>
<p>We previously predicted the existence of U2 via an analysis of coding potential and synonymous site conservation across the two torovirus genomes available at that time (
<xref rid="B26" ref-type="bibr">26</xref>
). Six additional torovirus genome sequences have now become available. We therefore extended the bioinformatics analysis using all eight currently available torovirus genome sequences (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
). Since the U2 ORF overlaps ORF1a, leading to constraint on
<italic>dS</italic>
, the
<italic>dN</italic>
/
<italic>dS</italic>
analysis is not appropriate for U2. MLOGD analysis indicated that the U2 ORF has a higher coding potential than the corresponding part of ORF1a (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
). Overlapping genes are thought mainly to evolve through “overprinting” of an ancestral gene by the
<italic>de novo</italic>
gene (
<xref rid="B27" ref-type="bibr">27</xref>
). The
<italic>de novo</italic>
gene product is often an accessory protein and often disordered (
<xref rid="B28" ref-type="bibr">28</xref>
). Interestingly, the fragment of pp1a encoded by the region of ORF1a that is overlapped by U2 has no tblastn (
<xref rid="B29" ref-type="bibr">29</xref>
) nor HHpred (
<xref rid="B30" ref-type="bibr">30</xref>
) homologues outside the
<named-content content-type="genus-species">Torovirus</named-content>
genus. Thus, it is unclear which of U2 and the N-terminal domain of pp1a is ancestral. To provide further comparative genomic evidence for the functionality of U2, we used synplot2 to assess conservation at synonymous sites in the ORF1a reading frame, since overlapping functional elements are expected to place extra constraints on synonymous site evolution (
<xref rid="B31" ref-type="bibr">31</xref>
). Consistent with the earlier 2-sequence analysis (
<xref rid="B26" ref-type="bibr">26</xref>
), synplot2 revealed greatly enhanced ORF1a-frame synonymous-site conservation in a region coinciding precisely with the conserved absence of stop codons that defines the U2 ORF (
<xref ref-type="fig" rid="F13">Fig. 13</xref>
), with the mean rate of synonymous substitutions in that region being 0.20 of the genome average. Summed over the 230-codon overlap region, the probability (
<italic>P</italic>
value) that the observed level of conservation would occur by chance is 6.5 × 10
<sup>−40</sup>
.</p>
<p>Both U1 and U2 are conserved in all eight torovirus sequences, with no variation in length or initiation or termination position (
<xref ref-type="fig" rid="F14">Fig. 14</xref>
). In all sequences, U1 and U2 begin with a CUG codon in a strong initiation context (A at −3 for U1 and A at −3 and G at +4 for U2) (
<xref rid="B32" ref-type="bibr">32</xref>
). The U1 protein is predicted to contain two central transmembrane domains and has a C terminus containing many charged amino acids. The U2 protein is predicted to form alternating α helix and antiparallel β sheet domains; however, no structural homologs were found through searches of public databases (
<xref rid="B33" ref-type="bibr">33</xref>
<xref ref-type="bibr" rid="B34"></xref>
<xref rid="B35" ref-type="bibr">35</xref>
). Their function(s) will be the topic of future work.</p>
<fig id="F14" orientation="portrait" position="float">
<label>FIG 14</label>
<caption>
<p>Conservation of uORF1 and uORF2 in the eight publicly available torovirus genomes. Individual amino acid residues are colored according to their biochemical properties. Asterisks below the alignments indicate conservation, and predicted secondary structures are annotated above the alignments (h, helix; e, beta strand; T, transmembrane).</p>
</caption>
<graphic xlink:href="zjv0171838280014"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="sec3">
<title>DISCUSSION</title>
<sec id="sec3-1">
<title>RNA-seq reveals the complexity of torovirus transcription mechanisms.</title>
<p>The factors influencing which transcriptional mechanism is utilized for the synthesis of each sgRNA during torovirus replication have not been fully elucidated. The EToV genome contains seven occurrences of the canonical TRS motif (CUUUAGA): within the 5′ UTR (leader TRS), the end of U1, central ORF1a, central ORF1b, and immediately before the M, HE, and N ORFs (
<xref ref-type="fig" rid="F1">Fig. 1</xref>
). Consistent with experimental evidence (
<xref rid="B14" ref-type="bibr">14</xref>
), we did not identify any chimeric transcripts encompassing the body TRS of M or HE or those within ORF1b or ORF1a. It appears that these sites do not stimulate template switching during negative-strand RNA synthesis. The nucleotides flanking the N, M, and HE TRSs are semiconserved (
<xref ref-type="fig" rid="F15">Fig. 15</xref>
), and it has been suggested previously that the motif definition should be extended to cACN
<sub>3–4</sub>
CUUUAGA to reflect this (
<xref rid="B36" ref-type="bibr">36</xref>
). It is likely that these flanking nucleotides contribute to the degree of utilization.</p>
<fig id="F15" orientation="portrait" position="float">
<label>FIG 15</label>
<caption>
<p>Conservation of TRSs and regulatory structures in the eight publicly available torovirus genomes. Regions were selected based on the presence of a putative TRS in the EToV genome. The TRS and six flanking nucleotides are displayed; putative TRS nucleotides are highlighted in red. Nucleotide conservation between all eight sequences is indicated by an asterisk. The predicted hairpin structure (I) is based upon nucleotide conservation across all eight genomes. Variant nucleotides are circled in either red (covariance indicates the predicted pairing may occur in all but one genome) or blue (variable). R indicates a purine exists in all genomes.</p>
</caption>
<graphic xlink:href="zjv0171838280015"></graphic>
</fig>
<p>For the S gene, our results lend support to the hypothesis suggested previously that a short conserved RNA hairpin, 174 nt upstream of the initiation codon, is involved in stimulating template switching for this sgRNA (
<xref rid="B14" ref-type="bibr">14</xref>
) (
<xref ref-type="fig" rid="F15">Fig. 15</xref>
). The chimeric junction occurs within the run of uridines 3′-adjacent to the hairpin (
<xref ref-type="fig" rid="F15">Fig. 15I</xref>
), indicating that template switching is prompted by the RdRp encountering this structure. This is in contrast to the coronaviral and arteriviral mechanism, wherein RNA structures are insufficient and an accompanying body TRS is required to stimulate template switching. We cannot unambiguously identify which nucleotides are templated before or after the event, as a GUUU sequence maps to genomic RNA on either side of the breakpoint.</p>
<p>The leader-TRS chimeric reads mapping to the N protein gene initially appear consistent with the coronaviral and arteriviral mechanism of TRS-driven discontinuous RNA synthesis. However, close inspection indicated that the homologous motif mediating copy-choice recombination-like translocation and repairing of RNA strands was actually a short AGAA sequence, not the true TRS (tetranucleotides underlined in
<xref ref-type="fig" rid="F15">Fig. 15A</xref>
and
<xref ref-type="fig" rid="F15">G</xref>
). This would result in the nascent anti-TRS mispairing with the leader TRS, where two nucleotides are skipped once reinitiation occurs. This may explain why the discontinuous mechanism is utilized so rarely for this mRNA.</p>
<p>This leads to the suggestion that homology between any two sites is sufficient to induce template switching, i.e., that provided adequate sequence homology exists, the nascent RNA strand repairs with upstream sites within the genomic RNA regardless of the presence of a predefined TRS. This is consistent with the 5′ UTR-ORF1b chimeric transcripts, which again revealed a particular sequence that could be templated from either region in this case AACCUUA rather than the TRS.</p>
<p>If TRS sequence specificity is not required to stimulate EToV discontinuous RNA synthesis, it is presumably constrained by alternative roles. The highly conserved nature of the canonical leader, M, HE, and N TRSs (CUUUAG[A/U]) across all torovirus genomes (
<xref ref-type="fig" rid="F15">Fig. 15</xref>
) suggests it is not tolerant to mutations; however, this has not been formally confirmed. Lack of conservation of the EToV U1, ORF1a, and ORF1b TRS sequences is consistent with them not being functionally relevant. Our results indicate this essential nature is likely due to a role in termination of RNA synthesis, as we did not identify a significant role of this motif in the generation of chimeric transcripts. Conversely, the upstream region of the extended TRS (cACN
<sub>3–4</sub>
CUUUAGA) is tolerant to modifications; indeed, even when this spacer is extended to six nucleotides, transcripts are still detectable at 20% of wild-type levels (
<xref rid="B36" ref-type="bibr">36</xref>
). Again, this is consistent with a role in termination rather than a requirement for repairing with upstream sequences. The canonical TRS sequences also presumably contribute to subgenomic promoter recognition, as the initial CAC is essential, although the adenylate is the first nucleotide on all positive-strand subgenomic transcripts (
<xref rid="B36" ref-type="bibr">36</xref>
). Initiation of sgRNA transcription at AC dinucleotides is also found in the roniviruses (
<xref rid="B12" ref-type="bibr">12</xref>
). It may be that in the
<named-content content-type="genus-species">Torovirinae</named-content>
and the
<named-content content-type="genus-species">Roniviridae</named-content>
, the conserved TRS is utilized primarily for signaling termination of RNA synthesis followed by promoter recognition, and any involvement in template switching is merely a by-product of RdRp promiscuity that has been coopted for gene expression in other nidovirids.</p>
<p>The unique combination of discontinuous and nondiscontinuous mechanisms within the one virus so far appears unique to the mammalian toroviruses. The one bafinivirus isolated to date (white bream virus, family
<named-content content-type="genus-species">Coronaviridae</named-content>
, subfamily
<named-content content-type="genus-species">Torovirinae</named-content>
, genus
<named-content content-type="genus-species">Bafinivirus</named-content>
) has an extended TRS sequence (CA[G/A]CACUAC) which is not conserved with the mammalian toroviruses analyzed in this study. Bafinivirus replication produces three sgRNAs which share an identical 42-nt leader also found at the far 5′ terminus of the genome, indicating this species utilizes discontinuous RNA synthesis in a manner similar to that of the corona- and arteriviruses (
<xref rid="B37" ref-type="bibr">37</xref>
