Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus

Identifieur interne : 000F32 ( Pmc/Corpus ); précédent : 000F31; suivant : 000F33

A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus

Auteurs : Isabelle Imbert ; Jean-Claude Guillemot ; Jean-Marie Bourhis ; Cécile Bussetta ; Bruno Coutard ; Marie-Pierre Egloff ; François Ferron ; Alexander E. Gorbalenya ; Bruno Canard

Source :

RBID : PMC:1618104

Abstract

In (+) RNA coronaviruses, replication and transcription of the giant ∼30 kb genome to produce genome‐ and subgenome‐size RNAs of both polarities are mediated by a cognate membrane‐bound enzymatic complex. Its RNA‐dependent RNA polymerase (RdRp) activity appears to be supplied by non‐structural protein 12 (nsp12) that includes an RdRp domain conserved in all RNA viruses. Using SARS coronavirus, we now show that coronaviruses uniquely encode a second RdRp residing in nsp8. This protein strongly prefers the internal 5′‐(G/U)CC‐3′ trinucleotides on RNA templates to initiate the synthesis of complementary oligonucleotides of <6 residues in a reaction whose fidelity is relatively low. Distant structural homology between the C‐terminal domain of nsp8 and the catalytic palm subdomain of RdRps of RNA viruses suggests a common origin of the two coronavirus RdRps, which however may have evolved different sets of catalytic residues. A parallel between the nsp8 RdRp and cellular DNA‐dependent RNA primases is drawn to propose that the nsp8 RdRp produces primers utilized by the primer‐dependent nsp12 RdRp.


Url:
DOI: 10.1038/sj.emboj.7601368
PubMed: 17024178
PubMed Central: 1618104

Links to Exploration step

PMC:1618104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus</title>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guillemot, Jean Laude" sort="Guillemot, Jean Laude" uniqKey="Guillemot J" first="Jean-Claude" last="Guillemot">Jean-Claude Guillemot</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bourhis, Jean Arie" sort="Bourhis, Jean Arie" uniqKey="Bourhis J" first="Jean-Marie" last="Bourhis">Jean-Marie Bourhis</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bussetta, Cecile" sort="Bussetta, Cecile" uniqKey="Bussetta C" first="Cécile" last="Bussetta">Cécile Bussetta</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coutard, Bruno" sort="Coutard, Bruno" uniqKey="Coutard B" first="Bruno" last="Coutard">Bruno Coutard</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Egloff, Marie Ierre" sort="Egloff, Marie Ierre" uniqKey="Egloff M" first="Marie-Pierre" last="Egloff">Marie-Pierre Egloff</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferron, Francois" sort="Ferron, Francois" uniqKey="Ferron F" first="François" last="Ferron">François Ferron</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gorbalenya, Alexander E" sort="Gorbalenya, Alexander E" uniqKey="Gorbalenya A" first="Alexander E" last="Gorbalenya">Alexander E. Gorbalenya</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17024178</idno>
<idno type="pmc">1618104</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618104</idno>
<idno type="RBID">PMC:1618104</idno>
<idno type="doi">10.1038/sj.emboj.7601368</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">000F32</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000F32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus</title>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guillemot, Jean Laude" sort="Guillemot, Jean Laude" uniqKey="Guillemot J" first="Jean-Claude" last="Guillemot">Jean-Claude Guillemot</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bourhis, Jean Arie" sort="Bourhis, Jean Arie" uniqKey="Bourhis J" first="Jean-Marie" last="Bourhis">Jean-Marie Bourhis</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bussetta, Cecile" sort="Bussetta, Cecile" uniqKey="Bussetta C" first="Cécile" last="Bussetta">Cécile Bussetta</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coutard, Bruno" sort="Coutard, Bruno" uniqKey="Coutard B" first="Bruno" last="Coutard">Bruno Coutard</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Egloff, Marie Ierre" sort="Egloff, Marie Ierre" uniqKey="Egloff M" first="Marie-Pierre" last="Egloff">Marie-Pierre Egloff</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ferron, Francois" sort="Ferron, Francois" uniqKey="Ferron F" first="François" last="Ferron">François Ferron</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gorbalenya, Alexander E" sort="Gorbalenya, Alexander E" uniqKey="Gorbalenya A" first="Alexander E" last="Gorbalenya">Alexander E. Gorbalenya</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
<affiliation>
<nlm:aff id="embj7601368-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The EMBO Journal</title>
<idno type="ISSN">0261-4189</idno>
<idno type="eISSN">1460-2075</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In (+) RNA coronaviruses, replication and transcription of the giant ∼30 kb genome to produce genome‐ and subgenome‐size RNAs of both polarities are mediated by a cognate membrane‐bound enzymatic complex. Its RNA‐dependent RNA polymerase (RdRp) activity appears to be supplied by non‐structural protein 12 (nsp12) that includes an RdRp domain conserved in all RNA viruses. Using SARS coronavirus, we now show that coronaviruses uniquely encode a second RdRp residing in nsp8. This protein strongly prefers the internal 5′‐(G/U)CC‐3′ trinucleotides on RNA templates to initiate the synthesis of complementary oligonucleotides of <6 residues in a reaction whose fidelity is relatively low. Distant structural homology between the C‐terminal domain of nsp8 and the catalytic palm subdomain of RdRps of RNA viruses suggests a common origin of the two coronavirus RdRps, which however may have evolved different sets of catalytic residues. A parallel between the nsp8 RdRp and cellular DNA‐dependent RNA primases is drawn to propose that the nsp8 RdRp produces primers utilized by the primer‐dependent nsp12 RdRp.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">EMBO J</journal-id>
<journal-id journal-id-type="iso-abbrev">EMBO J</journal-id>
<journal-id journal-id-type="doi">10.1002/(ISSN)1460-2075</journal-id>
<journal-id journal-id-type="publisher-id">EMBJ</journal-id>
<journal-id journal-id-type="hwp">embojnl</journal-id>
<journal-title-group>
<journal-title>The EMBO Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">0261-4189</issn>
<issn pub-type="epub">1460-2075</issn>
<publisher>
<publisher-name>John Wiley & Sons, Ltd</publisher-name>
<publisher-loc>Chichester, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17024178</article-id>
<article-id pub-id-type="pmc">1618104</article-id>
<article-id pub-id-type="doi">10.1038/sj.emboj.7601368</article-id>
<article-id pub-id-type="publisher-id">EMBJ7601368</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus</article-title>
<alt-title alt-title-type="right-running-head">Sequence‐specific RNA‐dependent RNA polymerase</alt-title>
</title-group>
<contrib-group>
<contrib id="embj7601368-cr-0001" contrib-type="author">
<name>
<surname>Imbert</surname>
<given-names>Isabelle</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0002" contrib-type="author">
<name>
<surname>Guillemot</surname>
<given-names>Jean‐Claude</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0003" contrib-type="author">
<name>
<surname>Bourhis</surname>
<given-names>Jean‐Marie</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0004" contrib-type="author">
<name>
<surname>Bussetta</surname>
<given-names>Cécile</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0005" contrib-type="author">
<name>
<surname>Coutard</surname>
<given-names>Bruno</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0006" contrib-type="author">
<name>
<surname>Egloff</surname>
<given-names>Marie‐Pierre</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0007" contrib-type="author">
<name>
<surname>Ferron</surname>
<given-names>François</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="embj7601368-note-0001">
<sup></sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0008" contrib-type="author">
<name>
<surname>Gorbalenya</surname>
<given-names>Alexander E</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="embj7601368-cr-0009" contrib-type="author" corresp="yes">
<name>
<surname>Canard</surname>
<given-names>Bruno</given-names>
</name>
<xref ref-type="aff" rid="embj7601368-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="embj7601368-aff-0001">
<label>
<sup>1</sup>
</label>
<institution>Centre National de la Recherche Scientifique and Universités d'Aix‐Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy‐Case 925</institution>
<city>Marseille Cedex</city>
<country country="FR">France</country>
</aff>
<aff id="embj7601368-aff-0002">
<label>
<sup>2</sup>
</label>
<institution>Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center</institution>
<city>Leiden</city>
<country country="NL">The Netherlands</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Corresponding author. Centre National de la Recherche Scientifique and Universités d'Aix‐Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy‐Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France. Tel.: +33 491 82 86 44; Fax: +33 491 82 86 46; E-mail:
<email>Bruno.Canard@afmb.univ-mrs.fr</email>
or
<email>bruno@afmb.univ-mrs.fr</email>
</corresp>
<fn id="embj7601368-note-0001" fn-type="present-address">
<label></label>
<p>Present address: Boston Biomedical Research Institute, 64, grove St., Watertown, 02472, MA, USA</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>18</day>
<month>10</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="epub">
<day>05</day>
<month>10</month>
<year>2006</year>
</pub-date>
<volume>25</volume>
<issue>20</issue>
<issue-id pub-id-type="doi">10.1002/emboj.v25.20</issue-id>
<fpage>4933</fpage>
<lpage>4942</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>3</month>
<year>2006</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>9</month>
<year>2006</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2013 Wiley Periodicals, Inc </pmc-comment>
<copyright-statement content-type="article-copyright">Copyright © 2006 European Molecular Biology Organization</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:EMBJ-25-4933.pdf"></self-uri>
<abstract>
<p>In (+) RNA coronaviruses, replication and transcription of the giant ∼30 kb genome to produce genome‐ and subgenome‐size RNAs of both polarities are mediated by a cognate membrane‐bound enzymatic complex. Its RNA‐dependent RNA polymerase (RdRp) activity appears to be supplied by non‐structural protein 12 (nsp12) that includes an RdRp domain conserved in all RNA viruses. Using SARS coronavirus, we now show that coronaviruses uniquely encode a second RdRp residing in nsp8. This protein strongly prefers the internal 5′‐(G/U)CC‐3′ trinucleotides on RNA templates to initiate the synthesis of complementary oligonucleotides of <6 residues in a reaction whose fidelity is relatively low. Distant structural homology between the C‐terminal domain of nsp8 and the catalytic palm subdomain of RdRps of RNA viruses suggests a common origin of the two coronavirus RdRps, which however may have evolved different sets of catalytic residues. A parallel between the nsp8 RdRp and cellular DNA‐dependent RNA primases is drawn to propose that the nsp8 RdRp produces primers utilized by the primer‐dependent nsp12 RdRp.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="embj7601368-kwd-0001">coronavirus</kwd>
<kwd id="embj7601368-kwd-0002">polymerase</kwd>
<kwd id="embj7601368-kwd-0003">replication</kwd>
<kwd id="embj7601368-kwd-0004">RNA</kwd>
<kwd id="embj7601368-kwd-0005">SARS</kwd>
</kwd-group>
<kwd-group kwd-group-type="subject-categories">
<title>Subject Categories</title>
<kwd>DNA Replication, Repair & Recombination</kwd>
<kwd>Microbiology, Virology & Host Pathogen Interaction</kwd>
</kwd-group>
<counts>
<page-count count="10"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>October 18, 2006</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body id="embj7601368-body-0001">
<sec id="embj7601368-sec-0001">
<title>Introduction</title>
<p>Viruses of the plus‐strand (+) RNA
<italic>Coronaviridae</italic>
family employ the largest multicistronic RNA genome composed of a single segment of 27–32 kb. This family includes the Coronavirus and Torovirus genera that together with the distantly related
<italic>Arteriviridae</italic>
and
<italic>Roniviridae</italic>
families form the
<italic>Nidovirales</italic>
order (
<xref rid="embj7601368-bib-0019" ref-type="ref">Gonzalez
<italic>et al</italic>
, 2003</xref>
;
<xref rid="embj7601368-bib-0011" ref-type="ref">Draker
<italic>et al</italic>
, 2006</xref>
and reviewed in
<xref rid="embj7601368-bib-0032" ref-type="ref">Lai and Holmes, 2001</xref>
;
<xref rid="embj7601368-bib-0042" ref-type="ref">Siddell
<italic>et al</italic>
, 2005</xref>
). The coronavirus genome RNA is translated to express the two most 5′ open reading frames (ORFs), ORF1a and ORF1b, occupying approximately two‐thirds of the genome. They encode major subunits of a poorly characterized membrane‐bound complex that mediates the synthesis of the genome RNA (replication) and numerous subgenomic RNAs (transcription) (
<xref rid="embj7601368-bib-0020" ref-type="ref">Gorbalenya, 2001</xref>
;
<xref rid="embj7601368-bib-0044" ref-type="ref">Thiel
<italic>et al</italic>
, 2001</xref>
;
<xref rid="embj7601368-bib-0023" ref-type="ref">Gosert
<italic>et al</italic>
, 2002</xref>
;
<xref rid="embj7601368-bib-0039" ref-type="ref">Prentice
<italic>et al</italic>
, 2004</xref>
;
<xref rid="embj7601368-bib-0050" ref-type="ref">Ziebuhr, 2005</xref>
). ORF1a encodes the replicative polyprotein (pp) 1a, and ORFs 1a and 1b together encode pp1ab. Expression of the ORF1b requires a −1 ribosomal frameshift just upstream of the ORF1a stop codon. The two polyproteins pp1a and pp1ab are autocatalytically processed by at least two proteases to produce up to 16 end products called non‐structural proteins (nsp) 1 to 16, as well as multiple processing intermediates (
<xref rid="embj7601368-bib-0045" ref-type="ref">Thiel
<italic>et al</italic>
, 2003</xref>
). The central and C‐proximal regions of the polyproteins are processed at 11 conserved sites by the chymotrypsin‐like proteinase known also as main proteinase (Mpro) that resides in nsp5 (reviewed in
<xref rid="embj7601368-bib-0051" ref-type="ref">Ziebuhr
<italic>et al</italic>
, 2000</xref>
).</p>
<p>The unique features of coronavirus RNA synthesis may be linked to the viral proteome bearing multiple enzymatic activities absent in other RNA viruses (
<xref rid="embj7601368-bib-0043" ref-type="ref">Snijder
<italic>et al</italic>
, 2003</xref>
). Replicase polyproteins of nidoviruses share a conserved array of functional domains (from the N‐ to C‐termini): Mpro, RNA‐dependent RNA polymerase (RdRp) (
<xref rid="embj7601368-bib-0009" ref-type="ref">Cheng
<italic>et al</italic>
, 2005</xref>
), zinc‐binding domain‐containing helicase (ZBD‐HEL) (
<xref rid="embj7601368-bib-0027" ref-type="ref">Ivanov
<italic>et al</italic>
, 2004b</xref>
) and uridylate‐specific endoribonuclease (NendoU) (
<xref rid="embj7601368-bib-0003" ref-type="ref">Bhardwaj
<italic>et al</italic>
, 2004</xref>
;
<xref rid="embj7601368-bib-0026" ref-type="ref">Ivanov
<italic>et al</italic>
, 2004a</xref>
). In coronaviruses, RdRp, ZBD‐HEL and NendoU reside in nsp12, nsp13 and nsp15, respectively. In large nidoviruses, such as corona‐, toro‐ and roniviruses, the conserved replicase polyprotein backbone is elaborated with additional enzymatic domains, including an exoribonuclease (ExoN) (
<xref rid="embj7601368-bib-0043" ref-type="ref">Snijder
<italic>et al</italic>
, 2003</xref>
;
<xref rid="embj7601368-bib-0035" ref-type="ref">Minskaia
<italic>et al</italic>
, 2006</xref>
) and a putative ribose‐2′‐
<italic>O</italic>
‐methyltransferase (
<xref rid="embj7601368-bib-0055" ref-type="ref">Feder
<italic>et al</italic>
, 2003</xref>
;
<xref rid="embj7601368-bib-0043" ref-type="ref">Snijder
<italic>et al</italic>
, 2003</xref>
), which in coronaviruses, reside in nsp14 and nsp16, respectively. Despite recent progress in the characterization of replicase proteins, a large fraction of these proteins encoded in ORF1a (nsp1, nsp2, some nsp3 domains, nsp4, nsp6, nsp7, nsp8 and nsp10) remains functionally poorly characterized.</p>
<p>The crystal structure of a complex between the 197 a.a. nsp8 and the 83 a.a. nsp7 protein was recently determined for SARS coronavirus (SARS‐CoV) (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
). It revealed a hexadecamer in which eight nsp7 molecules act as a mortar that holds the nsp8 octamer. RNA binding experiments with these subunits and the overall architecture of the complex suggest that the later encircles RNA. These authors have proposed that this complex provides a platform that might confer processivity to the synthesis of large RNAs in coronavirus nsp12 RdRp‐mediated replication and transcription. This RdRp is phylogenetically clustered with RdRps of (+) RNA viruses whose genome RNAs have the 5′‐end covalently linked to a viral protein genome‐linked (VPg) (
<xref rid="embj7601368-bib-0029" ref-type="ref">Koonin, 1991</xref>
). For the well‐studied poliovirus RdRp, covalent (oligo)nucleotide‐VPg complex serves as a primer to direct the template‐dependent synthesis of RNAs by RdRp (
<xref rid="embj7601368-bib-0036" ref-type="ref">Paul
<italic>et al</italic>
, 1998</xref>
). RdRps of the VPg‐containing viruses share a conserved sequence motif G that was implicated in the recognition of primer‐template RNA complex (
<xref rid="embj7601368-bib-0002" ref-type="ref">Barrette‐Ng
<italic>et al</italic>
, 2002</xref>
;
<xref rid="embj7601368-bib-0022" ref-type="ref">Gorbalenya
<italic>et al</italic>
, 2002</xref>
;
<xref rid="embj7601368-bib-0046" ref-type="ref">Thompson and Peersen, 2004</xref>
). The motif G was also identified in RdRps of coronaviruses (
<xref rid="embj7601368-bib-0022" ref-type="ref">Gorbalenya
<italic>et al</italic>
, 2002</xref>
), and accordingly, the SARS‐CoV RdRp was shown to be primer‐dependent (
<xref rid="embj7601368-bib-0009" ref-type="ref">Cheng
