Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001010 ( Pmc/Corpus ); précédent : 0010099; suivant : 0010110 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Severe acute respiratory syndrome coronavirus 3C‐like protease‐induced apoptosis</title>
<author>
<name sortKey="Lin, Cheng En" sort="Lin, Cheng En" uniqKey="Lin C" first="Cheng-Wen" last="Lin">Cheng-Wen Lin</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kuan Sun" sort="Lin, Kuan Sun" uniqKey="Lin K" first="Kuan-Hsun" last="Lin">Kuan-Hsun Lin</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hsieh, Tsung An" sort="Hsieh, Tsung An" uniqKey="Hsieh T" first="Tsung-Han" last="Hsieh">Tsung-Han Hsieh</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shiu, Shi I" sort="Shiu, Shi I" uniqKey="Shiu S" first="Shi-Yi" last="Shiu">Shi-Yi Shiu</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jeng I" sort="Li, Jeng I" uniqKey="Li J" first="Jeng-Yi" last="Li">Jeng-Yi Li</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">16553810</idno>
<idno type="pmc">7110344</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110344</idno>
<idno type="RBID">PMC:7110344</idno>
<idno type="doi">10.1111/j.1574-695X.2006.00045.x</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">001010</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001010</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Severe acute respiratory syndrome coronavirus 3C‐like protease‐induced apoptosis</title>
<author>
<name sortKey="Lin, Cheng En" sort="Lin, Cheng En" uniqKey="Lin C" first="Cheng-Wen" last="Lin">Cheng-Wen Lin</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kuan Sun" sort="Lin, Kuan Sun" uniqKey="Lin K" first="Kuan-Hsun" last="Lin">Kuan-Hsun Lin</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hsieh, Tsung An" sort="Hsieh, Tsung An" uniqKey="Hsieh T" first="Tsung-Han" last="Hsieh">Tsung-Han Hsieh</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shiu, Shi I" sort="Shiu, Shi I" uniqKey="Shiu S" first="Shi-Yi" last="Shiu">Shi-Yi Shiu</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Jeng I" sort="Li, Jeng I" uniqKey="Li J" first="Jeng-Yi" last="Li">Jeng-Yi Li</name>
<affiliation>
<nlm:aff id="a1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Fems Immunology and Medical Microbiology</title>
<idno type="ISSN">0928-8244</idno>
<idno type="eISSN">1574-695X</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>The pathogenesis of severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) is an important issue for the treatment and prevention of severe acute respiratory syndrome. Recently, SARS‐CoV has been demonstrated to induce cell apoptosis in Vero‐E6 cells. The possible role of SARS‐CoV 3C‐like protease (3CL
<sup>pro</sup>
) in virus‐induced apoptosis is characterized in this study. Growth arrest and apoptosis via caspase‐3 and caspase‐9 activities were demonstrated in SARS‐CoV 3CL
<sup>pro</sup>
‐expressing human promonocyte cells. The fluorescence intensity of dihydrorhodamine 123 staining indicated that cellular reactive oxygen species were markedly increased in SARS‐CoV 3CL
<sup>pro</sup>
‐expressing cells. Moreover,
<italic>in vivo</italic>
signalling pathway assay indicated that 3CL
<sup>pro</sup>
increased the activation of the nuclear factor‐kappa B‐dependent reporter, but inhibited activator protein‐1‐dependent transcription. This finding is likely to be responsible for virus‐induced apoptotic signalling.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Regenmortal, Mhv" uniqKey="Van Regenmortal M">MHV van Regenmortal</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knipe, Dm" uniqKey="Knipe D">DM Knipe</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knipe, Dm" uniqKey="Knipe D">DM Knipe</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">FEMS Immunol Med Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">FEMS Immunol. Med. Microbiol</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1574-695X</journal-id>
<journal-id journal-id-type="publisher-id">FIM</journal-id>
<journal-title-group>
<journal-title>Fems Immunology and Medical Microbiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0928-8244</issn>
<issn pub-type="epub">1574-695X</issn>
<publisher>
<publisher-name>Blackwell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">16553810</article-id>
<article-id pub-id-type="pmc">7110344</article-id>
<article-id pub-id-type="doi">10.1111/j.1574-695X.2006.00045.x</article-id>
<article-id pub-id-type="publisher-id">FIM045</article-id>
<article-id pub-id-type="other">045</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Severe acute respiratory syndrome coronavirus 3C‐like protease‐induced apoptosis</article-title>
<alt-title alt-title-type="left-running-head">C.‐W. Lin
<italic>et al</italic>
.</alt-title>
<alt-title alt-title-type="right-running-head">Pathogenesis of SARS‐CoV 3C‐like ‐induced apoptosis</alt-title>
</title-group>
<contrib-group>
<contrib id="cr1" contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Cheng‐Wen</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="a2">
<sup>2</sup>
</xref>
</contrib>
<contrib id="cr2" contrib-type="author">
<name>
<surname>Lin</surname>
<given-names>Kuan‐Hsun</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
</contrib>
<contrib id="cr3" contrib-type="author">
<name>
<surname>Hsieh</surname>
<given-names>Tsung‐Han</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
</contrib>
<contrib id="cr4" contrib-type="author">
<name>
<surname>Shiu</surname>
<given-names>Shi‐Yi</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
</contrib>
<contrib id="cr5" contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Jeng‐Yi</given-names>
</name>
