Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020

Identifieur interne : 001000 ( Pmc/Corpus ); précédent : 000F99; suivant : 001001

Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020

Auteurs : Julien Riou ; Christian L. Althaus

Source :

RBID : PMC:7001239

Abstract

Since December 2019, China has been experiencing a large outbreak of a novel coronavirus (2019-nCoV) which can cause respiratory disease and severe pneumonia. We estimated the basic reproduction number R0 of 2019-nCoV to be around 2.2 (90% high density interval: 1.4–3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and pandemic influenza, indicating a risk of global spread.


Url:
DOI: 10.2807/1560-7917.ES.2020.25.4.2000058
PubMed: 32019669
PubMed Central: 7001239

Links to Exploration step

PMC:7001239

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020</title>
<author>
<name sortKey="Riou, Julien" sort="Riou, Julien" uniqKey="Riou J" first="Julien" last="Riou">Julien Riou</name>
<affiliation>
<nlm:aff id="aff1">Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Althaus, Christian L" sort="Althaus, Christian L" uniqKey="Althaus C" first="Christian L." last="Althaus">Christian L. Althaus</name>
<affiliation>
<nlm:aff id="aff1">Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32019669</idno>
<idno type="pmc">7001239</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001239</idno>
<idno type="RBID">PMC:7001239</idno>
<idno type="doi">10.2807/1560-7917.ES.2020.25.4.2000058</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">001000</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001000</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020</title>
<author>
<name sortKey="Riou, Julien" sort="Riou, Julien" uniqKey="Riou J" first="Julien" last="Riou">Julien Riou</name>
<affiliation>
<nlm:aff id="aff1">Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Althaus, Christian L" sort="Althaus, Christian L" uniqKey="Althaus C" first="Christian L." last="Althaus">Christian L. Althaus</name>
<affiliation>
<nlm:aff id="aff1">Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Eurosurveillance</title>
<idno type="ISSN">1025-496X</idno>
<idno type="eISSN">1560-7917</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Since December 2019, China has been experiencing a large outbreak of a novel coronavirus (2019-nCoV) which can cause respiratory disease and severe pneumonia. We estimated the basic reproduction number
<italic>R
<sub>0</sub>
</italic>
of 2019-nCoV to be around 2.2 (90% high density interval: 1.4–3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and pandemic influenza, indicating a risk of global spread.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Ren, L" uniqKey="Ren L">L Ren</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S Yuan</name>
</author>
<author>
<name sortKey="Kok, Kh" uniqKey="Kok K">KH Kok</name>
</author>
<author>
<name sortKey="To, Kk" uniqKey="To K">KK To</name>
</author>
<author>
<name sortKey="Chu, H" uniqKey="Chu H">H Chu</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd Smith, Jo" uniqKey="Lloyd Smith J">JO Lloyd-Smith</name>
</author>
<author>
<name sortKey="Schreiber, Sj" uniqKey="Schreiber S">SJ Schreiber</name>
</author>
<author>
<name sortKey="Kopp, Pe" uniqKey="Kopp P">PE Kopp</name>
</author>
<author>
<name sortKey="Getz, Wm" uniqKey="Getz W">WM Getz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Althaus, Cl" uniqKey="Althaus C">CL Althaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucharski, Aj" uniqKey="Kucharski A">AJ Kucharski</name>
</author>
<author>
<name sortKey="Althaus, Cl" uniqKey="Althaus C">CL Althaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breban, R" uniqKey="Breban R">R Breban</name>
</author>
<author>
<name sortKey="Riou, J" uniqKey="Riou J">J Riou</name>
</author>
<author>
<name sortKey="Fontanet, A" uniqKey="Fontanet A">A Fontanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
<author>
<name sortKey="Ho, Lm" uniqKey="Ho L">LM Ho</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
<author>
<name sortKey="Klinkenberg, D" uniqKey="Klinkenberg D">D Klinkenberg</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, Md" uniqKey="Oh M">MD Oh</name>
</author>
<author>
<name sortKey="Choe, Pg" uniqKey="Choe P">PG Choe</name>
</author>
<author>
<name sortKey="Oh, Hs" uniqKey="Oh H">HS Oh</name>
</author>
<author>
<name sortKey="Park, Wb" uniqKey="Park W">WB Park</name>
</author>
<author>
<name sortKey="Lee, S M" uniqKey="Lee S">S-M Lee</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A McGeer</name>
</author>
<author>
<name sortKey="Perl, Tm" uniqKey="Perl T">TM Perl</name>
</author>
<author>
<name sortKey="Price, Cs" uniqKey="Price C">CS Price</name>
</author>
<author>
<name sortKey="Al Rabeeah, Aa" uniqKey="Al Rabeeah A">AA Al Rabeeah</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Euro Surveill</journal-id>