<italic>et al</italic>
, 2005</xref>
). Since the 5′‐end of genome RNA of coronaviruses is blocked by a cap rather than a VPg (
<xref rid="embj7601368-bib-0042" ref-type="ref">Siddell
<italic>et al</italic>
, 2005</xref>
), these data indicate that coronaviruses may have evolved a special mechanism to generate primers used in RNA synthesis.</p>
<p>Viruses and cellular organisms have evolved a number of mechanisms to produce RNA primers, which are either derived from pre‐existing RNAs (
<xref rid="embj7601368-bib-0038" ref-type="ref">Plotch
<italic>et al</italic>
, 1981</xref>
;
<xref rid="embj7601368-bib-0033" ref-type="ref">Mak and Kleiman, 1997</xref>
) or synthesized on a template. In cellular organisms, template‐derived RNA primers direct the DNA synthesis at both leading and lagging strands. A specialized, low‐fidelity DNA‐dependent RNA polymerase, known as primase, catalyzes the synthesis of short (4–15 nucleotides) RNA molecules to be used as primers by replicative DNA polymerases; these primers are subsequently removed by ribonucleases (
<xref rid="embj7601368-bib-0017" ref-type="ref">Frick and Richardson, 2001</xref>
). Like other and structurally unrelated template‐dependent polynucleotide polymerases, primases catalyze the formation of internucleotidic phosphodiester bonds using a common phosphoryl transfer reaction.</p>
<p>In this report, we describe a new template‐dependent oligonucleotide‐synthesizing activity possessed by nsp8 of SARS‐CoV. This protein recognizes a specific short sequence ubiquitous in the ssRNA coronavirus genome to catalyze the synthesis of complementary <6 nucleotides with a relatively low fidelity similar to that of known DNA‐dependent RNA primases.</p>
</sec>
<sec id="embj7601368-sec-0002">
<title>Results</title>
<p>The characterization of the SARS‐CoV nsp8 (hereafter nsp8) protein described in this paper was initiated to test a possible modulating role of this protein for the poorly active nsp12 RdRp. Surprisingly, nsp8 alone was found to be able to catalyze template‐dependent oligoribonucleotide synthesis. This observation prompted a detailed analysis of nsp8 properties related to this activity. The obtained results are described below.</p>
<sec id="embj7601368-sec-0003">
<title>Coronaviridae nsp8 forms an isolated protein family</title>
<p>Nsp8 protein is well‐conserved among viruses of the Coronavirus genus with 17 and 66% positions being occupied by identical and similar, respectively, residues. Further database searches using single‐ and multiple‐sequence queries and assisted by BLAST (
<xref rid="embj7601368-bib-0053" ref-type="ref">Altschul
<italic>et al</italic>
, 1997</xref>
) and HMMER (
<xref rid="embj7601368-bib-0054" ref-type="ref">Bateman
<italic>et al</italic>
, 1999</xref>
) programs identified no statistically significant similarity of nsp8 with other proteins. However in the profile searches, we observed an under‐the‐threshold hit with an equivalently located region in the ORF1a‐encoded polyprotein of the Breda bovine torovirus (BToV‐1) (
<xref rid="embj7601368-bib-0011" ref-type="ref">Draker
<italic>et al</italic>
, 2006</xref>
). In the torovirus pp1a/pp1ab polyproteins, this region is flanked by two potential 3CL cleavage sites, which may be recognized by Mpro (
<xref rid="embj7601368-fig-0001" ref-type="fig">Figure 1</xref>
and AE Gorbalenya, personal communication). These data indicate that the identified region may be a very distant ortholog of nsp8. An alignment of coronavirus nsp8 and the putative BToV‐1 ortholog identified eight absolutely conserved residues, which include Lys‐58, Lys‐82 and Ser‐85 (
<xref rid="embj7601368-fig-0001" ref-type="fig">Figure 1</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Sequence alignment of nsp8 proteins. The alignment of coronavirus nsp8 sequences was generated with the ClustalW program, version 1.82 (
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/clustalw/">http://www.ebi.ac.uk/clustalw/</ext-link>
). This alignment and individual nsp8 sequences were used to search sequence databases as described in
<xref rid="embj7601368-bib-0043" ref-type="ref">Snijder
<italic>et al</italic>
(2003)</xref>
. Using results of these searches, the original alignment was extended to a distantly related (see text) torovirus sequence using the MUSCLE program. The resulting alignment was converted into this figure using the ESPript program, version 2.2 (
<ext-link ext-link-type="uri" xlink:href="http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi">http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi</ext-link>
). Residues that are conserved in all or >70% sequences are boxed in red and yellow, respectively. Above the alignment, numbering and secondary structure elements (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
) for SARS‐CoV nsp8 protein are depicted. National Center for Biotechnology Information (NCBI) Accession Numbers for replicase polyprotein sequences including nsp8: SARS‐CoV, NP_828866; Breda torovirus (BToV‐1), AY427798; Transmissible Gastroenteritis coronavirus (TGEV), NP_840006; Porcine epidemic diarrhea virus CV777 (PEDV), NP_839962; Human coronavirus NL63 (NL63), AAS58176; Human coronavirus 229E (229E), NP_835349; Human coronavirus HKU1 genotype A (HKU1), AAT98578; Human coronavirus OC43 (OC43), NP_937947; Bovine coronavirus (BCoV), NP_742135; Mouse Hepatitis virus strain A59 (MHV‐A59), NP_740613; Avian Infectious Bronchitis Virus (AIBV), NP_740626.</p>
</caption>
<graphic id="nlm-graphic-1" xlink:href="EMBJ-25-4933-g001"></graphic>
</fig>
</sec>
<sec id="embj7601368-sec-0004">
<title>The SARS‐CoV nsp8 has RdRp activity</title>
<p>Purified nsp8 (
<xref rid="embj7601368-sup-0001" ref-type="supplementary-material">Supplementary Figure 1A</xref>
) was assayed for RdRp activity using homopolymeric RNA templates (poly(rA), poly(rU) and poly(rC)) in a filter binding assay (
<xref rid="embj7601368-bib-0013" ref-type="ref">Dutartre
<italic>et al</italic>
, 2005</xref>
). A weak polymerization with poly(rU) template and no activity using poly(rA) template were observed (data not shown). A strong activity using poly(rC) and oligo(rC
<sub>15</sub>
) template (
<xref rid="embj7601368-fig-0002" ref-type="fig">Figure 2</xref>
) was detected, with a linear polymerase activity after up to 4 h of incubation, in a template‐dependent manner. The activity was found to be manganese‐dependent, although magnesium but not Zn
<sup>2+</sup>
, Co
<sup>2+</sup>
nor Ca
<sup>2+</sup>
could also promote RdRp activity with a much lower efficiency (
<xref rid="embj7601368-sup-0001" ref-type="supplementary-material">Supplementary Figure 1B</xref>
). Nsp8 preparations are insensitive to rifampicin, a potent
<italic>Escherichia coli</italic>
RNA polymerase inhibitor. Nsp8 polymerase activity is free of contaminating or intrinsic terminal transferase (TNTase) activity. Indeed, a TNTase activity assay carried out with 5′‐labeled oligo(rC
<sub>15</sub>
) and unlabeled guanine triphosphates as substrates shows no ladder‐like products above the labeled oligo(rC
<sub>15</sub>
) template (data not shown). The RdRp activity was blocked by mutations at the most conserved positions of nsp8 (see below). Thus, the RdRp activity is catalyzed by nsp8 rather than a co‐purified protein.</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Kinetics of RNA synthesis using nsp8 protein, NS5B polymerase of HCV and NS5 polymerase of Dengue virus and an oligo(rC
<sub>15</sub>
) RNA template. 1 μM of nsp8, 1 μM HCV NS5B and 400 nM of Dengue NS5 proteins were mixed with [α‐
<sup>32</sup>
P]GTP (10 μM) and oligo(rC
<sub>15</sub>
) template (10 μM) to start the reaction (as described under ‘Materials and methods’). At various times (0, 1, 15 and 30 min), reaction aliquots were quenched by the addition of EDTA/formamide, and the RNA products were resolved on 14% polyacrylamide/7 M urea gel. Due to the likely formation of poly(rG) secondary structures, product size and abundance is not visually accurate for >8‐mer products. M, RNA marker synthesized using T7 RNA polymerase and an appropriate template; each band product is indicated on the left.</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="EMBJ-25-4933-g002"></graphic>
</fig>
<p>Primer dependence of the nsp8 RdRp was investigated using poly(rC) or oligo(rC
<sub>15</sub>
) templates, which were annealed to labeled oligo(rG) primers of one of three sizes (G2, G6 or G15). Elongation of the labeled primers by nsp8 was not detected (not shown). An ability of the nsp8 RdRp to synthesize RNA in the primer‐independent mode was compared to well‐established primer‐independent RdRps, the HCV NS5B and the Dengue virus (DV) NS5 (
<xref rid="embj7601368-bib-0001" ref-type="ref">Ackermann and Padmanabhan, 2001</xref>
;
<xref rid="embj7601368-bib-0028" ref-type="ref">Kao
<italic>et al</italic>
, 2001</xref>
). In this assay, an oligonucleotide of 15 consecutive cytidines (oligo(rC
<sub>15</sub>
) and GTP) were used as the template and the sole nucleotide substrate, respectively, to direct RNA synthesis.