<xref ref-type="aff" rid="a1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="a1">
<label>
<sup>1</sup>
</label>
Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan</aff>
<aff id="a2">
<label>
<sup>2</sup>
</label>
Clinical Virology Laboratory, Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan</aff>
<author-notes>
<corresp id="correspondenceTo">
<bold>Correspondence:</bold>
Cheng‐Wen Lin, Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh‐Shih Road, Taichung 404, Taiwan. Tel.: 886 4 22062341; fax: +886 4 22057414; e‐mail:
<email>cwlin@mail.cmu.edu.tw</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>17</day>
<month>1</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<month>4</month>
<year>2006</year>
</pub-date>
<volume>46</volume>
<issue>3</issue>
<issue-id pub-id-type="doi">10.1111/fim.2006.46.issue-3</issue-id>
<fpage>375</fpage>
<lpage>380</lpage>
<history>
<pmc-comment>supplied string: Received 24 June 2005; accepted 6 October 2005.</pmc-comment>
<date date-type="received">
<day>24</day>
<month>6</month>
<year>2005</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>10</month>
<year>2005</year>
</date>
</history>
<permissions>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:FIM-46-375.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>The pathogenesis of severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) is an important issue for the treatment and prevention of severe acute respiratory syndrome. Recently, SARS‐CoV has been demonstrated to induce cell apoptosis in Vero‐E6 cells. The possible role of SARS‐CoV 3C‐like protease (3CL
<sup>pro</sup>
) in virus‐induced apoptosis is characterized in this study. Growth arrest and apoptosis via caspase‐3 and caspase‐9 activities were demonstrated in SARS‐CoV 3CL
<sup>pro</sup>
‐expressing human promonocyte cells. The fluorescence intensity of dihydrorhodamine 123 staining indicated that cellular reactive oxygen species were markedly increased in SARS‐CoV 3CL
<sup>pro</sup>
‐expressing cells. Moreover,
<italic>in vivo</italic>
signalling pathway assay indicated that 3CL
<sup>pro</sup>
increased the activation of the nuclear factor‐kappa B‐dependent reporter, but inhibited activator protein‐1‐dependent transcription. This finding is likely to be responsible for virus‐induced apoptotic signalling.</p>
</abstract>
<kwd-group>
<kwd id="k1">SARS‐coronavirus</kwd>
<kwd id="k2">3CL
<sup>pro</sup>
</kwd>
<kwd id="k3">apoptosis</kwd>
<kwd id="k4">reactive oxygen species</kwd>
<kwd id="k5">nuclear factor‐kappa B signalling</kwd>
</kwd-group>
<counts>
<count count-type="links-crossref" count="46"></count>
<fig-count count="6"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="27"></ref-count>
<page-count count="6"></page-count>
<word-count count="3923"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>April 2006</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<fn-group>
<fn id="fn1">
<p>Editor: Willem van Eden</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<sec id="ss0">
<title>Introduction</title>
<p>Severe acute respiratory syndrome (SARS), with high fever, malaise, headache, dry cough and generalized, interstitial infiltrates in the lung, is caused by a novel virus, SARS‐associated coronavirus (SARS‐CoV) (
<xref rid="b3" ref-type="ref">2004</xref>
,
<xref rid="b1" ref-type="ref">2003</xref>
,
<xref rid="b2" ref-type="ref">2003</xref>
). SARS‐CoV is rapidly transmitted through aerosols, and caused 8447 reported cases with 811 deaths worldwide during a short period from February to June 2003 (
<xref rid="b5" ref-type="ref">2003</xref>
,
<xref rid="b4" ref-type="ref">2003</xref>
). Around 20% of SARS cases developed an acute respiratory distress syndrome requiring mechanical ventilation. Pathological examination of the lung indicated that bronchial epithelial denudation, loss of cilia, multinucleated syncytial cells and squamous metaplasia were found in lung tissues of SARS patients (
<xref rid="b7" ref-type="ref">2003</xref>
,
<xref rid="b6" ref-type="ref">2003</xref>
). Abnormal laboratory findings in SARS patients included lymphopenia, leucopenia, thrombocytopenia and an increase in aminotransferase, lactate dehydrogenase, creatine kinase, interleukin‐6 (IL‐6) and IL‐8 in serum (
<xref rid="b9" ref-type="ref">2005</xref>
,
<xref rid="b8" ref-type="ref">2004</xref>
).</p>
<p>SARS‐CoV particles contain a single positive‐stranded RNA genome that is approximately 30 kb in length and has a 5′ cap structure and 3′ polyA tract (
<xref rid="b11" ref-type="ref">2000</xref>
,
<xref rid="b12" ref-type="ref">2001</xref>
,
<xref rid="b10" ref-type="ref">2001</xref>
). The SARS‐CoV genome encodes for replicase, spike, envelope, membrane and nucleocapsid. The replicase gene encodes two large overlapping polypeptides (replicase 1a and 1ab,
<italic>c</italic>
. 450 and
<italic>c</italic>
. 750 kDa, respectively), including 3C‐like protease (3CL
<sup>pro</sup>
), RNA‐dependent RNA polymerase and RNA helicase for viral replication and transcription (
<xref rid="b13" ref-type="ref">Ziebuhr
<italic>et al</italic>
., 2000</xref>
). SARS‐CoV replicates in Vero‐E6 cells with cytopathic effects (
<xref rid="b14" ref-type="ref">2003</xref>
,
<xref rid="b15" ref-type="ref">2004</xref>
), and also induces AKT signalling‐mediated cell apoptosis (
<xref rid="b16" ref-type="ref">Mizutani
<italic>et al</italic>
., 2004</xref>
). Recently, the SARS‐CoV nucleocapsid (SARS‐CoV N) protein has been demonstrated to induce actin reorganization and apoptosis in COS‐1 monkey kidney cells by down‐regulating extracellular signal‐regulated kinase (ERK) and up‐regulating c‐Jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) pathways (