<journal-id journal-id-type="iso-abbrev">Euro Surveill</journal-id>
<journal-id journal-id-type="publisher-id">eurosurveillance</journal-id>
<journal-title-group>
<journal-title>Eurosurveillance</journal-title>
</journal-title-group>
<issn pub-type="ppub">1025-496X</issn>
<issn pub-type="epub">1560-7917</issn>
<publisher>
<publisher-name>European Centre for Disease Prevention and Control (ECDC)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32019669</article-id>
<article-id pub-id-type="pmc">7001239</article-id>
<article-id pub-id-type="publisher-id">2000058</article-id>
<article-id pub-id-type="doi">10.2807/1560-7917.ES.2020.25.4.2000058</article-id>
<article-id pub-id-type="publisher-id">2000058</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Rapid Communication</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Riou</surname>
<given-names>Julien</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Althaus</surname>
<given-names>Christian L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<aff id="aff1">
<label>1</label>
Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland</aff>
</contrib-group>
<author-notes>
<fn id="afn1">
<p>Correspondence: Julien Riou (
<email xlink:href="julien.riou@ispm.unibe.ch">julien.riou@ispm.unibe.ch</email>
)</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>30</day>
<month>1</month>
<year>2020</year>
</pub-date>
<volume>25</volume>
<issue>4</issue>
<elocation-id>2000058</elocation-id>
<history>
<date date-type="received">
<day>24</day>
<month>1</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>1</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>This article is copyright of the authors or their affiliated institutions, 2020.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>The authors or their affiliated institutions</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.</license-p>
</license>
</permissions>
<abstract>
<p>Since December 2019, China has been experiencing a large outbreak of a novel coronavirus (2019-nCoV) which can cause respiratory disease and severe pneumonia. We estimated the basic reproduction number
<italic>R
<sub>0</sub>
</italic>
of 2019-nCoV to be around 2.2 (90% high density interval: 1.4–3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and pandemic influenza, indicating a risk of global spread.</p>
</abstract>
<kwd-group>
<title>Keywords: </title>
<kwd>2019-nCoV</kwd>
<kwd>emerging infectious disease</kwd>
<kwd>mathematical modelling</kwd>
<kwd>Wuhan</kwd>
<kwd>coronavirus</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>sequence</meta-name>
<meta-value>2</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<p>On 31 December 2019, the World Health Organization (WHO) was alerted about a cluster of pneumonia of unknown aetiology in the city of Wuhan, China [
<xref rid="r1" ref-type="bibr">1</xref>
,
<xref rid="r2" ref-type="bibr">2</xref>
]. Only a few days later, Chinese authorities identified and characterised a novel coronavirus (2019-nCoV) as the causative agent of the outbreak [
<xref rid="r3" ref-type="bibr">3</xref>
]. The outbreak appears to have started from a single or multiple zoonotic transmission events at a wet market in Wuhan where game animals and meat were sold [
<xref rid="r4" ref-type="bibr">4</xref>
] and has resulted in 5,997 confirmed cases in China and 68 confirmed cases in several other countries by 29 January 2020 [
<xref rid="r5" ref-type="bibr">5</xref>
]. Based on the number of exported cases identified in other countries, the actual size of the epidemic in Wuhan has been estimated to be much larger [
<xref rid="r6" ref-type="bibr">6</xref>
]. At this early stage of the outbreak, it is important to gain understanding of the transmission pattern and the potential for sustained human-to-human transmission of 2019-nCoV. Information on the transmission characteristics will help coordinate current screening and containment strategies, support decision making on whether the outbreak constitutes a public health emergency of international concern (PHEIC), and is key for anticipating the risk of pandemic spread of 2019-nCoV. In order to better understand the early transmission pattern of 2019-nCoV, we performed stochastic simulations of early outbreak trajectories that are consistent with the epidemiological findings to date.</p>
<sec sec-type="other1">
<title>Epidemic parameters</title>
<p>Two key properties will determine further spread of 2019-nCoV. Firstly, the basic reproduction number
<italic>R
<sub>0</sub>
</italic>
describes the average number of secondary cases generated by an infectious index case in a fully susceptible population, as was the case during the early phase of the outbreak. If
<italic>R
<sub>0</sub>
</italic>