). However, there was preliminary evidence that two of the three sgRNAs exhibit diversity in their junction sites, suggesting the anti-TRS binds to alternative sites within the 5′ leader during strand transfer, consistent with suggestions that, while a threshold level of homology is required, this is not limited to particular primary sequences (
<xref rid="B38" ref-type="bibr">38</xref>
,
<xref rid="B39" ref-type="bibr">39</xref>
). This is reflected in the fact that the bafinivirus leader TRS is not fully identical to the body TRSs.</p>
<p>It is not known which mechanism was utilized by the last common ancestor of nidovirids and, thus, which represents divergence from the original model. It has been suggested that convergent evolution has resulted in the mechanism for discontinuous negative-strand synthesis arising multiple times within the
<named-content content-type="genus-species">Nidovirales</named-content>
(
<xref rid="B40" ref-type="bibr">40</xref>
). Similarly, whether the initial role of the TRS motif was to merely stimulate the attenuation of RNA synthesis or to direct template switching is not known. Our data suggest that transcription mechanisms in the
<named-content content-type="genus-species">Nidovirales</named-content>
fall into multiple categories, each requiring a distinct role of the TRS: (i) homology-driven reinitiation (canonical discontinuous RNA synthesis, as seen in coronaviruses and arteriviruses and, to a low extent, EToV N protein-coding mRNAs), (ii) structure-driven discontinuous transcription (EToV S gene), and (iii) transcription termination (EToV M, HE, and the majority of N protein-coding transcripts). These mechanisms require an RdRp which is prone to template switching when even relatively short homologous sequences are present, potentially leading to a large number of irrelevant transcripts being produced (as previously observed in an arterivirus [
<xref rid="B41" ref-type="bibr">41</xref>
,
<xref rid="B42" ref-type="bibr">42</xref>
]) and also facilitating the production of defective interfering RNAs (
<xref rid="B36" ref-type="bibr">36</xref>
) and recombinant strains (
<xref rid="B7" ref-type="bibr">7</xref>
).</p>
</sec>
<sec id="sec3-2">
<title>Effects upon the host: transcriptional and translational differential expression.</title>
<p>The differential transcription analysis indicated that infection with EToV induces increased transcription of multiple genes, the products of which are significantly more likely than random to be involved in (i) nucleosome function and DNA binding and (ii) immune responses to infection than genes which were not differentially transcribed. Some of the identified GO categories, including cytokine signaling, innate immune responses, and ribosome biogenesis, have been identified in previous RNA-seq analyses of various coronaviruses (
<xref rid="B43" ref-type="bibr">43</xref>
,
<xref rid="B44" ref-type="bibr">44</xref>
). Similarly, although differential translational analyses or proteomic studies have not been conducted on toroviruses, some of the identified proteins have been recognized as being incorporated into nidovirid virions (for example, TCP-1 and multiple heat shock proteins within arterivirus particles) (
<xref rid="B45" ref-type="bibr">45</xref>
). Others have been identified as being upregulated upon infection with coronaviruses, such as the solute carrier family 25 members (
<xref rid="B46" ref-type="bibr">46</xref>
). Notably, both poly(C) and poly(A) binding proteins were preferentially translated in infected cells; these have been previously identified as interaction partners of arteriviral nonstructural protein 1β and contribute to viral RNA replication (
<xref rid="B47" ref-type="bibr">47</xref>
). It therefore appears that torovirus infection induces a host response similar to that of many nidovirids.</p>
<p>To the best of our knowledge, this is the first analysis of differential gene expression following infection with a torovirus. It would be of interest to repeat this analysis at later time points, as a previous study found that EToV-mediated global inhibition of host protein synthesis was only detectable at 16 h postinfection (h.p.i.). The same study found induction of both the intrinsic and extrinsic apoptotic pathways was evident only by 24 h.p.i. (
<xref rid="B48" ref-type="bibr">48</xref>
). It is clear that the transcriptional and translational profile of the host cell may differ significantly throughout the course of infection. Additionally, it must be noted that the horse (
<named-content content-type="genus-species">Equus caballus</named-content>
) genome is not highly annotated, and thus many Ensembl gene identifications do not possess an annotated orthologue, a limiting factor in our analysis.</p>
</sec>
<sec id="sec3-3">
<title>What is the function of U1 and U2?</title>
<p>The current lack of a published reverse genetics system to study torovirus replication means we are unable to perform targeted mutagenesis. This would enable definitive experimental confirmation that U1 and U2 are translated from their respective CUG codons, followed by phenotypic analysis of knockout mutants. However, the comparative genomic analysis together with the accumulation of ribosomes on both CUG codons is highly suggestive of this being the site of initiation; CUG has previously been reported as the most commonly utilized non-AUG initiation codon in mammalian systems (
<xref rid="B49" ref-type="bibr">49</xref>
). In the case of U1, the coding sequence contains no AUG codons (in any frame), a situation that would facilitate preinitiation ribosomes to continue scanning to the U2 CUG and the ORF1a AUG initiation sites (
<xref rid="B50" ref-type="bibr">50</xref>
). It remains a possibility that U2 translation initiates at a downstream AUG; however, the only in-frame AUG is located 336 nt downstream of our presumed start site and is in a poor initiation context (C at −3) and 3′ of the ORF1a AUG. We are therefore confident that the CUG codons that were identified in the ribosome profiling data represent the genuine translational start sites.</p>
<p>The ORFs of both U1 and U2 are intact in all torovirus genomic sequences that we have analyzed to date, including bovine (
<xref rid="B51" ref-type="bibr">51</xref>
,
<xref rid="B52" ref-type="bibr">52</xref>
), caprine, and porcine isolates (
<xref rid="B53" ref-type="bibr">53</xref>
). Most of the U2 ORF is constrained by the fact that the sequence must also retain ORF1a coding capacity in another frame. U1 is not under such limitations, although it is likely that the viral genome must maintain specific 5′ UTR structures to facilitate viral replication. Previous investigations utilizing defective interfering RNAs have confirmed that no more than the first 604 nt of the 5′ UTR and the entirety of the 3′ UTR are sufficient to allow both positive- and negative-strand RNA synthesis (
<xref rid="B36" ref-type="bibr">36</xref>
); it is notable that this region only includes one-third of the U1 ORF (which starts at nucleotide 524), hence only this subdomain would be constrained by maintaining two distinct functional roles. We suggest that the so-called 5′ UTR is actually limited to 523 nt preceding the CUG of U1, and the remainder of U1 and U2 is not under pressure to maintain
<italic>cis</italic>
-replication elements.</p>
<p>Neither ORF could be identified within the white bream virus genome, a bafinivirus that constitutes another genus within the subfamily
<named-content content-type="genus-species">Torovirinae</named-content>
(
<xref rid="B37" ref-type="bibr">37</xref>
), although the lack of multiple bafinivirus sequences makes comparative genomic analysis impossible.</p>
<p>The function(s) of the proteins encoded by both U1 and U2 remain to be elucidated. Despite the relatively large size of the U2 protein (∼30 kDa), after extensive database searches no structural homologs were identified. By comparison, the U1 protein is small (∼10 kDa) and highly basic (pI of 10.4), and it possesses many of the predicted features of a double-spanning transmembrane protein, including two hydrophobic stretches separated by a hinge and a predicted coiled-coil tertiary topology. Based on structural similarity to known proteins, one potential function is a virally encoded ion channel (viroporin) embedded in either intracellular or plasma membranes. It is possible that U1 plays a role in toroviruses similar to that of the coronaviral and arteriviral E proteins, which have no known toroviral homologue. The coronavirus E protein is a small transmembrane protein (∼10 kDa) which possesses ion channel activity and is required for virion assembly, forming a pentamer that traverses the viral envelope (
<xref rid="B54" ref-type="bibr">54</xref>
,
<xref rid="B55" ref-type="bibr">55</xref>
). E proteins also possess a membrane-proximal palmitoylated cysteine residue, which is a predicted (and conserved) posttranslational modification for U1 (
<xref rid="B34" ref-type="bibr">34</xref>
).</p>
<p>Alternatively, viroporin activity may be mediated by a small, basic double-transmembrane protein, the ORF of which is embedded within the EToV N gene in the +1 frame (with respect to N). An analogous “N + 1” protein has been identified in some group II coronaviruses and is postulated to play a structural role; however, it is not essential for replication (
<xref rid="B56" ref-type="bibr">56</xref>
,
<xref rid="B57" ref-type="bibr">57</xref>
). Neither our ribosome profiling nor comparative genomic analysis provides evidence that this ORF is utilized in toroviruses. We did not observe ribosomes translating in this frame in either the initial data set or the drug-treated samples (although Ribo-seq may not always detect poorly translated overlapping genes); further, the ORF is not preserved in all torovirus genomes.</p>
<p>Our data have revealed that the transcriptional landscape of a prototypic torovirus is complex and driven by many factors beyond the canonical multilocus TRS model of coronaviruses. The development of a torovirus reverse genetics system would allow manipulation of potential template switch-inducing sequences and allow us to elucidate which features of the toroviral TRS cause them to act as terminators of RNA synthesis rather than consistently inducing homology-assisted recombination. Our accompanying translational analysis has revealed two conserved novel ORFs and suggests the EToV 5′ UTR is only 523 nt. Together these data provide insight into the molecular biology of the replication cycle of this neglected pathogen and highlight the disparities between the families of the
<named-content content-type="genus-species">Nidovirales</named-content>
.</p>
</sec>
</sec>
<sec sec-type="materials|methods" id="sec4">