<xref rid="b17" ref-type="ref">Surjit
<italic>et al</italic>
., 2004</xref>
). As the 3C protease of the picornaviruses poliovirus, enterovirus 71 and rhinovirus induces cell apoptosis (
<xref rid="b18" ref-type="ref">2004</xref>
,
<xref rid="b20" ref-type="ref">2004</xref>
,
<xref rid="b19" ref-type="ref">2002</xref>
), the possible role of SARS‐CoV 3CL
<sup>pro</sup>
in virus‐induced apoptosis is of interest.</p>
<p>In this study, we investigated the effects of SARS‐CoV 3CL
<sup>pro</sup>
on cellular functions. The cell growth curve, annexin V staining, caspase‐3 and caspase‐9 activities, oxidative stress and
<italic>in vivo</italic>
signalling pathways were measured to determine the effects of SARS‐CoV 3CL
<sup>pro</sup>
‐induced apoptosis. Therefore, this study demonstrated the significance of SARS‐CoV 3CL
<sup>pro</sup>
‐induced apoptosis.</p>
</sec>
<sec id="ss1">
<title>Materials and methods</title>
<sec id="ss2">
<title>Cell culture and transfection</title>
<p>To examine the effect of SARS‐CoV 3CL
<sup>pro</sup>
in cells, the 3CL
<sup>pro</sup>
gene was amplified using PCR and then cloned into the pcDNA3.1 vector, as described previously (
<xref rid="b21" ref-type="ref">Lin
<italic>et al</italic>
., 2004b</xref>
). The resulting plasmid pcDNA3.1‐SARS‐CoV 3CL
<sup>pro</sup>
(pSARS‐CoV 3CL
<sup>pro</sup>
) (4.5 μg), plus indicator vector pEGFP‐N1 (0.5 μg), was transfected into HL‐CZ cells, a human promonocyte cell line (
<xref rid="b22" ref-type="ref">Liu
<italic>et al</italic>
., 1991</xref>
), using the GenePorter reagent. According to the manufacturer's instructions (Gene Therapy Systems, San Diego, CA), the transfected cells were maintained in 2 mL of RPMI 1640 medium containing 20% fetal bovine serum (FBS) after 5 h of incubation with a mixture of the plasmid DNA and GenePorter reagent. For the selection of the transfected cell clones, cells were incubated with RPMI 1640 medium containing 10% FBS and 800 μg mL
<sup>−1</sup>
of G418. Enhanced green fluorescent protein (EGFP) expression in transfected cells with pSARS‐CoV 3CL
<sup>pro</sup>
plus pEGFP‐N1 was observed using immunofluorescence microscopy.</p>
</sec>
<sec id="ss3">
<title>Immunofluorescence staining and Western blotting of 3CL
<sup>pro</sup>
‐expressing cells</title>
<p>The stably transfected cells were washed once in phosphate‐buffered saline (PBS), and then fixed in ice – 10% methanol for 2 min. The cells were subsequently incubated with anti‐His tag antibody for 1 h, followed by rhodamine‐conjugated antimouse immunoglobulin G (IgG) antibody for 1 h. After washing three times in PBS, photographs of the cells were taken using immunofluorescence microscopy. For western blotting, the cell lysates were dissolved in 2 × sodium dodecylsulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) sample buffer without 2‐mercaptoethanol, and boiled for 10 min. Proteins were resolved on 12% SDS‐PAGE gels and transferred to nitrocellulose paper. The resultant blots were blocked with 5% skimmed milk, and then incubated with the appropriately diluted anti‐His tag monoclonal antibody (Serotec, Oxford, UK) for 3 h. The blots were then washed with 1 × Tris‐buffered saline Tween 20 (TBST) three times and overlaid with a 1 : 5000 dilution of goat antimouse IgG antibodies conjugated with alkaline phosphatase (PerkinElmer Life Sciences Inc., Boston, MA). Following 1 h of incubation at room temperature, the blots were developed with tetrazolium salt/5‐bromo‐4‐chloro‐3‐idolylphosphate (TNBT/BCIP) (Gibco, Invitrogen, Merelbeke, Belgium).</p>
</sec>
<sec id="ss4">
<title>Annexin V staining for apoptosis detection</title>
<p>After washing with cold PBS, transfected cells were resuspended in annexin‐binding buffer (10 mM HEPES, 140 mM NaCl and 2.5 mM CaCl
<sub>2</sub>
, pH 7.4). Each 100 μL of cell suspension was incubated with 5 μL of antiannexin V antibody (Biocompare, Abcom, Cambridge, UK) at room temperature for 15 min. The apoptotic cells were further stained using a horseradish peroxidase/diaminobenzidine (HRP/DAB) system of the SuperPicTure™ Polymer Detection Kit (Zymed Laboratories Inc., San Francisco, CA). The percentage of apoptotic cells with a permanent intense brown deposit was counted at × 200 magnification using bright field microscopy.</p>
</sec>
<sec id="ss5">
<title>Fluorimetric assay of caspase profiling</title>
<p>Transfected cells were harvested to measure the activity of caspase‐2, ‐3, ‐8 and ‐9 using BD ApoAlert Caspase Fluorescent Assay Kits (BD Biosciences, Franklin Lakes, NJ); 2 × 10
<sup>5</sup>
cells per well were lysed in 50 μL of lysis buffer and centrifuged at 12 000 
<bold>
<italic>g</italic>
</bold>
for 5 min at 4°C. The supernatant was transferred into the well of the caspase profiling assay plate and incubated at 37°C for 2 h. Finally, the caspase profiling assay plate was analysed in a fluorescent plate reader with excitation at 380 nm and emission at 460 nm.</p>
</sec>
<sec id="ss6">
<title>Detection of reactive oxygen species</title>
<p>Reactive oxygen species (ROS) of the 3CL
<sup>pro</sup>
‐expressing cells were quantified by staining with dihydrorhodamine 123 (DHR, Molecular Probes, Invitrogen). After incubation with 20 μM DHR in RPMI 1640 medium for 15 min, the cells were washed three times with PBS, and the fluorescence intensity of the cells was measured with excitation at 492 nm and emission at 535 nm.</p>
</sec>
<sec id="ss7">
<title>Transient transfections of cis‐reporter plasmids for signalling pathway assay</title>
<p>The cis‐reporter plasmids pISRE‐Luc, pGAS‐Luc, p53‐Luc, pAP1‐Luc and pNF‐κB‐Luc were purchased from the Stratagene Company (La Jolla, CA). The SARS‐CoV 3CL
<sup>pro</sup>