is above the critical threshold of 1, continuous human-to-human transmission with sustained transmission chains will occur. Secondly, the individual variation in the number of secondary cases provides further information about the expected outbreak dynamics and the potential for superspreading events [
<xref rid="r7" ref-type="bibr">7</xref>
-
<xref rid="r9" ref-type="bibr">9</xref>
]. If the dispersion of the number of secondary cases is high, a small number of cases may be responsible for a disproportionate number of secondary cases, while a large number of cases will not transmit the pathogen at all. While superspreading always remain a rare event, it can result in a large and explosive transmission event and have a lot of impact on the course of an epidemic. Conversely, low dispersion would lead to a steadier growth of the epidemic, with more homogeneity in the number of secondary cases per index case. This has important implications for control efforts.</p>
</sec>
<sec sec-type="other2">
<title>Simulating early outbreak trajectories</title>
<p>In a first step, we initialised simulations with one index case. For each primary case, we generated secondary cases according to a negative-binomial offspring distribution with mean
<italic>R
<sub>0</sub>
</italic>
and dispersion
<italic>k</italic>
[
<xref rid="r7" ref-type="bibr">7</xref>
,
<xref rid="r8" ref-type="bibr">8</xref>
]. The dispersion parameter
<italic>k</italic>
quantifies the variability in the number of secondary cases, and can be interpreted as a measure of the impact of superspreading events (the lower the value of
<italic>k</italic>
, the higher the impact of superspreading). The generation time interval
<italic>D</italic>
was assumed to be gamma-distributed with a shape parameter of 2, and a mean that varied between 7 and 14 days. We explored a wide range of parameter combinations (
<xref rid="t1" ref-type="table">Table</xref>
) and ran 1,000 stochastic simulations for each individual combination. This corresponds to a total of 3.52 million one-index-case simulations that were run on UBELIX (
<ext-link ext-link-type="uri" xlink:href="http://www.id.unibe.ch/hpc">http://www.id.unibe.ch/hpc</ext-link>
), the high performance computing cluster at the University of Bern, Switzerland.</p>
<table-wrap id="t1" orientation="portrait" position="float">
<label>Table</label>
<caption>
<title>Parameter ranges for stochastic simulations of outbreak trajectories, 2019 novel coronavirus outbreak, China, 2019–2020</title>
</caption>
<table frame="hsides" rules="groups">
<col width="11.23%" span="1"></col>
<col width="29.33%" span="1"></col>
<col width="18.85%" span="1"></col>
<col width="40.59%" span="1"></col>
<thead>
<tr>
<th valign="bottom" align="left" scope="col" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Parameter</th>
<th valign="bottom" align="center" scope="col" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Description</th>
<th valign="bottom" align="center" scope="col" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Range</th>
<th valign="top" align="center" scope="col" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Number of values explored within the range</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" scope="row" rowspan="1" colspan="1">
<italic>R
<sub>0</sub>
</italic>
</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Basic reproduction number</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">0.8–5.0</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">22 (equidistant)</td>
</tr>
<tr>
<td valign="top" align="left" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" scope="row" rowspan="1" colspan="1">
<italic>k</italic>
</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Dispersion parameter</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">0.0110</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">20 (equidistant on log
<sub>10</sub>
scale)</td>
</tr>
<tr>
<td valign="top" align="left" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" scope="row" rowspan="1" colspan="1">
<italic>D</italic>
</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Generation time interval (days)</td>
<td valign="middle" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">9–11,13,16–19</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">8 (equidistant)</td>
</tr>
<tr>
<td valign="top" align="left" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" scope="row" rowspan="1" colspan="1">
<italic>n</italic>
</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Initial number of index cases</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">1–50</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">6 (equidistant)</td>
</tr>
<tr>
<td valign="top" align="left" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" scope="row" rowspan="1" colspan="1">
<italic>T</italic>