<title>MATERIALS AND METHODS</title>
<sec id="sec4-1">
<title>Virus isolates.</title>
<p>A plaque-purified isolate of equine torovirus, Berne strain (isolate P138/72) (EToV), was kindly provided by Raoul de Groot (Utrecht University) and cultured in equine dermis (ED) cells. This virus was initially isolated from a symptomatic horse in 1972 (
<xref rid="B15" ref-type="bibr">15</xref>
). ED cells were maintained in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% fetal calf serum, 100 IU/ml penicillin, 100 μg/ml streptomycin, 1 mM nonessential amino acids, 25 mM HEPES, and 1%
<sc>l</sc>
-glutamine in a humidified incubator at 37°C with 5% CO
<sub>2</sub>
.</p>
</sec>
<sec id="sec4-2">
<title>RNA sequencing and ribosome profiling.</title>
<p>ED cells were infected with EToV for 1 h in serum-free medium (MOI of 0.1) and flash-frozen in liquid nitrogen at 8 h.p.i. prior to either RNA isolation or ribosome purification for profiling. Cells were either not pretreated or, where stated, were treated with a final concentration of 100 μg/ml cycloheximide (CHX) for 2 min (Sigma-Aldrich) or 2 μg/ml of harringtonine for 3 min (LKT Laboratories), followed by CHX for 2 min before flash-freezing. RNA and ribosomes were harvested according to previously published protocols (
<xref rid="B17" ref-type="bibr">17</xref>
,
<xref rid="B58" ref-type="bibr">58</xref>
), with minor modifications. Following either RPF or RNA isolation, duplex-specific nuclease was not utilized but instead rRNA was depleted with the RiboZero [human/mouse/rat] kit (Illumina). Libraries were prepared and sequenced using the NextSeq500 platform (Illumina).</p>
</sec>
<sec id="sec4-3">
<title>Bioinformatic analysis of Ribo-seq and RNA-seq data.</title>
<p>Both Ribo-seq and RNA-seq reads were demultiplexed and adaptor sequences trimmed using the FASTX-Toolkit (
<ext-link ext-link-type="uri" xlink:href="http://hannonlab.cshl.edu/fastx_toolkit/">http://hannonlab.cshl.edu/fastx_toolkit/</ext-link>
). Reads shorter than 25 nt after trimming were discarded. Bowtie (version 1.2.1.1) databases were generated as follows. Horse rRNA sequences were downloaded from the National Center for Biotechnology Information (NCBI) Entrez Nucleotide database (accession numbers
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/EU081775.1" assigning-authority="genbank">EU081775.1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/NR_046271.1" assigning-authority="genbank">NR_046271.1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/NR_046309.2" assigning-authority="genbank">NR_046309.2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/EU554425.1" assigning-authority="genbank">EU554425.1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/XM_014728542.1" assigning-authority="genbank">XM_014728542.1</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/FN402126.1" assigning-authority="genbank">FN402126.1</ext-link>
) (
<xref rid="B59" ref-type="bibr">59</xref>
). As the full-length virus RNA (vRNA) reference genome was not available for EToV, a reference was constructed from the following overlapping segments available from the Entrez Nucleotide database:
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/DQ310701.1" assigning-authority="genbank">DQ310701.1</ext-link>
(positions 1 to 14531),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/X52374.1" assigning-authority="genbank">X52374.1</ext-link>
(13475 to 21394),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/X52506.1" assigning-authority="genbank">X52506.1</ext-link>
(21250 to 26086),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/X52505.1" assigning-authority="genbank">X52505.1</ext-link>
(26054 to 26850),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/X52375.1" assigning-authority="genbank">X52375.1</ext-link>
(26784 to 27316), and
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nucleotide/D00563.1" assigning-authority="genbank">D00563.1</ext-link>
(27264 to 279923). Horse mRNA sequences from EquCab2.0 (GCF_000002305.2) were downloaded from NCBI RefSeq (
<xref rid="B60" ref-type="bibr">60</xref>
). Horse ncRNA sequences were obtained from Ensembl release 89 (
<xref rid="B61" ref-type="bibr">61</xref>
) and combined with horse tRNA sequences from GtRNADB (
<xref rid="B62" ref-type="bibr">62</xref>
). Horse gDNA was obtained from Ensembl release 89. All horse sequences were from the EquCab2.0 genome build. Trimmed reads were then mapped sequentially to the rRNA, vRNA, mRNA, and ncRNA databases using bowtie, version 1.2.1.1 (
<xref rid="B63" ref-type="bibr">63</xref>
), with parameters –v 2 –best (i.e., maximum 2 mismatches, report best match), with only unmapped reads passed to each following stage. Reads that did not align to any of the aforementioned databases were then mapped to the host gDNA using STAR, version 2.5.4a (
<xref rid="B64" ref-type="bibr">64</xref>
), again allowing a maximum of 2 mismatches per alignment. Remaining reads were classified as unmapped.</p>
<p>Ribo-seq density and RNA-seq density were calculated for each gene in the EToV genome (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
and
<xref ref-type="fig" rid="F12">12</xref>
). To normalize for different library sizes, reads per million mapped reads (RPM) values were calculated using the sum of positive-sense virus RNA reads and host RefSeq mRNA reads as the denominator. In order to standardize the regions used to calculate RNA-seq and Ribo-seq density, the following regions were selected: ORF1a, start codon (position 882) to 5′ end of frameshift site (position 14518); ORF1b, 3′ end of frameshift site (position 14525) to 5′ end of the S gene hairpin (position 21118); all other ORFs, initiation codon to termination codon. For U2, a region overlapping ORF1a was used because only 46 bases are unique to U2. For
<xref ref-type="fig" rid="F12">Fig. 12</xref>
, the ORF1a coordinates were updated to exclude the region which overlaps U2, giving a range from 1552 to 21394. In addition, for all ORFs, only Ribo-seq reads mapping to the predominant phase (i.e., reads mapping to the first positions of codons) were used, as this should greatly diminish misassignment of ORF1a-translating ribosomes to U2 or
<italic>vice versa</italic>
. Reads mapping to the first five codons at the 5′ end of each region or the last six codons at the 3′ end of each region were excluded. For sgRNAs, RNA-seq density was calculated for the same regions as those described for Ribo-seq. For the genomic RNA the regions for ORF1a and ORF1b were combined into the interval from the start codon of ORF1a (position 882) to the 5′ end of the S gene hairpin (position 21118). Ribo-seq and RNA-seq densities were calculated as the RPM values for which the 5′ end maps to each region, divided by the length of the region in nucleotides and then multiplied by 1,000 (i.e., RPKM). For RNA-seq, a decumulation strategy was used to subtract the estimated RNA-seq density for longer overlapping genomic and subgenomic transcripts that would contribute to the RNA-seq density measured for each of the 3′ ORFs: the genomic RNA-seq density was subtracted from all subgenomic densities, and then the RNA-seq densities of overlapping upstream subgenomic transcripts were iteratively subtracted from downstream regions (e.g., RNA-seq density in the unique region of M was subtracted from HE, and this was subtracted from N). Translation efficiency for each gene was calculated as Ribo-seq density/decumulated RNA-seq density. Translational efficiencies for HE could not be accurately estimated, as the low expression of the HE transcript made the decumulation procedure for HE susceptible to noise.</p>
<p>Read length distributions were calculated for Ribo-seq and RNA-seq reads mapping to positive-sense host mRNA annotated coding DNA sequences (CDSs) or to the positive-sense coding sequence of the EToV genome (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
). Histograms of host mRNA Ribo-seq and RNA-seq 5′-end positions relative to initiation and termination codons (
<xref ref-type="fig" rid="F5">Fig. 5</xref>
and
<xref ref-type="fig" rid="F6">6</xref>
) were derived from reads mapping to mRNAs with annotated CDSs of ≥450 nt in length and annotated 5′ and 3′ UTRs of ≥60 nt in length. Host mRNA Ribo-seq and RNA-seq phasing distribution (
<xref ref-type="fig" rid="F7">Fig. 7</xref>
) calculations took into account interior regions of annotated coding ORFs only (specifically, reads for which the 5′ end mapped between the first nucleotide of the initiation codon and 30 nt 5′ of the termination codon) in order to exclude reads on or near initiation or termination codons. For viral genome coverage plots, but not for meta-analyses of host RefSeq mRNA coverage, mapping positions of RPF 5′ ends were offset +12 nt to approximate the location of the ribosomal P-site (
<xref rid="B17" ref-type="bibr">17</xref>
).</p>
</sec>
<sec id="sec4-4">
<title>Analysis of viral transcripts.</title>
<p>The EToV (Berne isolate) genome sequence was confirmed by
<italic>de novo</italic>
assembly of unmapped and vRNA reads from the infected RNA-seq samples. Assembly was performed using Trinity (
<xref rid="B65" ref-type="bibr">65</xref>
) with the default settings for stranded single-ended (–SS_lib type “F”) data. Viral contigs were identified using BLASTN (
<xref rid="B29" ref-type="bibr">29</xref>
) against a database of EToV reference sequences based on the NCBI records listed above. The viral contig was aligned to the reference using the MAFFT L-INS-i method (
<xref rid="B66" ref-type="bibr">66</xref>
).</p>
<p>Chimeric reads were classified as reads for which the entire read mapped uniquely to the viral genome, with no mismatches, after adding a single breakpoint, with a minimum of 12 nt mapping on either side of the breakpoint, at least 5 nt apart. To identify such reads, all unmapped reads were split into two subreads at every possible position ≥12 nt from either end, and these subreads were mapped to the viral genome using bowtie with no mismatches and no multimapping permitted. Transcription junctions were defined as donor/acceptor pairs that were either supported by at least 10 chimeric reads or contained the entire 5′ leader and TRS sequence in the 5′ segment of the read. At some positions single-nucleotide resolution for the chimeric breakpoint could not be established. Where reads were found to break at adjacent possible positions, these positions were merged to give a short region containing the breakpoint. The number of nonchimeric reads spanning each donor and acceptor site was calculated as the number of reads which overlapped the site by at least 12 nt in either direction (as chimeric reads overlapping the site by <12 nt are not detectable). The proportion of chimeric reads at each donor or acceptor site is therefore the number of chimeric reads with a breakpoint at the site divided by this number plus the number of nonchimeric reads spanning the site (