‐expressing and mock cells were transfected with a cis‐reporter plasmid using the GenePorter reagent. After 18 h of incubation, the luciferase activity in the indicated cells was measured using the dual Luciferase Reporter Assay System (Promega, Madison, WI) and the Luminometer TROPIX TR‐717 (Applied Biosystems, Foster City, CA).</p>
</sec>
</sec>
<sec id="ss8">
<title>Results</title>
<sec id="ss9">
<title>Expression of SARS‐CoV 3CL
<sup>pro</sup>
in HL‐CZ promonocyte cells</title>
<p>To examine the effect of SARS‐CoV 3CL
<sup>pro</sup>
on cell function, co‐transfection of human promonocyte HL‐CZ cells with the recombinant plasmid pSARS‐CoV 3CL
<sup>pro</sup>
and a green fluorescent protein (GFP) reporter was carried out (
<xref rid="f1" ref-type="fig">Fig. 1</xref>
). Immunofluorescent staining of transfected cells with anti‐His tag antibody revealed that the 3CL
<sup>pro</sup>
His‐tag fusion protein localized predominantly in the cytoplasm and nucleus (
<xref rid="f1" ref-type="fig">Fig. 1d</xref>
), in contrast with mock cells expressing the His‐tag only (
<xref rid="f1" ref-type="fig">Fig. 1b</xref>
). Western blotting analysis of cell lysates with anti‐His tag antibody showed that a major 68 kDa band for the dimer and a minor 34 kDa band for the monomer were observed in cells transfected with pSARS‐CoV 3CL
<sup>pro</sup>
(
<xref rid="f2" ref-type="fig">Fig. 2</xref>
, lane 3), but not in mock cells (
<xref rid="f2" ref-type="fig">Fig. 2</xref>
, lane 2). This result demonstrates the functional expression of SARS‐CoV 3CL
<sup>pro</sup>
in HL‐CZ cells.</p>
<fig fig-type="Figure" xml:lang="en" id="f1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p> Expression of severe acute respiratory syndrome‐associated coronavirus 3C‐like protease (SARS CoV 3CL
<sup>pro</sup>
) in human promonocyte HL‐CZ cells. Transfected cells with pcDNA3.1 plus pEGFP‐N1 (a, b) or pSARS CoV 3CL
<sup>pro</sup>
plus pEGFP‐N1 (c, d) were selected using a 2‐week incubation with G418. The green fluorescent protein (GFP) (a, c) and His‐tag fusion protein (b, d) in the transfected cells were examined by fluorescence microscopy. The His‐tag fusion protein was detected using immunofluorescence staining of anti‐His tag antibody and rhodamine‐conjugated antimouse IgG antibody.</p>
</caption>
<graphic id="nlm-graphic-1" xlink:href="FIM-46-375-g001"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="f2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p> Western blot assay of severe acute respiratory syndrome‐associated coronavirus 3C‐like protease (SARS‐CoV 3CL
<sup>pro</sup>
)‐expressing cells with anti‐His tag antibody. The cell lysates from stably transfected cells with pcDNA3.1 (lane 2) and pSARS‐CoV 3CL
<sup>pro</sup>
(lane 3) were analysed by 10% sodium dodecylsulphate‐polyacrylamide gel electrophoresis and electrophoretically transferred to nitrocellulose paper. The blot was probed with mouse anti‐His tag antibodies, and developed with an alkaline phosphatase‐conjugated secondary antibody and tetrazolium salt/5‐bromo‐4‐chloro‐3‐idolylphosphate (NBT/BCIP) substrates. Lane 1 was the molecular marker. kDa, kilodaltons.</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="FIM-46-375-g002"></graphic>
</fig>
</sec>
<sec id="ss10">
<title>Cellular effect of SARS‐CoV 3CL
<sup>pro</sup>
in promonocyte cells</title>
<p>To further analyse the cellular effect of SARS‐CoV 3CL
<sup>pro</sup>
, the growth curves of 3CL
<sup>pro</sup>
‐expressing cells and mock cells were obtained by direct counting assay (
<xref rid="f3" ref-type="fig">Fig. 3a</xref>
). The cell growth curve of 3CL
<sup>pro</sup>
‐expressing cells increased more slowly than that of mock cells. This result demonstrates a significant inhibitory effect of SARS‐CoV 3CL
<sup>pro</sup>
on the growth of human promonocyte cells. In addition, annexin V staining indicated a significant difference in the percentage of apoptotic cells between 3CL
<sup>pro</sup>
‐expressing cells (20%) and mock cells (3%) (
<xref rid="f3" ref-type="fig">Figs 3b and c</xref>
). SARS‐CoV 3CL
<sup>pro</sup>
‐induced apoptosis was also measured with a fluorimetric caspase profiling assay (
<xref rid="f4" ref-type="fig">Figs 4a and b</xref>
). Caspase‐3 activity in 3CL
<sup>pro</sup>
‐expressing cells was 3.04‐fold greater than that in the presence of the caspase‐3 inhibitor and 2.1‐fold greater than that in mock cells (
<xref rid="f4" ref-type="fig">Fig. 4a</xref>
). Caspase‐9 activity in 3CL
<sup>pro</sup>
‐expressing cells was about 1.3‐fold greater than that in mock cells and in the presence of the caspase‐9 inhibitor (
<xref rid="f4" ref-type="fig">Fig. 4b</xref>
). The activities of caspase‐2 and caspase‐8 were also determined, but no significant difference was found between 3CL
<sup>pro</sup>
‐expressing cells and mock cells (data not shown).</p>
<fig fig-type="Figure" xml:lang="en" id="f3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p> The cellular effect of severe acute respiratory syndrome‐associated coronavirus 3C‐like protease (SARS‐CoV 3CL
<sup>pro</sup>
) in HL‐CZ cells. (a) Growth curve of SARS‐CoV 3CL
<sup>pro</sup>
‐expressing cells compared with mock cells. Transfected cells with pcDNA3.1 or pSARS‐CoV 3CL
<sup>pro</sup>
were cultured in 25 cm
<sup>2</sup>
flasks at a density of 10 000 cells mL
<sup>−1</sup>
in RPMI medium with 10% fetal bovine serum (FBS) and 800 μg mL
<sup>−1</sup>
G418. Cells in duplicate flasks were harvested and counted manually each day. (b) Apoptosis of HL‐CZ cells with pcDNA3.1 or pSARS‐CoV 3CL
<sup>pro</sup>