</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Date of zoonotic transmission</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">20 Nov–4 Dec 2019</td>
<td valign="top" align="center" style="border-left: solid 0.50pt; border-top: solid 0.50pt; border-right: solid 0.50pt; border-bottom: solid 0.50pt" rowspan="1" colspan="1">Randomised for each index case</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>In a second step, we accounted for the uncertainty regarding the number of index cases
<italic>n</italic>
and the date
<italic>T</italic>
of the initial zoonotic animal-to-human transmissions at the wet market in Wuhan. An epidemic with several index cases can be considered as the aggregation of several independent epidemics with one index case each. We sampled (with replacement)
<italic>n</italic>
of the one-index-case epidemics, sampled a date of onset for each index case and aggregated the epidemic curves together. The sampling of the date of onset was done uniformly from a 2-week interval around 27 November 2019, in coherence with early phylogenetic analyses of 11 2019-nCoV genomes [
<xref rid="r10" ref-type="bibr">10</xref>
]. This step was repeated 100 times for each combination of
<italic>R
<sub>0</sub>
</italic>
(22 points),
<italic>k</italic>
(20 points),
<italic>D</italic>
(8 points) and
<italic>n</italic>
(6 points) for a total of 2,112,000 full epidemics simulated that included the uncertainty on
<italic>D</italic>
,
<italic>n</italic>
and
<italic>T</italic>
. Finally, we calculated the proportion of stochastic simulations that reached a total number of infected cases within the interval between 1,000 and 9,700 by 18 January 2020, as estimated by Imai et al. [
<xref rid="r6" ref-type="bibr">6</xref>
]. In a process related to approximate Bayesian computation (ABC), the parameter value combinations that led to simulations within that interval were treated as approximations to the posterior distributions of the parameters with uniform prior distributions. Model simulations and analyses were performed in the R software for statistical computing [
<xref rid="r11" ref-type="bibr">11</xref>
]. Code files are available on
<ext-link ext-link-type="uri" xlink:href="https://github.com/jriou/wcov">https://github.com/jriou/wcov</ext-link>
.</p>
</sec>
<sec sec-type="other3">
<title>Transmission characteristics of the 2019 novel coronavirus</title>
<p>In order to reach between 1,000 and 9,700 infected cases by 18 January 2020, the early human-to-human transmission of 2019-nCoV was characterised by values of
<italic>R
<sub>0</sub>
</italic>
around 2.2 (median value, with 90% high density interval: 1.4–3.8) (
<xref ref-type="fig" rid="f1">Figure 1</xref>
). The observed data at this point are compatible with a large range of values for the dispersion parameter
<italic>k</italic>
(median: 0.54, 90% high density interval: 0.014–6.95). However, our simulations suggest that very low values of
<italic>k</italic>
are less likely. These estimates incorporate the uncertainty about the total epidemic size on 18 January 2020 and about the date and scale of the initial zoonotic event (
<xref ref-type="fig" rid="f2">Figure 2</xref>
).</p>
<fig id="f1" fig-type="figure" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Values of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
most compatible with the estimated size of the 2019 novel coronavirus epidemic in China, on 18 January 2020 </p>
</caption>
<p content-type="fig-fn">The basic reproduction number
<italic>R
<sub>0</sub>
</italic>
quantifies human-to-human transmission. The dispersion parameter
<italic>k</italic>
quantifies the risk of a superspreading event (lower values of
<italic>k</italic>
are linked to a higher probability of superspreading). Note that the probability density of
<italic>k</italic>
implies a log
<sub>10</sub>
transformation.</p>
<graphic xlink:href="2000058-f1"></graphic>
</fig>
<fig id="f2" fig-type="figure" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Illustration of the simulation strategy, 2019 novel coronavirus outbreak, China, 2019–2020</p>
</caption>
<p content-type="fig-fn">The lines represent the cumulative incidence of 480 simulations with
<italic>R
<sub>0</sub>
 = 1.8</italic>
and
<italic>k</italic>
 = 1.13. The other parameters are left to vary according to the
<xref rid="t1" ref-type="table">Table</xref>
. Among these simulated epidemics, 54.3% led to a cumulative incidence between 1,000 and 9,700 on 18 January 2020 (in red). </p>
<graphic xlink:href="2000058-f2"></graphic>
</fig>
</sec>
<sec sec-type="other4">
<title>Comparison with past emergences of respiratory viruses</title>
<p>Comparison with other emerging coronaviruses in the past allows to put into perspective the available information regarding the transmission patterns of 2019-nCoV.