<xref rid="embj7601368-fig-0002" ref-type="fig">Figure 2</xref>
shows the synthesis of oligo(rG) products for each polymerase. The size pattern of products synthesized by nsp8 is similar to those that were produced using HCV NS5B and, to a lesser extent, DV NS5. In the reactions catalyzed by either nsp8 or HCV NS5B, a similar pattern of products up to 7‐mers was found. The most prominent was the accumulation of pppGpG, which is a hallmark of a kinetic limitation in the initiation step of RNA synthesis. However and in contrast to NS5B and NS5, nsp8 was unable to catalyze the synthesis of the full‐length complementary copies of the template. The seemingly full‐length products are shorter and accumulated to a lesser extent than those produced by HCV NS5B or DV NS5. These results indicate that nsp8 is an RNA‐directed, primer‐independent RdRp acting in a distributive fashion.</p>
</sec>
<sec id="embj7601368-sec-0005">
<title>Nsp8 is a sequence‐specific RdRp</title>
<p>The nsp8 RdRp activity is dependent on the nucleobase of a homopolymeric template (poly(rA), poly(rU) or poly(rC)). A significant nsp8 RdRp activity was only detected using poly(rC) template. Since poly(rG) template generates strong secondary structures, it cannot be tested in a similar polymerase assay. To analyze whether guanines could be part of a template for nsp8, the heteropolymeric RNA template, 5′‐UAU AAU
<underline underline-style="single">GG</underline>
A AAA‐3′ (oligo 5), containing two internal guanines, was tested. No nsp8 RdRp activity was detected using this template. Based on these and other experiments (see below), we concluded that the template must contain at least one cytosine to promote RNA synthesis by nsp8. A 373‐nt heteropolymeric RNA template identical to a part of the SARS‐CoV genome was used to monitor RdRp activity, and the results are presented in
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3A</xref>
. Nsp8 is able to synthesize only short RNA products (<6‐mers), whereas HCV NS5B RdRp is able to synthesize both short and long products. The nsp8 heterogeneous product profile suggests various internal initiation sites (see below). Various short synthetic RNA oligonucleotides were then designed to refine relevant template requirements for an efficient synthesis of RNA products by nsp8 (
<xref rid="embj7601368-tbl-0001" ref-type="table">Table I</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Nsp8 polymerase template requirements. (
<bold>A</bold>
) Time course of nucleotide incorporation using a purified 373 nt RNA template and 1 μM nsp8 (left panel) or 1 μM HCV NS5B (right panel) together with 500 μM ATP, UTP, CTP, and 10 μM [α
<sup>32</sup>
P]GTP. Reaction products are indicated on the side of the gel autoradiograph. Positions of the RNA markers (M) synthesized using T7 RNA polymerase are shown on the left. (
<bold>B</bold>
) Time course of nucleotide incorporation using RNA template 10 (5′‐UAUAGUCCCAAA‐3′) together with 1 μM nsp8 and 10 μM [α
<sup>32</sup>
P]GTP. Reactions were performed with all required nucleotides or lacking either ATP, UTP or CTP, as indicated.</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="EMBJ-25-4933-g003"></graphic>
</fig>
<table-wrap id="embj7601368-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Synthetic nucleic acid templates used in this study</p>
</caption>
<table frame="hsides" rules="groups">
<col width="1*" style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<col width="1*" style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<col width="1*" style="border-right:solid 1px #000000; border-bottom:solid 1px #000000" span="1"></col>
<thead valign="bottom">
<tr style="border-bottom:solid 1px #000000">
<th valign="bottom" rowspan="1" colspan="1">Oligo name</th>
<th valign="bottom" rowspan="1" colspan="1">Sequence</th>
<th valign="bottom" rowspan="1" colspan="1">Template usage efficiency (%)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 1</td>
<td valign="top" rowspan="1" colspan="1">5′‐AAAAAAAAAGUAUCC‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 2</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUCCGAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">35</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 3</td>
<td valign="top" rowspan="1" colspan="1">5′‐AAAAAAAAAAUUGCC‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 4</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAGCCAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">30</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 5</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUGGAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 6</td>
<td valign="top" rowspan="1" colspan="1">5′‐AAAACCUAAUAU‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 7</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAACGAACUUUAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 8</td>
<td valign="top" rowspan="1" colspan="1">5′‐AAAUCAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 9</td>
<td valign="top" rowspan="1" colspan="1">5′‐AUAUCGUUUACAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
<td valign="top" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 10</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAGUCCCAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 11</td>
<td valign="top" rowspan="1" colspan="1">5′‐AAGCCCAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">95</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 12</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUCCAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">100</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 13</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUGCAAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">83</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 14</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUCCCAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">80</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 15</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUCCUAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">56</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 16</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUAAUUCUAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">69</td>
</tr>
<tr>
<td valign="top" rowspan="1" colspan="1">Oligo 17</td>
<td valign="top" rowspan="1" colspan="1">5′‐UAUUAAGCUAAA‐3′</td>
<td valign="top" rowspan="1" colspan="1">53</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="embj7601368-note-0002">
<p>All oligonucleotides are RNA except oligonucleotide 11, which is a single‐stranded DNA template. RNA synthesis initiation sites are shadowed in gray. From this table and other experiments (not shown), the best priming site was found to be 5′‐G/UCCNN‐3′ (see text).</p>
</fn>
<fn id="embj7601368-note-0003">
<p>Oligo 10 is taken as a reference, and approximate relative template usage efficiencies are indicated on the right.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Two sets of oligonucleotides pairs were designed, each containing two adjacent cytidines either internally or at the 3′‐end of a template. Cytidines (underlined below) were placed downstream of either U (1st set—oligo 1: 5′‐AAAAAAAAAGUAU
<underline underline-style="single">C</underline>
C‐3′ and oligo 2: 5′‐UAUAAU
<underline underline-style="single">C</underline>
CGAAA‐3′) or G; 2nd set—oligo 3: 5′‐AAAAAAAAAAUUG
<underline underline-style="single">C</underline>
C‐3′ and oligo 4: 5′‐UAUAAG
<underline underline-style="single">C</underline>
CAAAA‐3′). With both sets, product synthesis was only observed using templates bearing internal CC (oligo 2 and oligo 4). Thus, nsp8 is unable to start the synthesis of a complementary sequence at the 3′‐end of a linear RNA template and it requires a template cytidine to be flanked by at least two nucleotides from the 3′‐end.</p>
<p>The specificity at the +2 and −1 positions relative to the template 3′‐cytidine was then addressed. All the templates tested in this study and the results regarding the polymerase assay are shown in
<xref rid="embj7601368-tbl-0001" ref-type="table">Table I</xref>
. Sequences that include the cytidine‐containing trinucleotides (5′–3′) ‐CCU‐, ‐ACG‐, ‐ACU‐, ‐UCG‐, ‐ACA‐, ‐UCA‐ or ‐ACC‐ proved to be poor templates for nsp8 (
<xref rid="embj7601368-tbl-0001" ref-type="table">Table I</xref>
). Rational design of test sequences showed that the minimal sequences requirements are UCC, GCC, GCA, UCU and GCU in order to promote activity, with the optimal sequence being 5′‐(G/U)CCNN‐3′ (
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
, and not shown). Synthesis starts on the 5′ C leaving one cryptic 3′ C.