was detected using annexin V staining. After washing with phosphate‐buffered saline (PBS), transfected cells were resuspended in annexin‐binding buffer with 5 μL of antiannexin V antibody. The apoptotic cells were stained using a horseradish peroxidase/diaminobenzidine (HRP/DAB) system. (c) The percentage of apoptotic cells with a permanent intense brown deposit was counted at × 200 magnification using bright field microscopy.</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="FIM-46-375-g003"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="f4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p> Fluorimetric caspase‐3 (a) and caspase‐9 (b) activity assay in severe acute respiratory syndrome‐associated coronavirus 3C‐like protease (SARS‐CoV 3CL
<sup>pro</sup>
)‐expressing HL‐CZ cells. Cells (2 × 10
<sup>5</sup>
) were lysed in 50 μL of lysis buffer and centrifuged at 12 000 
<bold>
<italic>g</italic>
</bold>
for 5 min at 4°C. The supernatant was transferred into the well of a BD ApoAlert Caspase Fluorescent Assay Kit assay plate. After incubation at 37°C for 2 h, the caspase profiling assay plate was analysed in a fluorescent plate reader with excitation at 380 nm and emission at 460 nm.</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="FIM-46-375-g004"></graphic>
</fig>
</sec>
<sec id="ss11">
<title>Increase in ROS and activation of nuclear factor‐kappa B signalling pathway by SARS‐CoV 3CL
<sup>pro</sup>
</title>
<p>To test the possible mechanism of 3CL
<sup>pro</sup>
‐induced apoptosis, ROS production and the
<italic>in vivo</italic>
signal transduction pathway in SARS‐CoV 3CL
<sup>pro</sup>
‐expressing cells were investigated (
<xref rid="f5" ref-type="fig">5</xref>
,
<xref rid="f6" ref-type="fig">6</xref>
). DHR staining was carried out for ROS detection. A significant increase in ROS was measured in 3CL
<sup>pro</sup>
‐expressing cells (2.3‐fold higher) relative to pcDNA3.1‐expressing cells (
<xref rid="f5" ref-type="fig">Fig. 5</xref>
). To measure signal transductions, transient transfection of 3CL
<sup>pro</sup>
‐expressing cells and mock cells with a cis‐reporter plasmid was subsequently performed to detect the
<italic>in vivo</italic>
signal transduction pathway (
<xref rid="f6" ref-type="fig">Fig. 6</xref>
). The luciferase activity of cis‐reporter plasmids indicated that SARS‐CoV 3CL
<sup>pro</sup>
activated the expression of a nuclear factor‐kappa B (NF‐κB)‐dependent reporter gene in HL‐CZ cells (2.15‐fold increase), but inhibited activator protein‐1 (AP1)‐dependent transcription (0.45‐fold decrease) (
<xref rid="f6" ref-type="fig">Fig. 6</xref>
). In addition, no significant effect on interferon‐stimulated response element (ISRE)‐ and interferon‐gamma‐activated site (GAS)‐dependent transcriptions was induced by SARS‐CoV 3CL
<sup>pro</sup>
.</p>
<fig fig-type="Figure" xml:lang="en" id="f5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p> Reactive oxygen species production of transfected cells using dihydrorhodamine 123 (DHR) staining. Cells were incubated with 20 μM DHR in RPMI 1640 medium for 15 min. After washing three times with phosphate‐buffered saline, the fluorescence intensity of the cells was measured with excitation at 492 nm and emission at 535 nm.</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="FIM-46-375-g005"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="f6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p> Effect of
<italic>in vivo</italic>
signal transduction pathway in severe acute respiratory syndrome‐associated coronavirus 3C‐like protease (SARS‐CoV 3CL
<sup>pro</sup>
)‐expressing cells on the cis‐reporter systems of interferon‐stimulated response element (ISRE), interferon‐gamma‐activated site (GAS), p53, activator protein‐1 (AP1) and nuclear factor‐kappa B (NF‐κB). SARS‐CoV 3CL
<sup>pro</sup>
‐expressing cells and mock cells were transiently transfected with the cis‐reporter plasmids pISRE‐Luc, pGAS‐Luc, p53‐Luc, pAP1‐Luc and pNF‐κB, respectively. The indicated promoter activity was measured using a luciferase assay.</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="FIM-46-375-g006"></graphic>
</fig>
</sec>
</sec>
<sec id="ss12">
<title>Discussion</title>
<p>A mixture of the active dimer form and the inactive monomer form of SARS‐CoV 3CL
<sup>pro</sup>
was generated in human promonocyte HL‐CZ cells (
<xref rid="f2" ref-type="fig">Fig. 2</xref>
), consistent with bacterial expression systems (
<xref rid="b23" ref-type="ref">2004</xref>
,
<xref rid="b21" ref-type="ref">2004b</xref>
). Interestingly, the dimer was the major 3CL
<sup>pro</sup>
in HL‐CZ cells, different from that in
<italic>Escherichia coli</italic>
‐synthesized HL‐CZ cells, where it was the monomer (
<xref rid="b23" ref-type="ref">2004</xref>
,
<xref rid="b21" ref-type="ref">2004b</xref>
). SARS‐CoV 3CL
<sup>pro</sup>
influenced cell growth and induced apoptosis (
<xref rid="f3" ref-type="fig">3</xref>
,
<xref rid="f4" ref-type="fig">4</xref>
). Activation of caspase‐3 and caspase‐9, but not caspase‐2 and caspase‐8, was correlated with SARS‐CoV 3CL
<sup>pro</sup>
‐induced apoptosis in HL‐CZ cells (
<xref rid="f4" ref-type="fig">Fig. 4</xref>
). A similar caspase activity profile has been reported in poliovirus 3C‐induced apoptosis via caspase‐3 activation (
<xref rid="b18" ref-type="ref">Calandria
<italic>et al</italic>
., 2004</xref>
).</p>
<p>SARS‐CoV 3CL
<sup>pro</sup>
caused a significant increase in ROS production in HL‐CZ cells (
<xref rid="f5" ref-type="fig">Fig. 5</xref>
) which, in turn, were involved in 3CL
<sup>pro</sup>
‐induced apoptosis. Recently, ROS‐mediated apoptosis has also been reported in viral infections, such as Japanese encephalitis virus (
<xref rid="b24" ref-type="ref">Lin
<italic>et al</italic>
., 2004a</xref>
) and influenza virus (
<xref rid="b25" ref-type="ref">Uchide
<italic>et al</italic>
., 2002</xref>
).