<xref ref-type="fig" rid="F8">Fig. 8B</xref>
).</p>
<p>To visualize TRS conservation, multiple-sequence alignments were generated using Clustal Omega with default parameters (
<xref rid="B67" ref-type="bibr">67</xref>
). RNA structure was predicted using RNA-Alifold (
<xref rid="B68" ref-type="bibr">68</xref>
) and visualized using VARNA (
<xref rid="B69" ref-type="bibr">69</xref>
).</p>
</sec>
<sec id="sec4-5">
<title>Differential gene expression analysis.</title>
<p>For analysis of host differential expression between non-drug-treated infected and mock-infected cells, all reads which did not map to rRNA or vRNA were mapped to the EquCab2.0 reference genome and annotations (Ensembl release 89) using STAR (
<xref rid="B64" ref-type="bibr">64</xref>
), with a maximum of two mismatches and removal of noncanonical, nonannotated splice junctions. Read counts were generated using HTSeq 0.8.0 (
<xref rid="B70" ref-type="bibr">70</xref>
). For differential transcription analysis, gene level counts were generated across the Ensembl release 89 EquCab2.0 gtf file, filtered to include only protein-coding genes. For differential translation efficiency analysis, only coding regions (CDS) were considered: both RNA-seq and Ribo-seq counts were generated at the CDS level using intersection-strict mode, based on the same annotation set. Multimapping reads were excluded from both analyses. Differential transcript abundance analysis was performed using the standard DESeq2 (
<xref rid="B71" ref-type="bibr">71</xref>
) pipeline described in the vignette. Genes for which <10 reads were mapped were discarded. All recommended quality control plots were inspected, and no major biases were identified in the data. False discovery rate (FDR) values were calculated using the R fdrtool package (
<xref rid="B72" ref-type="bibr">72</xref>
). Genes with a log
<sub>2</sub>
fold change of >1 and an FDR of less than 0.1 were considered to be differentially expressed. Gene ontology (GO) term enrichment analysis (
<xref rid="B73" ref-type="bibr">73</xref>
) was performed against a background of all horse protein-coding genes in the Ensembl gtf using a Fisher exact test and corrected for multiple testing with a Bonferroni correction. GO annotations for horse genes were downloaded from BiomaRt (Ensembl release 90) (
<xref rid="B74" ref-type="bibr">74</xref>
). Differential translational efficiency analysis was carried out using the CDS counts table, normalized using the DESeq2 “sizeFactors” technique. Similar to the differential transcription analysis, genes to which <10 reads mapped were discarded. All recommended quality control plots for DESeq2 were inspected again, and no major biases were identified in the data. Differential translation efficiency analysis was performed using Xtail (
<xref rid="B75" ref-type="bibr">75</xref>
) by following the standard pipeline described in the vignette.
<italic>P</italic>
values were adjusted automatically within Xtail using the Benjamini–Hochberg method. Genes with a log
<sub>2</sub>
fold change of >1 and an adjusted
<italic>P</italic>
value of less than 0.1 were considered to be differentially translated. GO enrichment analysis was performed as described for the differential transcript abundance analysis.</p>
</sec>
<sec id="sec4-6">
<title>Comparative genomics.</title>
<p>The GenBank accession numbers utilized for comparative genomic analysis were
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/DQ310701.1" assigning-authority="genbank">DQ310701.1</ext-link>
(Berne virus),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/AY427798.1" assigning-authority="genbank">AY427798.1</ext-link>
(Breda virus) (
<xref rid="B51" ref-type="bibr">51</xref>
), KR527150.1 (goat torovirus),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/JQ860350.1" assigning-authority="genbank">JQ860350.1</ext-link>
(porcine torovirus) (
<xref rid="B53" ref-type="bibr">53</xref>
), KM403390.1 (porcine torovirus) (
<xref rid="B76" ref-type="bibr">76</xref>
),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/LT900503.1" assigning-authority="genbank">LT900503.1</ext-link>
(porcine torovirus),
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/LC088094.1" assigning-authority="genbank">LC088094.1</ext-link>
(bovine torovirus), and
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/LC088095.1" assigning-authority="genbank">LC088095.1</ext-link>
(bovine torovirus) (
<xref rid="B52" ref-type="bibr">52</xref>
).
<italic>dN</italic>
/
<italic>dS</italic>
was estimated using the codeml program in the PAML package (
<xref rid="B24" ref-type="bibr">24</xref>
). The eight torovirus U1 nucleotide sequences were translated and aligned as amino acids with MUSCLE (
<xref rid="B77" ref-type="bibr">77</xref>
), and the amino acid alignment was used to guide a codon-based nucleotide alignment (EMBOSS tranalign) (
<xref rid="B78" ref-type="bibr">78</xref>
). Alignment columns with gap characters in any sequence were removed, resulting in a reduction from 81 to 79 codon positions. PhyML (
<xref rid="B79" ref-type="bibr">79</xref>
) was used to produce a nucleotide phylogenetic tree for the U1 alignment, and using this tree topology,
<italic>dN</italic>
/
<italic>dS</italic>
was calculated with codeml. The standard deviations for the codeml
<italic>dN</italic>
/
<italic>dS</italic>
value was estimated via a bootstrapping procedure in which codon columns of the alignment were randomly resampled (with replacement); 100 randomized alignments were generated, and their
<italic>dN</italic>
/
<italic>dS</italic>
values were calculated with codeml.</p>
<p>Coding potential within each reading frame was analyzed using MLOGD (
<xref rid="B25" ref-type="bibr">25</xref>
), and synonymous site conservation was analyzed with synplot2 (
<xref rid="B31" ref-type="bibr">31</xref>
). For these analyses we generated a codon-respecting alignment of the eight torovirus full-genome sequences using a procedure described previously (
<xref rid="B31" ref-type="bibr">31</xref>
). In brief, each individual genome sequence was aligned to a reference sequence using code2aln version 1.2 (
<xref rid="B80" ref-type="bibr">80</xref>
). Breda virus (GenBank accession number
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/AY427798" assigning-authority="genbank">AY427798</ext-link>
) was used as a reference, since unlike Berne virus it contains an intact HE gene. Genomes were then mapped to reference sequence coordinates by removing alignment positions that contained a gap character in the reference sequence, and these pairwise alignments were combined to give the multiple-sequence alignment. This was analyzed with MLOGD using a 40-codon sliding window and a 5-codon step size. For each of the three reading frames, within each window the null model is that the sequence is noncoding, whereas the alternative model is that the sequence is coding in the given reading frame. Positive/negative values indicate that the sequences in the alignment are likely/unlikely to be coding in the given reading frame. To assess conservation at synonymous sites, the concatenated coding regions were extracted from the alignment and analyzed with synplot2.</p>
</sec>
<sec id="sec4-7">
<title>Data availability.</title>
<p>The sequencing data reported in this paper have been deposited in ArrayExpress (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/arrayexpress">http://www.ebi.ac.uk/arrayexpress</ext-link>
) under the accession number
<ext-link ext-link-type="uri" xlink:href="https://www.ebi.ac.uk/arrayexpress/E-MTAB-6656" assigning-authority="arrayexpress">E-MTAB-6656</ext-link>
. The full-length virus sequence has been deposited in GenBank (accession no.
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/nuccore/MG996765" assigning-authority="genbank">MG996765</ext-link>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplemental file 1</title>
</caption>
<media mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="zjv017183828sd1.xlsx"></media>
</supplementary-material>
<supplementary-material id="PMC_2" content-type="local-data">
<caption>
<title>Supplemental file 2</title>
</caption>
<media mimetype="application" mime-subtype="vnd.ms-excel" xlink:href="zjv017183828sd2.xlsx"></media>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="supplementary-material">
<p>Supplemental material for this article may be found at
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.00589-18">https://doi.org/10.1128/JVI.00589-18</ext-link>
.</p>
</fn>
</fn-group>
<ack>
<title>ACKNOWLEDGMENTS</title>
<p>We thank Raoul de Groot and Arno van Vliet (Utrecht University) for providing the virus isolates and helpful advice and Polly Roy (London School of Hygiene and Tropical Medicine) for ED cells.</p>
<p>This work was supported by Wellcome Trust grant 106207 and European Research Council grant 646891 to A.E.F., as well as NWO-CW ECHO grant 711.014.004 from the Netherlands Organization for Scientific Research to E.J.S.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lauber</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Junglen</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Zirkel</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Nga</surname>
<given-names>PT</given-names>
</name>
,
<name name-style="western">
<surname>Morita</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
,
<name name-style="western">
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses</article-title>
.
<source>Arch Virol</source>
<volume>157</volume>
:
<fpage>1623</fpage>
<lpage>1628</lpage>
. doi:
<pub-id pub-id-type="doi">10.1007/s00705-012-1295-x</pub-id>
.
<pub-id pub-id-type="pmid">22527862</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hoet</surname>
<given-names>AE</given-names>
</name>
,
<name name-style="western">
<surname>Saif</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Bovine torovirus (Breda virus) revisited</article-title>
.
<source>Anim Health Res Rev</source>
<volume>5</volume>
:
<fpage>157</fpage>
<lpage>171</lpage>
. doi:
<pub-id pub-id-type="doi">10.1079/AHR200498</pub-id>
.
<pub-id pub-id-type="pmid">15984322</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Brown</surname>
<given-names>DW</given-names>
</name>
,
<name name-style="western">
<surname>Beards</surname>
<given-names>GM</given-names>
</name>
,
<name name-style="western">
<surname>Flewett</surname>
<given-names>TH</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Detection of Breda virus antigen and antibody in humans and animals by enzyme immunoassay</article-title>
.