<xref ref-type="fig" rid="f3">Figure 3</xref>
shows the combinations of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
that are most likely at this stage of the epidemic. Our estimates of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
are more similar to previous estimates focusing on early human-to-human transmission of SARS-CoV in Beijing and Singapore [
<xref rid="r7" ref-type="bibr">7</xref>
] than of Middle East respiratory syndrome-related coronavirus (MERS-CoV) [
<xref rid="r9" ref-type="bibr">9</xref>
]. The spread of MERS-CoV was characterised by small clusters of transmission following repeated instances of animal-to-human transmission events, mainly driven by the occurrence of superspreading events in hospital settings. MERS-CoV could however not sustain human-to-human transmission beyond a few generations [
<xref rid="r12" ref-type="bibr">12</xref>
]. Conversely, the international spread of SARS-CoV lasted for 9 months and was driven by sustained human-to-human transmission, with occasional superspreading events. It led to more than 8,000 cases around the world and required extensive efforts by public health authorities to be contained [
<xref rid="r13" ref-type="bibr">13</xref>
]. Our assessment of the early transmission of 2019-nCoV suggests that 2019-nCoV might follow a similar path.</p>
<fig id="f3" fig-type="figure" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Proportion of simulated epidemics that lead to a cumulative incidence between 1,000 and 9,700 of the 2019 novel coronavirus outbreak, China, on 18 January 2020</p>
</caption>
<p content-type="fig-fn">MERS: Middle East respiratory syndrome-related coronavirus; SARS: severe acute respiratory syndrome-related coronavirus.</p>
<p content-type="fig-fn">This can be interpreted as the combinations of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
values most compatible with the estimation of epidemic size before quarantine measures were put in place. As a comparison, we show the estimates of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
for the early human-to-human transmission of SARS-CoV in Singapore and Beijing and of 1918 pandemic influenza [
<xref rid="r7" ref-type="bibr">7</xref>
,
<xref rid="r9" ref-type="bibr">9</xref>
,
<xref rid="r14" ref-type="bibr">14</xref>
].</p>
<graphic xlink:href="2000058-f3"></graphic>
</fig>
<p>Our estimates for 2019-nCoV are also compatible with those of 1918 pandemic influenza, for which
<italic>k</italic>
was estimated [
<xref rid="r14" ref-type="bibr">14</xref>
]. Human-to-human transmission of influenza viruses is characterised by
<italic>R
<sub>0</sub>
</italic>
values between 1.5 and 2 and a larger value of
<italic>k</italic>
, implying a more steady transmission without superspreading. The emergence of new strains of influenza, for which human populations carried little to no immunity contrary to seasonal influenza, led to pandemics with different severity such as the ones in1918, 1957 1968 and 2009. It is notable that coronaviruses differ from influenza viruses in many aspects, and evidence for the 2019-nCoV with respect to case fatality rate, transmissibility from asymptomatic individuals and speed of transmission is still limited. Without speculating about possible consequences, the values of
<italic>R
<sub>0</sub>
</italic>
and
<italic>k</italic>
found here during the early stage of 2019-nCoV emergence and the lack of immunity to 2019-nCoV in the human population leave open the possibility for pandemic circulation of this new virus.</p>
</sec>
<sec sec-type="other5">
<title>Strengths and limitations</title>
<p>The scarcity of available data, especially on case counts by date of disease onset as well as contact tracing, greatly limits the precision of our estimates and does not yet allow for reliable forecasts of epidemic spread. Case counts provided by local authorities in the early stage of an emerging epidemic are notoriously unreliable as reporting rates are unstable and vary with time. This is due to many factors such as the initial lack of proper diagnosis tools, the focus on the more severe cases or the overcrowding of hospitals. We avoided this surveillance bias by relying on an indirect estimate of epidemic size on 18 January, based on cases identified in foreign countries before quarantine measures were implemented on 23 January. This estimated range of epidemic size relies itself on several assumptions, including that all infected individuals who travelled from Wuhan to other countries have been detected [
<xref rid="r6" ref-type="bibr">6</xref>
]. This caveat may lead to an underestimation of transmissibility, especially considering the recent reports about asymptomatic cases [
<xref rid="r4" ref-type="bibr">4</xref>
]. Conversely, our results do not depend on any assumption about the existence of asymptomatic transmission, and only reflect the possible combinations of transmission events that lead to the situation on 18 January. </p>