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
(left lanes) shows nsp8‐dependent band products formation, using oligo 10 template (5′‐UAUAGUCCCAAA‐3′). Products accumulate over time, for each incorporation, confirming that nsp8 acts in a rather distributive fashion. Taken together, these results demonstrate that nsp8 is a sequence‐specific RdRp.</p>
<p>As GTP is the required initiating (+1) nucleotide, we used the oligo 10 template (
<xref rid="embj7601368-tbl-0001" ref-type="table">Table I</xref>
) to measure
<italic>K</italic>
<sub>m</sub>
(GTP) at position +1. An overall incorporation efficiency
<italic>V</italic>
<sub>max</sub>
/
<italic>K</italic>
<sub>m</sub>
of 0.65 × 10
<sup>−5</sup>
min
<sup>−1</sup>
μM
<sup>−1</sup>
was measured for GTP, with
<italic>K</italic>
<sub>m</sub>
(GTP) of 126±14 μM, a value comparable to that of other viral RdRps (
<xref rid="embj7601368-bib-0040" ref-type="ref">Ranjith‐Kumar
<italic>et al</italic>
, 2002</xref>
;
<xref rid="embj7601368-bib-0008" ref-type="ref">Castro
<italic>et al</italic>
, 2005</xref>
;
<xref rid="embj7601368-bib-0041" ref-type="ref">Selisko
<italic>et al</italic>
, 2006</xref>
). This latter value is significantly lower than the intracellular GTP concentration (1–4 mM) (
<xref rid="embj7601368-bib-0025" ref-type="ref">Hauschka, 1973</xref>
), suggesting that the cellular GTP concentration is not rate‐limiting for the nsp8‐mediated RNA synthesis initiation reaction. The ATP and CTP incorporation efficiencies at the +2 position were on the same order of magnitude, 1.7 × 10
<sup>−5</sup>
min
<sup>−1</sup>
μM
<sup>−1</sup>
and 0.65 × 10
<sup>−5</sup>
min
<sup>−1</sup>
μM
<sup>−1</sup>
, respectively.</p>
<p>We examined the nsp8 nucleotide insertion fidelity under conditions where the reaction mix assay specifically lacked one of the required NTP. Oligo 10 (
<xref rid="embj7601368-tbl-0001" ref-type="table">Table I</xref>
) was used with four different sets of nucleotides (
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
). In the presence of the four NTPs, the synthesized product should correspond to 5′‐GACUAUA‐3′ (
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
, left lanes). In contrast, when ATP, UTP or CTP are omitted, a full size product is not detected, indicating that in the absence of the required NTP, nsp8 does not significantly misincorporate a nucleotide (
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
). Based on the observed rate of misincorporation, we could estimate a lower limit of 1 misincorporation per 10 nucleotides synthesized for nsp8 RdRp (data not shown, also see
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3</xref>
and Discussion). When ATP is omitted, a shift is observed from the usual dinucleotide product pppGA towards pppGG, indicating that nsp8 rather favors a shift in its initiating site over a misincorporation at the original site (
<xref rid="embj7601368-fig-0003" ref-type="fig">Figure 3B</xref>
).</p>
</sec>
<sec id="embj7601368-sec-0006">
<title>Selective nsp8 inhibition using GTP analogs</title>
<p>The nsp8 protein may represent an attractive target against coronaviruses, several nucleotides analogs (3′‐dGTP, ddGTP and 2′‐
<italic>O</italic>
‐methyl‐GTP) were tested for their capability to inhibit nucleotide incorporation into RNA using a poly(rC) template. 3′‐dGTP was found to efficiently inhibit nsp8 RdRp activity (
<xref rid="embj7601368-fig-0004" ref-type="fig">Figure 4</xref>
), whereas ddGTP and 2′‐
<italic>O</italic>
‐methyl‐GTP were weak inhibitors (data not shown). Using increasing 3′‐dGTP concentrations, most of the band products vanish, with no significant appearance of chain terminated products (
<xref rid="embj7601368-fig-0004" ref-type="fig">Figure 4A</xref>
). Comparatively, chain terminated products increasing over time are apparent when using HCV NS5B in a similar experimental setting (
<xref rid="embj7601368-fig-0004" ref-type="fig">Figure 4B</xref>
, asterisks) The fact that ladder‐like product formation does not occur significantly using nsp8 suggests that most inhibition occurs at position +1 of the template.</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Inhibition of RNA synthesis by 3′‐dGTP using a poly(rC) template. (
<bold>A</bold>
) Effect of increasing concentrations of 3′‐dGTP on the initiation and full‐length RNA product formation. The nucleoside analog was added to reaction mixtures containing 1 μM poly(rC), 10 μM [α
<sup>32</sup>
‐P] GTP and 1 μM nsp8. Lanes 1–5 show the products of the reactions performed using the following concentrations of 3′‐dGTP: 0, 100, 500 nM, 1 and 10 μM. Reactions were allowed to proceed for 60 min. M, RNA marker synthesized using T7 RNA polymerase and an appropriate template. (
<bold>B</bold>
) Same as in (A) using 10 μM oligo(rC
<sub>15</sub>
) as a template in conjunction with 1 μM HCV NS5B. Each chain terminated band product is indicated on the right by an asterisk (
<sup>*</sup>
). For each 3′‐dGTP concentration (lanes 1–5: 0, 5, 10, 50 and 100 μM, respectively), the reaction was allowed to proceed for 30, 60 and 120 min.</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="EMBJ-25-4933-g004"></graphic>
</fig>
</sec>
<sec id="embj7601368-sec-0007">
<title>Conserved nsp8 residues are critical for RdRp activity</title>
<p>In order to identify essential residues for nsp8 activity, alanine‐scanning mutagenesis was applied to all conserved charged and selected polar amino‐acid residues. In total, 14 mutants of nsp8 were generated (
<xref rid="embj7601368-fig-0005" ref-type="fig">Figure 5</xref>
), expressed in
<italic>E. coli</italic>
and purified to apparent homogeneity using affinity and exclusion chromatographies. The RdRp specific activity of these mutants was measured using [
<sup>3−</sup>
H]GTP incorporation into RNA using a poly(rC) template, and was expressed as a percentage of the activity of the wild‐type nsp8 (
<xref rid="embj7601368-fig-0005" ref-type="fig">Figure 5</xref>
and
<xref rid="embj7601368-sup-0003" ref-type="supplementary-material">Supplementary Figure 3</xref>
). The K58A, R75A, K82A and S85A mutations abolished or greatly reduced the RdRp activity. The nsp8 RdRp activity was most sensitive to replacement of either of the three residues, K58, K82 and S85, which are also conserved in the torovirus sequence. The D161A mutant remains substantially active. Although the nsp8 activity is metal‐ion dependent, there are no essential and conserved acidic residues that may chelate a catalytic Mn
<sup>2+</sup>
(see Discussion). Activities recorded with the nsp8 mutants are thus fully consistent with the alignment presented in
<xref rid="embj7601368-fig-0001" ref-type="fig">Figure 1</xref>
.</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Alanine scanning mutagenesis of the nsp8 protein. Indicated amino acids were replaced by alanine using site‐directed mutagenesis. One micromolar of nsp8 wt and 1 μM of Ala mutants were tested for polymerase activity by measuring [
<sup>3</sup>
H]GTP incorporation using a poly(rC) template. Nsp8 polymerase specific activity is represented as follows: empty lozenge (◊); 100% activity relative to nsp8 wt; black lozenge (⧫), between 12 and 40% activity and; asterisk (∗), less than 4% activity (see
<xref rid="embj7601368-sup-0003" ref-type="supplementary-material">Supplementary Figure 3</xref>
for precise values).</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="EMBJ-25-4933-g005"></graphic>
</fig>
</sec>
<sec id="embj7601368-sec-0008">
<title>A structure‐ and activity‐based model of nsp8 RdRp</title>
<p>The crystal structure of nsp8 in complex with nsp7 has been determined recently (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