<italic>In vivo</italic>
signalling pathway assay indicated that 3CL
<sup>pro</sup>
increased the activation of the NF‐κB‐dependent reporter, but inhibited AP1‐dependent transcription (
<xref rid="f6" ref-type="fig">Fig. 6</xref>
). This finding indicates that NF‐κB, but not c‐Jun, is involved in 3CL
<sup>pro</sup>
‐induced apoptosis of human promonocyte cells. The transcription factor NF‐κB is produced in response to oxidative stress, being widely proposed to be involved in the mediation or prevention of apoptosis, and ROS serve as second messengers in the induction of the transcription factor NF‐κB (
<xref rid="b26" ref-type="ref">Bonizzi
<italic>et al</italic>
., 1999</xref>
). The activation of an NF‐κB‐dependent reporter gene induced by SARS‐CoV 3CL
<sup>pro</sup>
(
<xref rid="f6" ref-type="fig">Fig. 6</xref>
) was correlated with an increase in ROS production in HL‐CZ cells. Consensus NF‐κB sites exist in the promoters of apoptosis‐related genes and proinflammatory genes (
<xref rid="b27" ref-type="ref">Chen
<italic>et al</italic>
., 2001</xref>
), such as transforming growth factor‐β (TGF‐β), tumour necrosis factor‐α (TNF‐α), IL‐1α, IL‐6 and IL‐8. Interestingly, TGF‐β, IL‐6 and IL‐8 are greatly increased in the acute phase sera of SARS patients (
<xref rid="b9" ref-type="ref">Huang
<italic>et al</italic>
., 2005</xref>
). Therefore, the activation of the NF‐κB signal transduction pathway induced by SARS‐CoV 3CL
<sup>pro</sup>
could be useful for elucidating the pathogenesis of SARS.</p>
<p>In conclusion, the cellular effects of SARS‐CoV 3CL
<sup>pro</sup>
in human promonocyte cells, such as growth arrest and apoptosis via caspase‐3 and caspase‐9 activities, have been well characterized in this study. ROS production and NF‐κB signalling are likely to be associated with SARS‐CoV 3CL
<sup>pro</sup>
‐induced pathology.</p>
</sec>
</body>
<back>
<ack id="ss13">
<title>Acknowledgement</title>
<p>We would like to thank the National Science Council (Taiwan) and China Medical University for financial support (NSC93‐2320‐B‐039‐051, 93‐2745‐B‐039‐004‐URD and CMU‐93‐MT‐04).</p>
</ack>
<ref-list id="ss14">
<title>References</title>
<ref id="b26">
<mixed-citation publication-type="journal" id="cit1">
<string-name>
<surname>Bonizzi</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Piette</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Schoonbroodt</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Greimers</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Havard</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Merville</surname>
<given-names>MP</given-names>
</string-name>
&
<string-name>
<surname>Bours</surname>
<given-names>V</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Reactive oxygen intermediate‐dependent NF‐kappaB activation by interleukin‐1beta requires 5‐lipoxygenase or NADPH oxidase activity</article-title>
.
<source xml:lang="en">Mol Cell Biol</source>
<volume>19</volume>
:
<fpage>1950</fpage>
<lpage>1960</lpage>
.
<pub-id pub-id-type="pmid">10022882</pub-id>
</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal" id="cit2">
<string-name>
<surname>Calandria</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Irurzun</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Barco</surname>
<given-names>A</given-names>
</string-name>
&
<string-name>
<surname>Carrasco</surname>
<given-names>L</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase‐3 and PARP cleavage in HeLa cells</article-title>
.
<source xml:lang="en">Virus Res</source>
<volume>104</volume>
:
<fpage>39</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="pmid">15177891</pub-id>
</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal" id="cit3">
<string-name>
<surname>Chen</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Castranova</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Shi</surname>
<given-names>X</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>New insights into the role of nuclear factor‐kappaB in cell growth regulation</article-title>
.
<source xml:lang="en">Am J Pathol</source>
<volume>159</volume>
:
<fpage>387</fpage>
<lpage>397</lpage>
.
<pub-id pub-id-type="pmid">11485895</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="book" id="cit4">
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Brian</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Cavanagh</surname>
<given-names>D</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2000</year>
)
<chapter-title>Coronaviridae</chapter-title>
<source xml:lang="en">Virus Taxonomy</source>
(
<person-group person-group-type="editor">
<name name-style="western">
<surname>van Regenmortal</surname>
<given-names>MHV</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Fauqet</surname>
<given-names>CM</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Bishop</surname>
<given-names>DHL</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Carstens</surname>
<given-names>EB</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Estes</surname>
<given-names>MK</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Lemon</surname>
<given-names>SM</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Mayo</surname>
<given-names>MA</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>McGeoch</surname>
<given-names>DJ</given-names>
</name>
</person-group>
,
<person-group person-group-type="editor">
<name name-style="western">
<surname>Pringle</surname>
<given-names>CR</given-names>
</name>
</person-group>
&
<person-group person-group-type="editor">
<name name-style="western">
<surname>Wickner</surname>
<given-names>RB</given-names>
</name>
</person-group>
, eds,)
<publisher-name>pp. 835‐849. Academic Press</publisher-name>
, New York. </mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal" id="cit5">
<string-name>
<surname>Fan</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Wei</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Feng</surname>
<given-names>Q</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C‐like proteinase</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>279</volume>
:
<fpage>1637</fpage>
<lpage>1642</lpage>
.