<p>Our analysis, while limited because of the scarcity of data, has two important strengths. Firstly, it is based on the simulation of a wide range of possibilities regarding epidemic parameters and allows for the full propagation on the final estimates of the many remaining uncertainties regarding 2019-nCoV and the situation in Wuhan: on the actual size of the epidemic, on the size of the initial zoonotic event at the wet market, on the date(s) of the initial animal-to-human transmission event(s) and on the generation time interval. As it accounts for all these uncertainties, our analysis provides a summary of the current state of knowledge about the human-to-human transmissibility of 2019-nCoV. Secondly, its focus on the possibility of superspreading events by using negative-binomial offspring distributions appears relevant in the context of emerging coronaviruses [
<xref rid="r7" ref-type="bibr">7</xref>
,
<xref rid="r8" ref-type="bibr">8</xref>
]. While our estimate of
<italic>k</italic>
remains imprecise, the simulations suggest that very low values of
<italic>k</italic>
 < 0.1 are less likely than higher values < 0.1 that correspond to a more homogeneous transmission pattern. However, values of
<italic>k</italic>
in the range of 0.1–0.2 are still compatible with a small risk of occurrence of large superspreading events, especially impactful in hospital settings [
<xref rid="r15" ref-type="bibr">15</xref>
,
<xref rid="r16" ref-type="bibr">16</xref>
].</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Our analysis suggests that the early pattern of human-to-human transmission of 2019-nCoV is reminiscent of SARS-CoV emergence in 2002. International collaboration and coordination will be crucial in order to contain the spread of 2019-nCoV. At this stage, particular attention should be given to the prevention of possible rare but explosive superspreading events, while the establishment of sustained transmission chains from single cases cannot be ruled out. The previous experience with SARS-CoV has shown that established practices of infection control, such as early detection and isolation, contact tracing and the use of personal protective equipment, can stop such an epidemic. Given the existing uncertainty around the case fatality rate and transmission, our findings confirm the importance of screening, surveillance and control efforts, particularly at airports and other transportation hubs, in order to prevent further international spread of 2019-nCoV.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>JR is funded by the Swiss National Science Foundation (grant 174281).</p>
</ack>
<notes>
<fn-group>
<fn fn-type="COI-statement">
<p>
<bold>Conflict of interest:</bold>
None declared.</p>
</fn>
<fn fn-type="con">
<p>
<bold>Authors’ contributions:</bold>
JR and CLA designed the study, JR performed model simulations, JR and CLA analysed and interpreted the results and wrote the manuscript.</p>
</fn>
</fn-group>
</notes>
<ref-list>
<title>References</title>
<ref id="r1">
<label>1</label>
<mixed-citation publication-type="web">World Health Organization (WHO). Pneumonia of unknown cause – China. Geneva: WHO; 2020. Available from:
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/">https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/</ext-link>
</mixed-citation>
</ref>
<ref id="r2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China..</article-title>
<source>Lancet</source>
.
<year>2020</year>
;
<elocation-id>S0140-6736(20)30183-5</elocation-id>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30154-9</pub-id>
<pub-id pub-id-type="pmid">31986261</pub-id>
</mixed-citation>
</ref>
<ref id="r3">
<label>3</label>
<mixed-citation publication-type="web">Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020;10.1101/2020.01.22.914952. Available from:
<ext-link ext-link-type="uri" xlink:href="https://www.biorxiv.org/content/early/2020/01/23/2020.01.22.914952">https://www.biorxiv.org/content/early/2020/01/23/2020.01.22.914952</ext-link>
</mixed-citation>
</ref>
<ref id="r4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kok</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>To</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.</article-title>
<source>Lancet</source>
.
<year>2020</year>
;
<elocation-id>S0140-6736(20)30154-9</elocation-id>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30154-9</pub-id>
<pub-id pub-id-type="pmid">31986261</pub-id>
</mixed-citation>
</ref>
<ref id="r5">
<label>5</label>
<mixed-citation publication-type="web">World Health Organization (WHO). Novel Coronavirus (2019-nCoV) situation report 9. Geneva: WHO; 2020. Available from:
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200129-sitrep-9-ncov-v2.pdf?sfvrsn=e2c8915_2">https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200129-sitrep-9-ncov-v2.pdf?sfvrsn=e2c8915_2</ext-link>
</mixed-citation>
</ref>
<ref id="r6">
<label>6</label>
<mixed-citation publication-type="web">Imai N, Dorigatti I, Cori A, Donnelly C, Riley S, Ferguson NM. Report 2: Estimating the potential total number of novel Coronavirus cases in Wuhan City, China. London: Imperial College; 2020. Available from:
<ext-link ext-link-type="uri" xlink:href="https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/">https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/</ext-link>
</mixed-citation>
</ref>
<ref id="r7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lloyd-Smith</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kopp</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Getz</surname>
<given-names>WM</given-names>
</name>
</person-group>
<article-title>Superspreading and the effect of individual variation on disease emergence.</article-title>
<source>Nature</source>
.