). Nsp8 and nsp7 form a hexadecameric toron structure able to encircle and bind RNA as judged by both the presence of a strong positive charge in the inner channel and biochemical assays. Nsp7 is thought to play the role of a mortar, bringing cohesive force to the complex with no obvious role in RNA binding (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
). All conserved nsp8 residues, which are essential for the RdRp activity, are located on the second large alpha helix (
<xref rid="embj7601368-fig-0001" ref-type="fig">Figure 1</xref>
) with residues Lys‐58 and Arg‐75 surrounding, but slightly outside the channel. These residues were implicated in RNA binding. The essential residues map to a dimeric nsp8, which is part of two equivalent dimers in the hexadecameric nsp8/nsp7 complex.</p>
<p>Interestingly, the comparison of the folding of the head domain of nsp8 (corresponding to the most C‐terminal 99 aa residues) shows similarity to a family of the RNA‐binding domains (RBD) (
<xref rid="embj7601368-sup-0004" ref-type="supplementary-material">Supplementary Figure 4</xref>
) (
<xref rid="embj7601368-bib-0030" ref-type="ref">Krissinel and Henrick, 2004</xref>
). This family is characterized by the two ssRNA recognition motifs Rnp1 and Rnp2 (
<xref rid="embj7601368-bib-0034" ref-type="ref">Maris
<italic>et al</italic>
, 2005</xref>
). These motifs are composed of mainly hydrophobic and positively charged residues. Both the RBD and the head of nsp8 are folded into an α/β sandwich. The structure of the heterogeneous nuclear ribonucleoprotein D (hnRNP D), belonging to the RBD family, was solved in complex with ssRNA by NMR (
<xref rid="embj7601368-bib-0016" ref-type="ref">Enokizono
<italic>et al</italic>
, 2005</xref>
). Identical connectivity and sequential arrangement of secondary structural elements are also conserved in the RdRp palm subdomain (containing catalytic Asp residues in the GDD motif) (
<xref rid="embj7601368-bib-0024" ref-type="ref">Hansen
<italic>et al</italic>
, 1997</xref>
) (
<xref rid="embj7601368-sup-0005" ref-type="supplementary-material">Supplementary Figure 5</xref>
), providing evolutionary hints about a possible nsp8 origin (see Discussion).</p>
<p>Altogether, we can thus propose a model for a quaternary initiation complex involving two monomers of the nsp8 protein, an ssRNA template (5′‐UAGC‐3′) and the first two complementary nucleotides incorporated (GTP and CTP). We have superimposed the RNP motifs of nsp8 head domain onto the RNP motifs of hnRNP D. In this superimposition, the ssRNA is stacked by the hydrophobic surface of the two RNP motifs and points towards the inner part of the hexadecamer channel (
<xref rid="embj7601368-fig-0006" ref-type="fig">Figure 6B</xref>
). Thus, while an nsp8 molecule of the hexadecamer stacks the RNA template (
<xref rid="embj7601368-fig-0006" ref-type="fig">Figure 6A</xref>
, represented in black), a second is able to bind the nascent primer. Then, the two first NTPs incorporated (GTP in +1 and CTP in +2) are bound to two strictly conserved basic residues Arg‐75 and Lys‐82 present on the second nsp8 molecule (
<xref rid="embj7601368-fig-0006" ref-type="fig">Figure 6A</xref>
, represented in clear gray). The positioning of the GTP primer against the helix implies that triphosphated dimers and longer primers would not fit into the active site, consistent with the fact that they are not elongated.</p>
<fig fig-type="Figure" xml:lang="en" id="embj7601368-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Model of two monomers of the nsp8 protein in complex with an ssRNA template (5′‐UAGC‐3′) and two nucleotides (GTP and CTP). RNA template, GTP and CTP are shown by a stick model. (
<bold>A</bold>
) The amino‐acid residues related to null mutants, Lys‐58 and Arg‐75, are represented in yellow. The two first NTPs incorporated (GTP in +1 and CTP in +2) are indicated. Discontinuous purple line represents distance between GTP 3′‐OH (incorporated nucleotide in position +1) and α‐phosphate of CTP (incorporated nucleotide in +2 position), estimated to 3.8 Å. (
<bold>B</bold>
) The surface is colored according to the electrostatic potential nomenclature (blue, positive charge; red, negative charge). Images were generated using PYMOL.</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="EMBJ-25-4933-g006"></graphic>
</fig>
</sec>
</sec>
<sec id="embj7601368-sec-0009">
<title>Discussion</title>
<p>Many genetic and mechanistic features distinguish the coronavirus replication machinery among those encoded by other RNA viruses. We have now discovered a second RdRp in SARS‐CoV, the first of this kind in RNA viruses, thus providing further evidence for the unprecedented sophistication of the replication complex in coronaviruses. In the context of other data accumulated in the field, the described nsp8 RdRp properties indicate that this enzyme may catalyze the synthesis of RNA primers for the primer‐dependent nsp12 RdRp. Although primers are used in genome replication by numerous RNA viruses, coronaviruses may be unique in evolving a specialized RNA enzyme for primer synthesis (primase).</p>
<p>It was previously shown that the RdRp domain of coronaviruses is evolutionary clustered with RdRps of (+) RNA viruses that may use a protein (VPg‐like) for priming RNA synthesis (
<xref rid="embj7601368-bib-0021" ref-type="ref">Gorbalenya
<italic>et al</italic>
, 1989</xref>
;
<xref rid="embj7601368-bib-0029" ref-type="ref">Koonin, 1991</xref>
). These RdRps are distinguished by the presence of the G sequence motif that was implicated in the primer/template recognition (
<xref rid="embj7601368-bib-0022" ref-type="ref">Gorbalenya
<italic>et al</italic>
, 2002</xref>
). Relevance of these observations for coronaviruses may be linked to the finding that the SARS‐CoV nsp12 RdRp is active,
<italic>in vitro</italic>
, using a poly(rA)/oligo(dT)
<sub>12−18</sub>
primer‐template (
<xref rid="embj7601368-bib-0009" ref-type="ref">Cheng
<italic>et al</italic>
, 2005</xref>
). Since coronaviruses may not produce VPg, the identity of a primer and the mechanism of its generation have remained unresolved for these viruses. Besides VPg, cellular RNA molecules are recruited by some RNA viruses to prime polynucleotide synthesis in either replication or transcription of the genome. This strategy was adopted by influenza viruses and retroviruses, which either hijack a piece of a cellular mRNA (
<xref rid="embj7601368-bib-0038" ref-type="ref">Plotch
<italic>et al</italic>
, 1981</xref>
) or use a tRNA (
<xref rid="embj7601368-bib-0033" ref-type="ref">Mak and Kleiman, 1997</xref>
), respectively, as a primer. We propose that coronaviruses have evolved another strategy to produce primers, which may use the newly identified nsp8 RdRp as the primase.</p>
<p>In the DNA world, primases are ubiquitous and it may be instructive to compare the nsp8 RdRp with these enzymes. The general function of a DNA primase is to synthesize an RNA primer on a DNA template. In most viruses and cellular organisms that replicate their genomes through semidiscontinuous DNA synthesis, DNA‐dependent DNA polymerase (DdDp) recognizes the primer/template complex to extend the primer‐initiated synthesis of the complementary DNA strand (
<xref rid="embj7601368-bib-0017" ref-type="ref">Frick and Richardson, 2001</xref>
). In comparison to other template‐dependent DNA and RNA polymerases, fidelity is of a less importance for DNA‐dependent primases. Subsequent to the primer utilization in DNA synthesis, the RNA primer is removed and a gap in the nascent DNA is sealed with newly generated DNA by several enzymes including a high‐fidelity DdDp.</p>
<p>In coronaviruses, the replication complex is yet to be characterized in sufficient details
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(
<xref rid="embj7601368-bib-0050" ref-type="ref">Ziebuhr, 2005</xref>
). Recent analysis indicates that it is likely to include virus‐encoded RNA processing enzymes ExoN (nsp14), EndoU (nsp15), and a putative ribose‐2′‐