<source>J Clin Microbiol</source>
<volume>25</volume>
:
<fpage>637</fpage>
<lpage>640</lpage>
.
<pub-id pub-id-type="pmid">3571473</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Alonso-Padilla</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Pignatelli</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Simon-Grife</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Plazuelo</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Casal</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Rodriguez</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Seroprevalence of porcine torovirus (PToV) in Spanish farms</article-title>
.
<source>BMC Res Notes</source>
<volume>5</volume>
:
<fpage>675</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1756-0500-5-675</pub-id>
.
<pub-id pub-id-type="pmid">23217216</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hanke</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Pohlmann</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Sauter-Louis</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Hoper</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Stadler</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Ritzmann</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Steinrigl</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Schwarz</surname>
<given-names>BA</given-names>
</name>
,
<name name-style="western">
<surname>Akimkin</surname>
<given-names>V</given-names>
</name>
,
<name name-style="western">
<surname>Fux</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Blome</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Beer</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Porcine epidemic diarrhea in Europe: in-detail analyses of disease dynamics and molecular epidemiology</article-title>
.
<source>Viruses</source>
<volume>9</volume>
:
<fpage>E177</fpage>
. doi:
<pub-id pub-id-type="doi">10.3390/v9070177</pub-id>
.
<pub-id pub-id-type="pmid">28684708</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Pignatelli</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Grau-Roma</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Jimenez</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Segales</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Rodriguez</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Longitudinal serological and virological study on porcine torovirus (PToV) in piglets from Spanish farms</article-title>
.
<source>Vet Microbiol</source>
<volume>146</volume>
:
<fpage>260</fpage>
<lpage>268</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.vetmic.2010.05.023</pub-id>
.
<pub-id pub-id-type="pmid">20542392</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name name-style="western">
<surname>Lavazza</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Matiz</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Koopmans</surname>
<given-names>MP</given-names>
</name>
,
<name name-style="western">
<surname>de Groot</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Phylogenetic and evolutionary relationships among torovirus field variants: evidence for multiple intertypic recombination events</article-title>
.
<source>J Virol</source>
<volume>77</volume>
:
<fpage>9567</fpage>
<lpage>9577</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.77.17.9567-9577.2003</pub-id>
.
<pub-id pub-id-type="pmid">12915570</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sawicki</surname>
<given-names>SG</given-names>
</name>
,
<name name-style="western">
<surname>Sawicki</surname>
<given-names>DL</given-names>
</name>
,
<name name-style="western">
<surname>Siddell</surname>
<given-names>SG</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>A contemporary view of coronavirus transcription</article-title>
.
<source>J Virol</source>
<volume>81</volume>
:
<fpage>20</fpage>
<lpage>29</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.01358-06</pub-id>
.
<pub-id pub-id-type="pmid">16928755</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sola</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Almazan</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Zuniga</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Continuous and discontinuous RNA synthesis in coronaviruses</article-title>
.
<source>Annu Rev Virol</source>
<volume>2</volume>
:
<fpage>265</fpage>
<lpage>288</lpage>
. doi:
<pub-id pub-id-type="doi">10.1146/annurev-virology-100114-055218</pub-id>
.
<pub-id pub-id-type="pmid">26958916</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>van Marle</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Dobbe</surname>
<given-names>JC</given-names>
</name>
,
<name name-style="western">
<surname>Gultyaev</surname>
<given-names>AP</given-names>
</name>
,
<name name-style="western">
<surname>Luytjes</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
,
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>96</volume>
:
<fpage>12056</fpage>
<lpage>12061</lpage>
. doi:
<pub-id pub-id-type="doi">10.1073/pnas.96.21.12056</pub-id>
.
<pub-id pub-id-type="pmid">10518575</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Pasternak</surname>
<given-names>AO</given-names>
</name>
,
<name name-style="western">
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
,
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Nidovirus transcription: how to make sense?</article-title>
<source>J Gen Virol</source>
<volume>87</volume>
:
<fpage>1403</fpage>
<lpage>1421</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/vir.0.81611-0</pub-id>
.
<pub-id pub-id-type="pmid">16690906</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cowley</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Dimmock</surname>
<given-names>CM</given-names>
</name>
,
<name name-style="western">
<surname>Walker</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Gill-associated nidovirus of Penaeus monodon prawns transcribes 3′-coterminal subgenomic mRNAs that do not possess 5′-leader sequences</article-title>
.
<source>J Gen Virol</source>
<volume>83</volume>
:
<fpage>927</fpage>
<lpage>935</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/0022-1317-83-4-927</pub-id>
.
<pub-id pub-id-type="pmid">11907343</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zirkel</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Roth</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Kurth</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Junglen</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Identification and characterization of genetically divergent members of the newly established family Mesoniviridae</article-title>
.
<source>J Virol</source>
<volume>87</volume>
:
<fpage>6346</fpage>
<lpage>6358</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.00416-13</pub-id>
.
<pub-id pub-id-type="pmid">23536661</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>van Vliet</surname>
<given-names>AL</given-names>
</name>
,
<name name-style="western">
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name name-style="western">
<surname>Rottier</surname>
<given-names>PJ</given-names>
</name>
,
<name name-style="western">
<surname>de Groot</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus</article-title>
.
<source>EMBO J</source>
<volume>21</volume>
:
<fpage>6571</fpage>
<lpage>6580</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/emboj/cdf635</pub-id>
.
<pub-id pub-id-type="pmid">12456663</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Weiss</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Steck</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
</person-group>
<year>1983</year>
<article-title>Purification and partial characterization of a new enveloped RNA virus (Berne virus)</article-title>
.
<source>J Gen Virol</source>
<volume>64</volume>
(
<issue>Part 9</issue>
):
<fpage>1849</fpage>
<lpage>1858</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/0022-1317-64-9-1849</pub-id>
.
<pub-id pub-id-type="pmid">6886677</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kuwabara</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Wada</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Maeda</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Miyazaki</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Tsunemitsu</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>First isolation of cytopathogenic bovine torovirus in cell culture from a calf with diarrhea</article-title>
.
<source>Clin Vaccine Immunol</source>
<volume>14</volume>
:
<fpage>998</fpage>
<lpage>1004</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/CVI.00475-06</pub-id>
.
<pub-id pub-id-type="pmid">17567770</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Irigoyen</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
,
<name name-style="western">
<surname>Jones</surname>
<given-names>JD</given-names>
</name>
,
<name name-style="western">
<surname>Chung</surname>
<given-names>BY</given-names>
</name>
,
<name name-style="western">
<surname>Siddell</surname>
<given-names>SG</given-names>
</name>
,
<name name-style="western">
<surname>Brierley</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling</article-title>
.
<source>PLoS Pathog</source>
<volume>12</volume>
:
<elocation-id>e1005473</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.ppat.1005473</pub-id>
.
<pub-id pub-id-type="pmid">26919232</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
,
<name name-style="western">
<surname>den Boon</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Comparison of the genome organization of toro- and coronaviruses: evidence for two nonhomologous RNA recombination events during Berne virus evolution</article-title>
.
<source>Virology</source>
<volume>180</volume>
:
<fpage>448</fpage>
<lpage>452</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/0042-6822(91)90056-H</pub-id>
.
<pub-id pub-id-type="pmid">1984666</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
,
<name name-style="western">
<surname>den Boon</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Bredenbeek</surname>
<given-names>PJ</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Rijnbrand</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related</article-title>
.
<source>Nucleic Acids Res</source>
<volume>18</volume>
:
<fpage>4535</fpage>
<lpage>4542</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/18.15.4535</pub-id>
.
<pub-id pub-id-type="pmid">2388833</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Yang</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Leibowitz</surname>
<given-names>JL</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>The structure and functions of coronavirus genomic 3′ and 5′ ends</article-title>
.
<source>Virus Res</source>
<volume>206</volume>
:
<fpage>120</fpage>
<lpage>133</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.virusres.2015.02.025</pub-id>
.
<pub-id pub-id-type="pmid">25736566</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
,
<name name-style="western">
<surname>den Boon</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Characterization of defective interfering RNAs of Berne virus</article-title>
.
<source>J Gen Virol</source>
<volume>72</volume>
(
<issue>Part 7</issue>
):
<fpage>1635</fpage>
<lpage>1643</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/0022-1317-72-7-1635</pub-id>
.
<pub-id pub-id-type="pmid">1856694</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Gerashchenko</surname>
<given-names>MV</given-names>
</name>
,
<name name-style="western">
<surname>Gladyshev</surname>
<given-names>VN</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Translation inhibitors cause abnormalities in ribosome profiling experiments</article-title>
.
<source>Nucleic Acids Res</source>
<volume>42</volume>
:
<elocation-id>e134</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gku671</pub-id>
.
<pub-id pub-id-type="pmid">25056308</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Andreev</surname>
<given-names>DE</given-names>
</name>
,
<name name-style="western">
<surname>O'Connor</surname>
<given-names>PB</given-names>
</name>
,
<name name-style="western">
<surname>Loughran</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Dmitriev</surname>
<given-names>SE</given-names>
</name>
,
<name name-style="western">
<surname>Baranov</surname>
<given-names>PV</given-names>
</name>
,
<name name-style="western">
<surname>Shatsky</surname>
<given-names>IN</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Insights into the mechanisms of eukaryotic translation gained with ribosome profiling</article-title>
.
<source>Nucleic Acids Res</source>
<volume>45</volume>
:
<fpage>513</fpage>
<lpage>526</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkw1190</pub-id>
.
<pub-id pub-id-type="pmid">27923997</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Yang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>PAML 4: phylogenetic analysis by maximum likelihood</article-title>
.
<source>Mol Biol Evol</source>
<volume>24</volume>
:
<fpage>1586</fpage>
<lpage>1591</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/molbev/msm088</pub-id>
.