<pub-id pub-id-type="pmid">14561748</pub-id>
</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal" id="cit6">
<string-name>
<surname>Funkhouser</surname>
<given-names>AW</given-names>
</string-name>
,
<string-name>
<surname>Kang</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhou</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Abe</surname>
<given-names>MK</given-names>
</string-name>
,
<string-name>
<surname>Solway</surname>
<given-names>J</given-names>
</string-name>
&
<string-name>
<surname>Hershenson</surname>
<given-names>MB</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Rhinovirus 16 3C protease induces interleukin‐8 and granulocyte‐macrophage colony‐stimulating factor expression in human bronchial epithelial cells</article-title>
.
<source xml:lang="en">Pediatr Res</source>
<volume>55</volume>
:
<fpage>13</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="pmid">14605258</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="book" id="cit7">
<string-name>
<surname>Holmes</surname>
<given-names>KV</given-names>
</string-name>
(
<year>2001</year>
)
<chapter-title>Coronaviruses</chapter-title>
<source xml:lang="en">Fields Virology</source>
(
<person-group person-group-type="editor">
<name name-style="western">
<surname>Knipe</surname>
<given-names>DM</given-names>
</name>
</person-group>
&
<person-group person-group-type="editor">
<name name-style="western">
<surname>Howley</surname>
<given-names>PM</given-names>
</name>
</person-group>
, eds), pp. 1187–1203.
<publisher-name>Lippincott Williams and Wilkins</publisher-name>
, New York. </mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal" id="cit8">
<string-name>
<surname>Hsueh</surname>
<given-names>PR</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>PJ</given-names>
</string-name>
,
<string-name>
<surname>Hsiao</surname>
<given-names>CH</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Patient data, early SARS epidemic, Taiwan</article-title>
.
<source xml:lang="en">Emerg Infect Dis</source>
<volume>10</volume>
:
<fpage>489</fpage>
<lpage>493</lpage>
.
<pub-id pub-id-type="pmid">15109419</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal" id="cit9">
<string-name>
<surname>Huang</surname>
<given-names>KJ</given-names>
</string-name>
,
<string-name>
<surname>Su</surname>
<given-names>IJ</given-names>
</string-name>
,
<string-name>
<surname>Theron</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>YC</given-names>
</string-name>
,
<string-name>
<surname>Lai</surname>
<given-names>SK</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>CC</given-names>
</string-name>
&
<string-name>
<surname>Lei</surname>
<given-names>HY</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>An interferon‐gamma‐related cytokine storm in SARS patients</article-title>
.
<source xml:lang="en">J Med Virol</source>
<volume>75</volume>
:
<fpage>185</fpage>
<lpage>194</lpage>
.
<pub-id pub-id-type="pmid">15602737</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="book" id="cit10">
<string-name>
<surname>Lai</surname>
<given-names>MMC</given-names>
</string-name>
&
<string-name>
<surname>Holmes</surname>
<given-names>KV</given-names>
</string-name>
(
<year>2001</year>
)
<chapter-title>Coronaviridae</chapter-title>
: the viruses and their replication.
<source xml:lang="en">Fields Virology</source>
(
<person-group person-group-type="editor">
<name name-style="western">
<surname>Knipe</surname>
<given-names>DM</given-names>
</name>
</person-group>
&
<person-group person-group-type="editor">
<name name-style="western">
<surname>Howley</surname>
<given-names>PM</given-names>
</name>
</person-group>
, eds), pp. 1163–1185.
<publisher-name>Lippincott Williams and Wilkins</publisher-name>
, New York. </mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal" id="cit11">
<string-name>
<surname>Lang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Meng</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>L</given-names>
</string-name>
&
<string-name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Pathological study on severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">China Med J (England)</source>
<volume>116</volume>
:
<fpage>976</fpage>
<lpage>980</lpage>
. </mixed-citation>
</ref>
<ref id="b1">
<mixed-citation publication-type="journal" id="cit12">
<string-name>
<surname>Lee</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Hui</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Wu</surname>
<given-names>A</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Lung pathology of fatal severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">N Engl J Med</source>
<volume>348</volume>
:
<fpage>1986</fpage>
<lpage>1994</lpage>
.
<pub-id pub-id-type="pmid">12682352</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal" id="cit13">
<string-name>
<surname>Li</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Hsu</surname>
<given-names>TA</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>TC</given-names>
</string-name>
,
<string-name>
<surname>Chang</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Stollar</surname>
<given-names>V</given-names>
</string-name>
&
<string-name>
<surname>Shih</surname>
<given-names>SR</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>The 3C protease activity of enterovirus 71 induces human neural cell apoptosis</article-title>
.
<source xml:lang="en">Virology</source>
<volume>293</volume>
:
<fpage>386</fpage>
<lpage>395</lpage>
.
<pub-id pub-id-type="pmid">11886259</pub-id>
</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal" id="cit14">
<string-name>
<surname>Lin</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Liao</surname>
<given-names>CL</given-names>
</string-name>
&
<string-name>
<surname>Lin</surname>
<given-names>YL</given-names>
</string-name>
(
<year>2004a</year>
)
<article-title>Replication‐incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>85</volume>
:
<fpage>521</fpage>
<lpage>533</lpage>
.
<pub-id pub-id-type="pmid">14769909</pub-id>
</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal" id="cit15">
<string-name>
<surname>Lin</surname>
<given-names>CW</given-names>
</string-name>
,
<string-name>
<surname>Tsai</surname>
<given-names>CH</given-names>
</string-name>
,
<string-name>
<surname>Tsai</surname>
<given-names>FJ</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>PJ</given-names>
</string-name>
,
<string-name>
<surname>Lai</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Wan</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Chiu</surname>
<given-names>HH</given-names>
</string-name>
&
<string-name>
<surname>Lin</surname>
<given-names>KH</given-names>
</string-name>
(
<year>2004b</year>
)
<article-title>Characterization of trans‐ and cis‐cleavage activity of the SARS coronavirus 3CLpro protease</article-title>
:
<source xml:lang="en">basis for the in vitro screening of anti-SARS drugs</source>
. FEBS Lett
<volume>574</volume>
:
<fpage>131</fpage>
<lpage>137</lpage>
. </mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal" id="cit16">
<string-name>
<surname>Liu</surname>
<given-names>WT</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>CL</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>SS</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Lo</surname>
<given-names>FL</given-names>
</string-name>
&
<string-name>
<surname>Ko</surname>
<given-names>YC</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>Isolation of dengue virus with a human promonocyte cell line</article-title>
.