<year>2005</year>
;
<volume>438</volume>
(
<issue>7066</issue>
):
<fpage>355</fpage>
-
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature04153</pub-id>
<pub-id pub-id-type="pmid">16292310</pub-id>
</mixed-citation>
</ref>
<ref id="r8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Althaus</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>Ebola superspreading.</article-title>
<source>Lancet Infect Dis</source>
.
<year>2015</year>
;
<volume>15</volume>
(
<issue>5</issue>
):
<fpage>507</fpage>
-
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1473-3099(15)70135-0</pub-id>
<pub-id pub-id-type="pmid">25932579</pub-id>
</mixed-citation>
</ref>
<ref id="r9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucharski</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Althaus</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission.</article-title>
<source>Euro Surveill</source>
.
<year>2015</year>
;
<volume>20</volume>
(
<issue>25</issue>
):
<fpage>14</fpage>
-
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2015.20.25.21167</pub-id>
<pub-id pub-id-type="pmid">26132768</pub-id>
</mixed-citation>
</ref>
<ref id="r10">
<label>10</label>
<mixed-citation publication-type="web">Rambaut A. Preliminary phylogenetic analysis of 11 nCoV2019 genomes, 2020-01-19. ARTIC Network; 2020. Available from:
<ext-link ext-link-type="uri" xlink:href="http://virological.org/t/preliminary-phylogenetic-analysis-of-11-ncov2019-genomes-2020-01-19/329">http://virological.org/t/preliminary-phylogenetic-analysis-of-11-ncov2019-genomes-2020-01-19/329</ext-link>
</mixed-citation>
</ref>
<ref id="r11">
<label>11</label>
<mixed-citation publication-type="web">R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. Available from: http://www.R-project.org/</mixed-citation>
</ref>
<ref id="r12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breban</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Riou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fontanet</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk.</article-title>
<source>Lancet</source>
.
<year>2013</year>
;
<volume>382</volume>
(
<issue>9893</issue>
):
<fpage>694</fpage>
-
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)61492-0</pub-id>
<pub-id pub-id-type="pmid">23831141</pub-id>
</mixed-citation>
</ref>
<ref id="r13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Effectiveness of control measures during the SARS epidemic in Beijing: a comparison of the Rt curve and the epidemic curve.</article-title>
<source>Epidemiol Infect</source>
.
<year>2008</year>
;
<volume>136</volume>
(
<issue>4</issue>
):
<fpage>562</fpage>
-
<lpage>6</lpage>
.
<pub-id pub-id-type="doi">10.1017/S0950268807008722</pub-id>
<pub-id pub-id-type="pmid">17568476</pub-id>
</mixed-citation>
</ref>
<ref id="r14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
<name>
<surname>Klinkenberg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>Influenza transmission in households during the 1918 pandemic.</article-title>
<source>Am J Epidemiol</source>
.
<year>2011</year>
;
<volume>174</volume>
(
<issue>5</issue>
):
<fpage>505</fpage>
-
<lpage>14</lpage>
.
<pub-id pub-id-type="doi">10.1093/aje/kwr122</pub-id>
<pub-id pub-id-type="pmid">21749971</pub-id>
</mixed-citation>
</ref>
<ref id="r15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S-M</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle EAST respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015.</article-title>
<source>J Korean Med Sci</source>
.
<year>2015</year>
;
<volume>30</volume>
(
<issue>11</issue>
):
<fpage>1701</fpage>
-
<lpage>5</lpage>
.
<pub-id pub-id-type="doi">10.3346/jkms.2015.30.11.1701</pub-id>
<pub-id pub-id-type="pmid">26539018</pub-id>
</mixed-citation>
</ref>
<ref id="r16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McGeer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perl</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Al Rabeeah</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
<collab>KSA MERS-CoV Investigation Team</collab>
</person-group>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus.</article-title>
<source>N Engl J Med</source>
.
<year>2013</year>
;
<volume>369</volume>
(
<issue>5</issue>
):
<fpage>407</fpage>
-
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa1306742</pub-id>
<pub-id pub-id-type="pmid">23782161</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7001239
   |texte=   Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32019669" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021