<pub-id pub-id-type="pmid">17483113</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
,
<name name-style="western">
<surname>Brown</surname>
<given-names>CM</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Detecting overlapping coding sequences in virus genomes</article-title>
.
<source>BMC Bioinformatics</source>
<volume>7</volume>
:
<fpage>75</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1471-2105-7-75</pub-id>
.
<pub-id pub-id-type="pmid">16483358</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
,
<name name-style="western">
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>A case for a CUG-initiated coding sequence overlapping torovirus ORF1a and encoding a novel 30 kDa product</article-title>
.
<source>Virol J</source>
<volume>6</volume>
:
<fpage>136</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1743-422X-6-136</pub-id>
.
<pub-id pub-id-type="pmid">19737402</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Keese</surname>
<given-names>PK</given-names>
</name>
,
<name name-style="western">
<surname>Gibbs</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Origins of genes: “big bang” or continuous creation?</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>89</volume>
:
<fpage>9489</fpage>
<lpage>9493</lpage>
. doi:
<pub-id pub-id-type="doi">10.1073/pnas.89.20.9489</pub-id>
.
<pub-id pub-id-type="pmid">1329098</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rancurel</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Khosravi</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Dunker</surname>
<given-names>AK</given-names>
</name>
,
<name name-style="western">
<surname>Romero</surname>
<given-names>PR</given-names>
</name>
,
<name name-style="western">
<surname>Karlin</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation</article-title>
.
<source>J Virol</source>
<volume>83</volume>
:
<fpage>10719</fpage>
<lpage>10736</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.00595-09</pub-id>
.
<pub-id pub-id-type="pmid">19640978</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
,
<name name-style="western">
<surname>Gish</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Miller</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
,
<name name-style="western">
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>Basic local alignment search tool</article-title>
.
<source>J Mol Biol</source>
<volume>215</volume>
:
<fpage>403</fpage>
<lpage>410</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/S0022-2836(05)80360-2</pub-id>
.
<pub-id pub-id-type="pmid">2231712</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Soding</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Biegert</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Lupas</surname>
<given-names>AN</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>The HHpred interactive server for protein homology detection and structure prediction</article-title>
.
<source>Nucleic Acids Res</source>
<volume>33</volume>
:
<fpage>W244</fpage>
<lpage>W248</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gki408</pub-id>
.
<pub-id pub-id-type="pmid">15980461</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses</article-title>
.
<source>Nucleic Acids Res</source>
<volume>42</volume>
:
<fpage>12425</fpage>
<lpage>12439</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gku981</pub-id>
.
<pub-id pub-id-type="pmid">25326325</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kozak</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>1986</year>
<article-title>Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes</article-title>
.
<source>Cell</source>
<volume>44</volume>
:
<fpage>283</fpage>
<lpage>292</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/0092-8674(86)90762-2</pub-id>
.
<pub-id pub-id-type="pmid">3943125</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Haas</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Roth</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Arnold</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Kiefer</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Schmidt</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Bordoli</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Schwede</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>The Protein Model Portal–a comprehensive resource for protein structure and model information</article-title>
.
<source>Database (Oxford)</source>
<volume>2013</volume>
:
<fpage>bat031</fpage>
. doi:
<pub-id pub-id-type="doi">10.1093/database/bat031</pub-id>
.
<pub-id pub-id-type="pmid">23624946</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kelley</surname>
<given-names>LA</given-names>
</name>
,
<name name-style="western">
<surname>Mezulis</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Yates</surname>
<given-names>CM</given-names>
</name>
,
<name name-style="western">
<surname>Wass</surname>
<given-names>MN</given-names>
</name>
,
<name name-style="western">
<surname>Sternberg</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>The Phyre2 web portal for protein modeling, prediction and analysis</article-title>
.
<source>Nat Protoc</source>
<volume>10</volume>
:
<fpage>845</fpage>
<lpage>858</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nprot.2015.053</pub-id>
.
<pub-id pub-id-type="pmid">25950237</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<label>35.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>McGuffin</surname>
<given-names>LJ</given-names>
</name>
,
<name name-style="western">
<surname>Bryson</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Jones</surname>
<given-names>DT</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>The PSIPRED protein structure prediction server</article-title>
.
<source>Bioinformatics</source>
<volume>16</volume>
:
<fpage>404</fpage>
<lpage>405</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/bioinformatics/16.4.404</pub-id>
.
<pub-id pub-id-type="pmid">10869041</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<label>36.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name name-style="western">
<surname>van Vliet</surname>
<given-names>AL</given-names>
</name>
,
<name name-style="western">
<surname>Segeren</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>el Azzouzi</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>van Essen</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>de Groot</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter</article-title>
.
<source>J Virol</source>
<volume>79</volume>
:
<fpage>8275</fpage>
<lpage>8281</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.79.13.8275-8281.2005</pub-id>
.
<pub-id pub-id-type="pmid">15956573</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<label>37.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Schutze</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Ulferts</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Schelle</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Bayer</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Granzow</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Hoffmann</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Mettenleiter</surname>
<given-names>TC</given-names>
</name>
,
<name name-style="western">
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Characterization of White bream virus reveals a novel genetic cluster of nidoviruses</article-title>
.
<source>J Virol</source>
<volume>80</volume>
:
<fpage>11598</fpage>
<lpage>11609</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.01758-06</pub-id>
.
<pub-id pub-id-type="pmid">16987966</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<label>38.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sola</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Alonso</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Zuniga</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Balasch</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Plana-Duran</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity</article-title>
.
<source>J Virol</source>
<volume>77</volume>
:
<fpage>4357</fpage>
<lpage>4369</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.77.7.4357-4369.2003</pub-id>
.
<pub-id pub-id-type="pmid">12634392</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<label>39.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zuniga</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Sola</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Alonso</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis</article-title>
.
<source>J Virol</source>
<volume>78</volume>
:
<fpage>980</fpage>
<lpage>994</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.78.2.980-994.2004</pub-id>
.
<pub-id pub-id-type="pmid">14694129</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<label>40.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>de Vries</surname>
<given-names>AAF</given-names>
</name>
,
<name name-style="western">
<surname>Horzinek</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Rottier</surname>
<given-names>PJM</given-names>
</name>
,
<name name-style="western">
<surname>de Groot</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses</article-title>
.
<source>Semin Virol</source>
<volume>8</volume>
:
<fpage>33</fpage>
<lpage>47</lpage>
. doi:
<pub-id pub-id-type="doi">10.1006/smvy.1997.0104</pub-id>
.</mixed-citation>
</ref>
<ref id="B41">
<label>41.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Di</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>McIntyre</surname>
<given-names>AA</given-names>
</name>
,
<name name-style="western">
<surname>Brinton</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>New insights about the regulation of Nidovirus subgenomic mRNA synthesis</article-title>
.
<source>Virology</source>
<volume>517</volume>
:
<fpage>38</fpage>
<lpage>43</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.virol.2018.01.026</pub-id>
.
<pub-id pub-id-type="pmid">29475599</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<label>42.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Di</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Madden</surname>
<given-names>JC</given-names>
<suffix>Jr</suffix>
</name>
,
<name name-style="western">
<surname>Morantz</surname>
<given-names>EK</given-names>
</name>
,
<name name-style="western">
<surname>Tang</surname>
<given-names>HY</given-names>
</name>
,
<name name-style="western">
<surname>Graham</surname>
<given-names>RL</given-names>
</name>
,
<name name-style="western">
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
,
<name name-style="western">
<surname>Brinton</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>114</volume>
:
<fpage>E8895</fpage>
<lpage>E8904</lpage>
. doi:
<pub-id pub-id-type="doi">10.1073/pnas.1706696114</pub-id>
.
<pub-id pub-id-type="pmid">29073030</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<label>43.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cong</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>X</given-names>
</name>
,
<name name-style="western">
<surname>Han</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Shao</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Kong</surname>
<given-names>X</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection</article-title>
.
<source>BMC Genomics</source>
<volume>14</volume>
:
<fpage>743</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1471-2164-14-743</pub-id>
.
<pub-id pub-id-type="pmid">24168272</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<label>44.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Raaben</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Groot Koerkamp</surname>
<given-names>MJ</given-names>
</name>
,
<name name-style="western">
<surname>Rottier</surname>
<given-names>PJ</given-names>
</name>
,
<name name-style="western">
<surname>de Haan</surname>
<given-names>CA</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies</article-title>
.
<source>Cell Microbiol</source>
<volume>9</volume>
:
<fpage>2218</fpage>
<lpage>2229</lpage>
. doi:
<pub-id pub-id-type="doi">10.1111/j.1462-5822.2007.00951.x</pub-id>
.
<pub-id pub-id-type="pmid">17490409</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<label>45.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Xue</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Kong</surname>
<given-names>Q</given-names>
</name>
,
<name name-style="western">
<surname>Ren</surname>
<given-names>X</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>X</given-names>
</name>
,
<name name-style="western">
<surname>Shu</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Bi</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Cao</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis</article-title>
.
<source>Virol J</source>
<volume>7</volume>
:
<fpage>242</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1743-422X-7-242</pub-id>
.
<pub-id pub-id-type="pmid">20849641</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<label>46.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>VanLeuven</surname>
<given-names>JT</given-names>
</name>
,
<name name-style="western">
<surname>Ridenhour</surname>
<given-names>BJ</given-names>
</name>
,
<name name-style="western">
<surname>Gonzalez</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Miller</surname>
<given-names>CR</given-names>
</name>
,
<name name-style="western">
<surname>Miura</surname>
<given-names>TA</given-names>
</name>
</person-group>
<year>2017</year>
<article-title>Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses</article-title>
.
<source>PLoS One</source>
<volume>12</volume>
:
<elocation-id>e0178408</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.pone.0178408</pub-id>
.