<italic>O</italic>
‐methyltransferase (nsp16) (
<xref rid="embj7601368-bib-0043" ref-type="ref">Snijder
<italic>et al</italic>
, 2003</xref>
;
<xref rid="embj7601368-bib-0003" ref-type="ref">Bhardwaj
<italic>et al</italic>
, 2004</xref>
;
<xref rid="embj7601368-bib-0026" ref-type="ref">Ivanov
<italic>et al</italic>
, 2004a</xref>
;
<xref rid="embj7601368-bib-0050" ref-type="ref">Ziebuhr, 2005</xref>
;
<xref rid="embj7601368-bib-0035" ref-type="ref">Minskaia
<italic>et al</italic>
, 2006</xref>
), which could excise primers synthesized by the low‐fidelity nsp8 RdRp (with a misincorporation rate of 1/10 as a lower limit). This excision could be part of the methyl directed‐mismatch repair activity that is worth further testing. Similarly to the
<italic>E. coli</italic>
and eukaryotic primases, the nsp8 RdRp exhibits a limited processivity. The prokaryotic DNA primases (i.e., from the
<italic>E. coli DnaG</italic>
family) generally recognize specific sequences on the template (
<xref rid="embj7601368-bib-0047" ref-type="ref">Yoda
<italic>et al</italic>
, 1988</xref>
), while eukaryotic primases are sequence‐independent (
<xref rid="embj7601368-bib-0006" ref-type="ref">Bullock
<italic>et al</italic>
, 1994</xref>
). The SARS‐CoV nsp8 revealed marked sequence preferences and, like cellular primases, RNA synthesis starts with a purine residue. Once the nsp8/RNA/nucleotides ternary complex has been formed, a rate‐limiting step occurs before or during dinucleotide synthesis, a feature that is also common for cellular primases. In our hands, nsp8 and the purified nsp7–nsp8 complex exhibit comparable activities (not shown). The only noticeable biochemical difference between nsp8 and the nsp8–nsp7 complex, which may be the functional form of the nsp8 RdRp, is a relatively poor thermal stability of nsp8 (data not shown). Remarkably, this property was predicted upon examination of the crystal structure of the nsp8–nsp7 complex by
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
(2005)</xref>
, who described nsp7 as a ‘mortar’ protein.</p>
<p>Little is known about the initiation of RNA synthesis in coronaviruses although terminal sequences were implicated in the control of the process (
<xref rid="embj7601368-bib-0031" ref-type="ref">Lai and Cavanagh, 1997</xref>
). Depending on the polarity, plus or minus, and the size, genome or subgenome, single‐stranded RNAs, partial single‐stranded RNAs (known as replicative intermediates) and double‐stranded RNAs (replicative forms) appear to serve as templates. The apparent complexity of the RNA synthesis may accommodate the postulated primase activity in different ways and the dissection of this aspect requires further analysis.</p>
<p>We note here that the sequence specificity of the nsp8 RdRp is not stringent and, potentially, this enzyme could initiate RNA synthesis at numerous internal places at the genome or its complement that would also be reminiscent of the
<italic>modus operandi</italic>
of cellular primases. In this way, the giant genome of coronaviruses could replicate much faster and, possibly, more accurately than it would otherwise using a single 5′‐terminal primer. These properties could form a basis that has driven the origin of the primase in the coronavirus evolution.</p>
<p>The identification of nsp8 as a potential primase should facilitate developing functional assays for studying the replicase machinery
<italic>in vitro</italic>
. Our preliminary results show that in agreement with the reported results and the proposed model, purified nsp8 and nsp12 interact in GST‐pull down experiments (Imbert
<italic>et al</italic>
, unpublished data). The 3‐ to 5‐fold excess of the nsp8 synthesis relative to nsp12, due to downregulation of the latter by frameshifting (
<xref rid="embj7601368-bib-0004" ref-type="ref">Brierley, 1995</xref>
;
<xref rid="embj7601368-bib-0045" ref-type="ref">Thiel
<italic>et al</italic>
, 2003</xref>
), seems to be used to build the nsp7/nsp8 octamer complex containing four nsp8 subunits (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
). Consequently, equimolar stoichometric ratio between interacting nsp8 and nsp12 species may be maintained in the infected cell. The nsp8 has a unique bi‐domain structure that is different from those of prokaryotic and eukaryotic primases. Its C‐terminal domain has a fold also found both in a diverse family of RNA‐binding proteins and the catalytic palm‐subdomain of RdRps (
<xref rid="embj7601368-bib-0024" ref-type="ref">Hansen
<italic>et al</italic>
, 1997</xref>
; see
<xref rid="embj7601368-sup-0005" ref-type="supplementary-material">Supplementary Figure 5</xref>
). This finding indicates that the nsp8 RdRp and nsp12 RdRp may have originated from a common ancestor, possibly through a duplication during evolution leading to the emergence of the ancestral virus of the
<italic>Coronaviridae</italic>
family. Previously, duplications of PLpro and Mpro were implicated in the evolution of the coronavirus proteome (
<xref rid="embj7601368-bib-0052" ref-type="ref">Ziebuhr
<italic>et al</italic>
, 2001</xref>
).</p>
<p>The eight most conserved residues are distributed between the two domains of nsp8. Three polar and essential residues, Lys‐58, Lys‐82 and Ser‐85, which may be part of the catalytic residues network for the phosphoryl transfer reaction, are located in the N‐terminal domain. As in the case of the coronavirus Mn
<sup>2+</sup>
‐dependent endonuclease nsp15, the metal‐ion dependence in catalysis remains undefined and is unlikely to be promoted by acidic residues. However, our tertiary structure modeling analysis further suggests that the highly conserved Trp‐182 in the C‐terminal domain (head domain) is close to the α‐phosphate of the +2 nucleotide and might be involved in Mn
<sup>2+</sup>
coordination promoting metal‐based nucleophilic activation at the phosphorus center. Indeed, such interaction between aromatic residues and cation, termed cation‐π (
<xref rid="embj7601368-bib-0010" ref-type="ref">Dougherty, 1996</xref>
), have been described as a non‐covalent bonding interaction relevant for molecular recognition and catalysis (
<xref rid="embj7601368-bib-0048" ref-type="ref">Zaric
<italic>et al</italic>
, 2000</xref>
). A role for Trp‐182 in catalysis is consistent with the fact that in the putative torovirus ortholog, the residue is also an aromatic residue (Tyr). Regardless of the precise composition of the catalytic center of nsp8, it differs from that conserved in the nsp12 RdRp, impeding to determine undoubtedly if these two RdRps have been acquired independently or have diverged profoundly.</p>
</sec>
<sec id="embj7601368-sec-0010">
<title>Materials and methods</title>
<sec id="embj7601368-sec-0011">
<title>Materials and reagents</title>
<p>RNA oligonucleotides were obtained from Dharmacon. DNA oligonucleotides were obtained from Invitrogen. A 373‐nt template corresponding to nt 13905‐14278 of the SARS‐CoV genome (strain Frankfurt, GenBank Accession No. AY291315) was produced using an
<italic>in vitro</italic>
T7 transcription kit, and purified as described by the manufacturer (Ambion Inc.). Homopolymeric cytosine template (poly(rC)), 15‐mers cytosine RNA oligonucleotide (oligo (rC
<sub>15</sub>
)), α‐
<sup>32</sup>
P‐labeled guanosine 5′‐triphosphate (3000 Ci/mmol), α‐
<sup>32</sup>
P‐labeled cytosine 5′‐triphosphate (3000 Ci/mmol), uniformly labeled [
<sup>3</sup>
H]GTP (5.20 Ci/mmol) and nucleosides 5′ triphosphate were purchased from Amersham Biosciences. Nucleosides analogs 3′‐deoxy GTP, 2′‐
<italic>O</italic>
‐methyl‐GTP and di‐deoxy‐GTP were purchased from Trilink, Inc. RNA molecular weight markers were synthesized as described in
<xref rid="embj7601368-bib-0013" ref-type="ref">Dutartre
<italic>et al</italic>
(2005)</xref>