<source xml:lang="en">Am J Trop Med Hyg</source>
<volume>44</volume>
:
<fpage>494</fpage>
<lpage>499</lpage>
.
<pub-id pub-id-type="pmid">2063953</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal" id="cit17">
<string-name>
<surname>Mizutani</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Fukushi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Saijo</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Kurane</surname>
<given-names>I</given-names>
</string-name>
&
<string-name>
<surname>Morikawa</surname>
<given-names>S</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Importance of Akt signaling pathway for apoptosis in SARS‐CoV‐infected Vero E6 cells</article-title>
.
<source xml:lang="en">Virology</source>
<volume>327</volume>
:
<fpage>169</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="pmid">15351204</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal" id="cit18">
<string-name>
<surname>Ng</surname>
<given-names>ML</given-names>
</string-name>
,
<string-name>
<surname>Tan</surname>
<given-names>SH</given-names>
</string-name>
,
<string-name>
<surname>See</surname>
<given-names>EE</given-names>
</string-name>
,
<string-name>
<surname>Ooi</surname>
<given-names>EE</given-names>
</string-name>
&
<string-name>
<surname>Ling</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Proliferative growth of SARS coronavirus in Vero E6 cells</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>84</volume>
:
<fpage>3291</fpage>
<lpage>3303</lpage>
.
<pub-id pub-id-type="pmid">14645910</pub-id>
</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal" id="cit19">
<string-name>
<surname>Nicholls</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>LL</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>KC</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Lung pathology of fatal severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">Lancet</source>
<volume>361</volume>
:
<fpage>1773</fpage>
<lpage>1778</lpage>
.
<pub-id pub-id-type="pmid">12781536</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal" id="cit20">
<string-name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Chu</surname>
<given-names>CM</given-names>
</string-name>
,
<string-name>
<surname>Cheng</surname>
<given-names>VC</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Clinical progression and viral load in a community outbreak of coronavirus‐associated SARS pneumonia</article-title>
:
<source xml:lang="en">a prospective study</source>
. Lancet
<volume>361</volume>
:
<fpage>1767</fpage>
<lpage>1772</lpage>
. </mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal" id="cit21">
<string-name>
<surname>Poutanen</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Low</surname>
<given-names>DE</given-names>
</string-name>
,
<string-name>
<surname>Henry</surname>
<given-names>B</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>Identification of severe acute respiratory syndrome in Canada</article-title>
.
<source xml:lang="en">N Engl J Med</source>
<volume>348</volume>
:
<fpage>1995</fpage>
<lpage>2005</lpage>
.
<pub-id pub-id-type="pmid">12671061</pub-id>
</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal" id="cit22">
<string-name>
<surname>Surjit</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Jameel</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Chow</surname>
<given-names>VT</given-names>
</string-name>
&
<string-name>
<surname>Lal</surname>
<given-names>SK</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS‐1 cells in the absence of growth factors</article-title>
.
<source xml:lang="en">Biochem J</source>
<volume>383</volume>
:
<fpage>13</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="pmid">15294014</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal" id="cit23">
<string-name>
<surname>Tsang</surname>
<given-names>KW</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>PL</given-names>
</string-name>
,
<string-name>
<surname>Ooi</surname>
<given-names>GC</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2003</year>
)
<article-title>A cluster of cases of severe acute respiratory syndrome in Hong Kong</article-title>
.
<source xml:lang="en">N Engl J Med</source>
<volume>348</volume>
:
<fpage>1977</fpage>
<lpage>1985</lpage>
.
<pub-id pub-id-type="pmid">12671062</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal" id="cit24">
<string-name>
<surname>Uchide</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Ohyama</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Bessho</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Yuan</surname>
<given-names>B</given-names>
</string-name>
&
<string-name>
<surname>Yamakawa</surname>
<given-names>T</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Effect of antioxidants on apoptosis induced by influenza virus infection</article-title>
:
<source xml:lang="en">inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate</source>
. Antiviral Res
<volume>56</volume>
:
<fpage>207</fpage>
<lpage>217</lpage>
. </mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal" id="cit25">
<string-name>
<surname>Wang</surname>
<given-names>WK</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>SY</given-names>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>IJ</given-names>
</string-name>
,
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Temporal relationship of viral load, ribavirin, interleukin (IL)‐6, IL‐8, and clinical progression in patients with severe acute respiratory syndrome</article-title>
.
<source xml:lang="en">Clin Infect Dis</source>
<volume>39</volume>
:
<fpage>1071</fpage>
<lpage>1075</lpage>
.
<pub-id pub-id-type="pmid">15472864</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal" id="cit26">
<string-name>
<surname>Yan</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xiao</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Yuan</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Cole</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Zheng</surname>
<given-names>C</given-names>
</string-name>
&
<string-name>
<surname>Gao</surname>
<given-names>GF</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>SARS coronavirus induces apoptosis in Vero E6 cells</article-title>
.
<source xml:lang="en">J Med Virol</source>
<volume>73</volume>
:
<fpage>323</fpage>
<lpage>331</lpage>
.
<pub-id pub-id-type="pmid">15170624</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal" id="cit27">
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
&
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Virus‐encoded proteinases and proteolytic processing in the Nidovirales</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>81</volume>
:
<fpage>853</fpage>
<lpage>879</lpage>
.
<pub-id pub-id-type="pmid">10725411</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001010  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001010  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021