<pub-id pub-id-type="pmid">28575086</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<label>47.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Beura</surname>
<given-names>LK</given-names>
</name>
,
<name name-style="western">
<surname>Dinh</surname>
<given-names>PX</given-names>
</name>
,
<name name-style="western">
<surname>Osorio</surname>
<given-names>FA</given-names>
</name>
,
<name name-style="western">
<surname>Pattnaik</surname>
<given-names>AK</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Cellular poly(c) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1beta and support viral replication</article-title>
.
<source>J Virol</source>
<volume>85</volume>
:
<fpage>12939</fpage>
<lpage>12949</lpage>
. doi:
<pub-id pub-id-type="doi">10.1128/JVI.05177-11</pub-id>
.
<pub-id pub-id-type="pmid">21976648</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<label>48.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Maestre</surname>
<given-names>AM</given-names>
</name>
,
<name name-style="western">
<surname>Garzon</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Rodriguez</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Equine torovirus (BEV) induces caspase-mediated apoptosis in infected cells</article-title>
.
<source>PLoS One</source>
<volume>6</volume>
:
<elocation-id>e20972</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.pone.0020972</pub-id>
.
<pub-id pub-id-type="pmid">21698249</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<label>49.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Touriol</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Bornes</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Bonnal</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Audigier</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Prats</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Prats</surname>
<given-names>AC</given-names>
</name>
,
<name name-style="western">
<surname>Vagner</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons</article-title>
.
<source>Biol Cell</source>
<volume>95</volume>
:
<fpage>169</fpage>
<lpage>178</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/S0248-4900(03)00033-9</pub-id>
.
<pub-id pub-id-type="pmid">12867081</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<label>50.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
,
<name name-style="western">
<surname>Brierley</surname>
<given-names>I</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Non-canonical translation in RNA viruses</article-title>
.
<source>J Gen Virol</source>
<volume>93</volume>
:
<fpage>1385</fpage>
<lpage>1409</lpage>
. doi:
<pub-id pub-id-type="doi">10.1099/vir.0.042499-0</pub-id>
.
<pub-id pub-id-type="pmid">22535777</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<label>51.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Draker</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Roper</surname>
<given-names>RL</given-names>
</name>
,
<name name-style="western">
<surname>Petric</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Tellier</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>The complete sequence of the bovine torovirus genome</article-title>
.
<source>Virus Res</source>
<volume>115</volume>
:
<fpage>56</fpage>
<lpage>68</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.virusres.2005.07.005</pub-id>
.
<pub-id pub-id-type="pmid">16137782</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<label>52.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ito</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Tsuchiaka</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Naoi</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Otomaru</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Sato</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Masuda</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Haga</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Oka</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Yamasato</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Omatsu</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Sugimura</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Aoki</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Furuya</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Katayama</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Oba</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Shirai</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Katayama</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Mizutani</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Nagai</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Whole genome analysis of Japanese bovine toroviruses reveals natural recombination between porcine and bovine toroviruses</article-title>
.
<source>Infect Genet Evol</source>
<volume>38</volume>
:
<fpage>90</fpage>
<lpage>95</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/j.meegid.2015.12.013</pub-id>
.
<pub-id pub-id-type="pmid">26708248</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<label>53.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sun</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Lan</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Lu</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Chen</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Wang</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Hua</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Molecular characterization and phylogenetic analysis of the genome of porcine torovirus</article-title>
.
<source>Arch Virol</source>
<volume>159</volume>
:
<fpage>773</fpage>
<lpage>778</lpage>
. doi:
<pub-id pub-id-type="doi">10.1007/s00705-013-1861-x</pub-id>
.
<pub-id pub-id-type="pmid">24122107</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<label>54.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nieto-Torres</surname>
<given-names>JL</given-names>
</name>
,
<name name-style="western">
<surname>DeDiego</surname>
<given-names>ML</given-names>
</name>
,
<name name-style="western">
<surname>Verdia-Baguena</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Jimenez-Guardeno</surname>
<given-names>JM</given-names>
</name>
,
<name name-style="western">
<surname>Regla-Nava</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Fernandez-Delgado</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Castano-Rodriguez</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Alcaraz</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Torres</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Aguilella</surname>
<given-names>VM</given-names>
</name>
,
<name name-style="western">
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis</article-title>
.
<source>PLoS Pathog</source>
<volume>10</volume>
:
<elocation-id>e1004077</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004077</pub-id>
.
<pub-id pub-id-type="pmid">24788150</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<label>55.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ruch</surname>
<given-names>TR</given-names>
</name>
,
<name name-style="western">
<surname>Machamer</surname>
<given-names>CE</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>The coronavirus E protein: assembly and beyond</article-title>
.
<source>Viruses</source>
<volume>4</volume>
:
<fpage>363</fpage>
<lpage>382</lpage>
. doi:
<pub-id pub-id-type="doi">10.3390/v4030363</pub-id>
.
<pub-id pub-id-type="pmid">22590676</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<label>56.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Fischer</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Peng</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Hingley</surname>
<given-names>ST</given-names>
</name>
,
<name name-style="western">
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
,
<name name-style="western">
<surname>Masters</surname>
<given-names>PS</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication</article-title>
.
<source>J Virol</source>
<volume>71</volume>
:
<fpage>996</fpage>
<lpage>1003</lpage>
.
<pub-id pub-id-type="pmid">8995618</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<label>57.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Senanayake</surname>
<given-names>SD</given-names>
</name>
,
<name name-style="western">
<surname>Hofmann</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Maki</surname>
<given-names>JL</given-names>
</name>
,
<name name-style="western">
<surname>Brian</surname>
<given-names>DA</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>The nucleocapsid protein gene of bovine coronavirus is bicistronic</article-title>
.
<source>J Virol</source>
<volume>66</volume>
:
<fpage>5277</fpage>
<lpage>5283</lpage>
.
<pub-id pub-id-type="pmid">1501275</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<label>58.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Irigoyen</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Dinan</surname>
<given-names>AM</given-names>
</name>
,
<name name-style="western">
<surname>Brierley</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
</person-group>
<year>2018</year>
<article-title>Ribosome profiling of the retrovirus murine leukemia virus</article-title>
.
<source>Retrovirology</source>
<volume>15</volume>
:
<fpage>10</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s12977-018-0394-5</pub-id>
.
<pub-id pub-id-type="pmid">29357872</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<label>59.</label>
<mixed-citation publication-type="journal">
<collab>NCBI Resource Coordinators</collab>
.
<year>2016</year>
<article-title>Database resources of the National Center for Biotechnology Information</article-title>
.
<source>Nucleic Acids Res</source>
<volume>44</volume>
:
<fpage>D7</fpage>
<lpage>D19</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkv1290</pub-id>
.
<pub-id pub-id-type="pmid">26615191</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<label>60.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Pruitt</surname>
<given-names>KD</given-names>
</name>
,
<name name-style="western">
<surname>Tatusova</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Brown</surname>
<given-names>GR</given-names>
</name>
,
<name name-style="western">
<surname>Maglott</surname>
<given-names>DR</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>NCBI reference sequences (RefSeq): current status, new features and genome annotation policy</article-title>
.
<source>Nucleic Acids Res</source>
<volume>40</volume>
:
<fpage>D130</fpage>
<lpage>D135</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkr1079</pub-id>
.
<pub-id pub-id-type="pmid">22121212</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<label>61.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Flicek</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Amode</surname>
<given-names>MR</given-names>
</name>
,
<name name-style="western">
<surname>Barrell</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Beal</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Brent</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Carvalho-Silva</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Clapham</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Coates</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Fairley</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Fitzgerald</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Gil</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Gordon</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Hendrix</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Hourlier</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Johnson</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Kahari</surname>
<given-names>AK</given-names>
</name>
,
<name name-style="western">
<surname>Keefe</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Keenan</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Kinsella</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Komorowska</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Koscielny</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Kulesha</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Larsson</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Longden</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>McLaren</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Muffato</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Overduin</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Pignatelli</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Pritchard</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Riat</surname>
<given-names>HS</given-names>
</name>
,
<name name-style="western">
<surname>Ritchie</surname>
<given-names>GR</given-names>
</name>
,
<name name-style="western">
<surname>Ruffier</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Schuster</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Sobral</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Tang</surname>
<given-names>YA</given-names>
</name>
,
<name name-style="western">
<surname>Taylor</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Trevanion</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Vandrovcova</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>White</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Wilson</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Wilder</surname>
<given-names>SP</given-names>
</name>
,
<name name-style="western">
<surname>Aken</surname>
<given-names>BL</given-names>
</name>
,
<name name-style="western">
<surname>Birney</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Cunningham</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Dunham</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Fernandez-Suarez</surname>
<given-names>XM</given-names>
</name>
,
<name name-style="western">
<surname>Harrow</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Herrero</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Hubbard</surname>
<given-names>TJ</given-names>
</name>
,
<name name-style="western">
<surname>Parker</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Proctor</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Spudich</surname>
<given-names>G</given-names>
</name>
,
<name name-style="western">
<surname>Vogel</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Yates</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Zadissa</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Searle</surname>
<given-names>SM</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Ensembl 2012</article-title>
.
<source>Nucleic Acids Res</source>
<volume>40</volume>
:
<fpage>D84</fpage>
<lpage>D90</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkr991</pub-id>
.
<pub-id pub-id-type="pmid">22086963</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<label>62.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Chan</surname>
<given-names>PP</given-names>
</name>
,
<name name-style="western">
<surname>Lowe</surname>
<given-names>TM</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes</article-title>
.
<source>Nucleic Acids Res</source>
<volume>44</volume>
:
<fpage>D184</fpage>
<lpage>D189</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkv1309</pub-id>
.
<pub-id pub-id-type="pmid">26673694</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<label>63.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Langmead</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Pop</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Ultrafast and memory-efficient alignment of short DNA sequences to the human genome</article-title>
.
<source>Genome Biol</source>
<volume>10</volume>
:
<fpage>R25</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/gb-2009-10-3-r25</pub-id>
.
<pub-id pub-id-type="pmid">19261174</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<label>64.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Dobin</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Davis</surname>
<given-names>CA</given-names>
</name>
,
<name name-style="western">
<surname>Schlesinger</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Drenkow</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Zaleski</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Jha</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Batut</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Chaisson</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Gingeras</surname>
<given-names>TR</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>STAR: ultrafast universal RNA-seq aligner</article-title>
.
<source>Bioinformatics</source>
<volume>29</volume>
:
<fpage>15</fpage>
<lpage>21</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/bioinformatics/bts635</pub-id>
.
<pub-id pub-id-type="pmid">23104886</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<label>65.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Grabherr</surname>
<given-names>MG</given-names>
</name>
,
<name name-style="western">
<surname>Haas</surname>
<given-names>BJ</given-names>
</name>
,
<name name-style="western">
<surname>Yassour</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Levin</surname>
<given-names>JZ</given-names>
</name>
,
<name name-style="western">
<surname>Thompson</surname>
<given-names>DA</given-names>
</name>
,
<name name-style="western">
<surname>Amit</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Adiconis</surname>
<given-names>X</given-names>
</name>
,
<name name-style="western">
<surname>Fan</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Raychowdhury</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Zeng</surname>
<given-names>Q</given-names>
</name>
,
<name name-style="western">
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Mauceli</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Hacohen</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Gnirke</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Rhind</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>di Palma</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Birren</surname>
<given-names>BW</given-names>
</name>
,
<name name-style="western">
<surname>Nusbaum</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Lindblad-Toh</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Friedman</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Regev</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Full-length transcriptome assembly from RNA-seq data without a reference genome</article-title>
.
<source>Nat Biotechnol</source>
<volume>29</volume>
:
<fpage>644</fpage>
<lpage>652</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nbt.1883</pub-id>
.
<pub-id pub-id-type="pmid">21572440</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<label>66.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Katoh</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Standley</surname>
<given-names>DM</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>MAFFT multiple sequence alignment software version 7: improvements in performance and usability</article-title>
.
<source>Mol Biol Evol</source>
<volume>30</volume>
:
<fpage>772</fpage>
<lpage>780</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/molbev/mst010</pub-id>
.
<pub-id pub-id-type="pmid">23329690</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<label>67.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sievers</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Clustal omega</article-title>
.
<source>Curr Protoc Bioinformatics</source>
<volume>48</volume>
:
<fpage>3.13.1–3.13.16</fpage>
.</mixed-citation>
</ref>
<ref id="B68">
<label>68.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Bernhart</surname>
<given-names>SH</given-names>
</name>
,
<name name-style="western">
<surname>Hofacker</surname>
<given-names>IL</given-names>
</name>
,
<name name-style="western">
<surname>Will</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Gruber</surname>
<given-names>AR</given-names>
</name>
,
<name name-style="western">
<surname>Stadler</surname>
<given-names>PF</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>RNAalifold: improved consensus structure prediction for RNA alignments</article-title>
.
<source>BMC Bioinformatics</source>
<volume>9</volume>
:
<fpage>474</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1471-2105-9-474</pub-id>
.
<pub-id pub-id-type="pmid">19014431</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<label>69.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Darty</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Denise</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Ponty</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>VARNA: Interactive drawing and editing of the RNA secondary structure</article-title>
.
<source>Bioinformatics</source>
<volume>25</volume>
:
<fpage>1974</fpage>
<lpage>1975</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp250</pub-id>
.
<pub-id pub-id-type="pmid">19398448</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<label>70.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Anders</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Pyl</surname>
<given-names>PT</given-names>
</name>
,
<name name-style="western">
<surname>Huber</surname>
<given-names>W</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>HTSeq–a Python framework to work with high-throughput sequencing data</article-title>
.
<source>Bioinformatics</source>
<volume>31</volume>
:
<fpage>166</fpage>
<lpage>169</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/bioinformatics/btu638</pub-id>
.
<pub-id pub-id-type="pmid">25260700</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<label>71.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Love</surname>
<given-names>MI</given-names>
</name>
,
<name name-style="western">
<surname>Huber</surname>
<given-names>W</given-names>
</name>
,
<name name-style="western">
<surname>Anders</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2</article-title>
.
<source>Genome Biol</source>
<volume>15</volume>
:
<fpage>550</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/s13059-014-0550-8</pub-id>
.
<pub-id pub-id-type="pmid">25516281</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<label>72.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Strimmer</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>fdrtool: a versatile R package for estimating local and tail area-based false discovery rates</article-title>
.
<source>Bioinformatics</source>
<volume>24</volume>
:
<fpage>1461</fpage>
<lpage>1462</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/bioinformatics/btn209</pub-id>
.
<pub-id pub-id-type="pmid">18441000</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<label>73.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Ashburner</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Ball</surname>
<given-names>CA</given-names>
</name>
,
<name name-style="western">
<surname>Blake</surname>
<given-names>JA</given-names>
</name>
,
<name name-style="western">
<surname>Botstein</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>Butler</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Cherry</surname>
<given-names>JM</given-names>
</name>
,
<name name-style="western">
<surname>Davis</surname>
<given-names>AP</given-names>
</name>
,
<name name-style="western">
<surname>Dolinski</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Dwight</surname>
<given-names>SS</given-names>
</name>
,
<name name-style="western">
<surname>Eppig</surname>
<given-names>JT</given-names>
</name>
,
<name name-style="western">
<surname>Harris</surname>
<given-names>MA</given-names>
</name>
,
<name name-style="western">
<surname>Hill</surname>
<given-names>DP</given-names>
</name>
,
<name name-style="western">
<surname>Issel-Tarver</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Kasarskis</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Lewis</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Matese</surname>
<given-names>JC</given-names>
</name>
,
<name name-style="western">
<surname>Richardson</surname>
<given-names>JE</given-names>
</name>
,
<name name-style="western">
<surname>Ringwald</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Rubin</surname>
<given-names>GM</given-names>
</name>
,
<name name-style="western">
<surname>Sherlock</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Gene ontology: tool for the unification of biology. The Gene Ontology Consortium</article-title>
.
<source>Nat Genet</source>
<volume>25</volume>
:
<fpage>25</fpage>
<lpage>29</lpage>
.
<pub-id pub-id-type="pmid">10802651</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<label>74.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Durinck</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Spellman</surname>
<given-names>PT</given-names>
</name>
,
<name name-style="western">
<surname>Birney</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Huber</surname>
<given-names>W</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt</article-title>
.
<source>Nat Protoc</source>
<volume>4</volume>
:
<fpage>1184</fpage>
<lpage>1191</lpage>
. doi:
<pub-id pub-id-type="doi">10.1038/nprot.2009.97</pub-id>
.
<pub-id pub-id-type="pmid">19617889</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<label>75.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Xiao</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Zou</surname>
<given-names>Q</given-names>
</name>
,
<name name-style="western">
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
,
<name name-style="western">
<surname>Yang</surname>
<given-names>X</given-names>
</name>
</person-group>
<year>2016</year>
<article-title>Genome-wide assessment of differential translations with ribosome profiling data</article-title>
.
<source>Nat Commun</source>
<volume>7</volume>
:
<fpage>11194</fpage>
. doi:
<pub-id pub-id-type="doi">10.1038/ncomms11194</pub-id>
.
<pub-id pub-id-type="pmid">27041671</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<label>76.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Anbalagan</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Peterson</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Wassman</surname>
<given-names>B</given-names>
</name>
,
<name name-style="western">
<surname>Elston</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Schwartz</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Genome sequence of torovirus identified from a pig with porcine epidemic diarrhea virus from the United States</article-title>
.
<source>Genome Announc</source>
<volume>2</volume>
:
<elocation-id>e01291-14</elocation-id>
. doi:
<pub-id pub-id-type="doi">10.1128/genomeA.01291-14</pub-id>
.
<pub-id pub-id-type="pmid">25523767</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<label>77.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</article-title>
.
<source>Nucleic Acids Res</source>
<volume>32</volume>
:
<fpage>1792</fpage>
<lpage>1797</lpage>
. doi:
<pub-id pub-id-type="doi">10.1093/nar/gkh340</pub-id>
.
<pub-id pub-id-type="pmid">15034147</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<label>78.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Rice</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Longden</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Bleasby</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>EMBOSS: the European Molecular Biology Open Software Suite</article-title>
.
<source>Trends Genet</source>
<volume>16</volume>
:
<fpage>276</fpage>
<lpage>277</lpage>
. doi:
<pub-id pub-id-type="doi">10.1016/S0168-9525(00)02024-2</pub-id>
.
<pub-id pub-id-type="pmid">10827456</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<label>79.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Guindon</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Gascuel</surname>
<given-names>O</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood</article-title>
.
<source>Syst Biol</source>
<volume>52</volume>
:
<fpage>696</fpage>
<lpage>704</lpage>
. doi:
<pub-id pub-id-type="doi">10.1080/10635150390235520</pub-id>
.
<pub-id pub-id-type="pmid">14530136</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<label>80.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Stocsits</surname>
<given-names>RR</given-names>
</name>
,
<name name-style="western">
<surname>Hofacker</surname>
<given-names>IL</given-names>
</name>
,
<name name-style="western">
<surname>Fried</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Stadler</surname>
<given-names>PF</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Multiple sequence alignments of partially coding Nucleic acid sequences</article-title>
.
<source>BMC Bioinformatics</source>
<volume>6</volume>
:
<fpage>160</fpage>
. doi:
<pub-id pub-id-type="doi">10.1186/1471-2105-6-160</pub-id>
.
<pub-id pub-id-type="pmid">15985156</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001235 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001235 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6096809
   |texte=   Transcriptional and Translational Landscape of Equine Torovirus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29950409" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021