. HCV NS5B and NS5 Dengue polymerases were purified as in (
<xref rid="embj7601368-bib-0041" ref-type="ref">Selisko
<italic>et al</italic>
, 2006</xref>
).</p>
</sec>
<sec id="embj7601368-sec-0012">
<title>SARS nsp8 plasmid constructions, E. coli protein expression and purification</title>
<p>The SARS‐CoV nsp8 coding sequence was amplified by PCR from the cDNA prepared as previously described (
<xref rid="embj7601368-bib-0012" ref-type="ref">Drosten
<italic>et al</italic>
, 2003</xref>
). The cDNA was then subcloned in the pDest14 plasmid (Invitrogen) in a manner analogous as nsp9 described in
<xref rid="embj7601368-bib-0007" ref-type="ref">Campanacci
<italic>et al</italic>
(2003)</xref>
. The ORF of the final construct (referred to as nsp8) encoded an N‐terminally 6 His‐tag. This construct was mutated using the QuikChange site‐directed mutagenesis kit, according to the manufacturer's instruction (Stratagene). All constructions were verified by DNA sequencing (Millegen, France). Proteins expression and purification were performed as described (
<xref rid="embj7601368-bib-0007" ref-type="ref">Campanacci
<italic>et al</italic>
, 2003</xref>
). Proteins were homogenous as judged by SDS‐PAGE (see
<xref rid="embj7601368-sup-0001" ref-type="supplementary-material">Supplementary Figure 1A</xref>
). They were concentrated to 5 mg/ml and stored in 50% glycerol at −20°C. Recombinant proteins were characterized by dynamic light scattering and circular dichroism spectra, which were undistinguishable from wt nsp8. Enzyme concentrations were determined using UV
<sub>λ280</sub>
absorbance. No attempts were made to determine the proportion of active enzyme (enzyme active site concentration).</p>
</sec>
<sec id="embj7601368-sec-0013">
<title>Nsp8‐mediated steady‐state incorporation of nucleotide using RNA templates</title>
<p>Polymerase activity was assayed by monitoring the incorporation of radiolabeled guanosine using either oligoribonucleotide or polycytosine (poly(rC)) templates. All indicated concentrations are final. The reaction was performed in an optimized polymerase buffer made of 50 mM Tris pH 7.5, 10 mM KCl, 4 mM MgCl
<sub>2</sub>
, 1 mM MnCl
<sub>2</sub>
, 10 mM dithiothreitol, 1% Triton X‐100 containing 10 μM of [α‐
<sup>32</sup>
P]GTP. The templates were either 10 μM RNA oligonucleotide, 1 μM poly(rC). Reactions were initiated by the addition of 1 μM purified nsp8 and incubated at 30°C. Aliquots were withdrawn over time from 10 s to 2 h and the reaction was stopped by the addition of EDTA/Formamide. Reaction products were separated using sequencing gel electrophoresis (14% acrylamide, 7 M urea in TTE buffer (89 mM Tris, 28 mM taurine, 0.5 mM EDTA)) and quantitated using photo‐stimulated plates and a FujiImager (Fuji). In some instances, nsp8 activity was quantitated using a filter paper binding assay. Reactions were initiated by the addition of 1 μM nsp8 in polymerase buffer containing 1 μM poly(rC) template, 0.1 mM [
<sup>3</sup>
H]GTP (0.5 μCi), in the same buffer as above, incubated at 30°C, and stopped by spotting aliquots onto DE‐81 paper discs (Whatman International Ltd). Filter paper discs were washed three times for 10 min in 0.3 M ammonium formate, pH 8.0, washed two times in ethanol, and dried. The radioactivity bound to the filter was determined using liquid scintillation counting. Under these conditions, the nsp8 specific activity was consistently in the vicinity of 62 c.p.m. min
<sup>−1</sup>
.</p>
</sec>
<sec id="embj7601368-sec-0014">
<title>Steady‐state kinetic studies</title>
<p>To determine the
<italic>K</italic>
<sub>m</sub>
and
<italic>V</italic>
<sub>max</sub>
for CTP incorporation by nsp8, the RNA 5′‐UAUAAGCCAAAA‐3′ template (10 μM) was mixed in polymerase buffer with 1 μM nsp8. The reaction was started by the addition of 10 μM [α‐
<sup>32</sup>
P]GTP and increasing concentration of CTP (1, 5, 10, 50, 75, 100, 300 and 500 μM). To determine the
<italic>K</italic>
<sub>m</sub>
and
<italic>V</italic>
<sub>max</sub>
for the incorporation of ATP, RNA 5′‐UAUAGUCCCAAA‐3′ was incubated with 10 μM [α‐
<sup>32</sup>
P]GTP and increasing concentration of ATP (1, 5, 10, 50, 75, 100, 300 and 500 μM). Finally, the
<italic>K</italic>
<sub>m</sub>
and
<italic>V</italic>
<sub>max</sub>
for GTP incorporation was determined using RNA 5′‐UAUAGUCCCAAA‐3′ template incubated with 10 μM [α‐
<sup>32</sup>
P]CTP and increasing concentration of GTP (1, 5, 10, 50, 75, 100, 300 and 500 μM). The reactions were incubated at 30°C for 15, 30, 60 and 120 min. Aliquots were withdrawn during the time course of the reaction, and the reactions were quenched with EDTA/formamide. Products were separated using sequencing gel electrophoresis and quantified using photo‐stimulated plates and a FujiImager (Fuji). Product formation was represented by the hyperbolic equation describing
<italic>V</italic>
<sub>i</sub>
dependence on NTP concentration</p>
<p>
<inline-graphic xlink:href="EMBJ-25-4933-e001.jpg" xlink:title="equation image"></inline-graphic>
</p>
<p>where
<italic>V</italic>
<sub>max</sub>
and
<italic>K</italic>
<sub>m</sub>
are the maximal velocity and the affinity constant of NTP incorporation by nsp8, respectively.
<italic>V</italic>
<sub>max</sub>
and
<italic>K</italic>
<sub>m</sub>
were determinated from curve‐fitting using KaleidaGraph (Synergy Software).</p>
</sec>
<sec id="embj7601368-sec-0015">
<title>Fold comparison</title>
<p>The fold comparison was performed using the SSM server (protein structure comparison service SSM at European Bioinformatics Institute,
<ext-link ext-link-type="uri" xlink:href="http://www.ebi.ac.uk/msd-srv/ssm">http://www.ebi.ac.uk/msd-srv/ssm</ext-link>
) with a truncated form of nsp8 termed ‘head’ domain (corresponding to the C‐terminal 99 a.a.). The superimposition between the head of nsp8 and a member of the RBD, the C‐terminal of CstF‐64 (PDB code: 1p1t) (
<xref rid="embj7601368-bib-0037" ref-type="ref">Perez Canadillas and Varani, 2003</xref>
) shows a global RMSD of 2.8 Å. However, the RMSD calculated only for the two motifs is about 1 Å for RNP2 and 1.9 Å for RNP1 (
<xref rid="embj7601368-sup-0004" ref-type="supplementary-material">Supplementary Figure 4</xref>
). We also performed a structural alignment with different RNP members to check the correlation between the existence of the RNP motifs and the position in the structure. This alignment was carried out using MUSCLE (
<xref rid="embj7601368-bib-0014" ref-type="ref">Edgar, 2004</xref>
). Then, the alignment was analyzed and optimized with SeaView (
<xref rid="embj7601368-bib-0018" ref-type="ref">Galtier
<italic>et al</italic>
, 1996</xref>
), taking into account the secondary structure from the high‐resolution models.</p>
</sec>
<sec id="embj7601368-sec-0016">
<title>Modeling</title>
<p>The crystal structure of the nsp8 hexadecamer (
<xref rid="embj7601368-bib-0049" ref-type="ref">Zhai
<italic>et al</italic>
, 2005</xref>
) was submitted to 30 cycles of rigid body and 100 cycles of conjugate gradient with CNS (
<xref rid="embj7601368-bib-0005" ref-type="ref">Brunger
<italic>et al</italic>
, 1998</xref>
). Based on the structural alignment (
<xref rid="embj7601368-sup-0004" ref-type="supplementary-material">Supplementary Figure 4</xref>
), we have generated a superimposition between hnRNP D with its ssRNA (PDB: 1wtb) (
<xref rid="embj7601368-bib-0016" ref-type="ref">Enokizono
<italic>et al</italic>
, 2005</xref>
) and the head of one nsp8 monomer. Then, the position of the ssRNA was manually adjusted using Coot (
<xref rid="embj7601368-bib-0015" ref-type="ref">Emsley and Cowtan, 2004</xref>
) to avoid steric clash and to correct the direction of the ssRNA backbone to point out towards the central cavity of the hexadecamer. Another minimization cycle was performed taking into account the presence of the RNA template (as described above). To model the initiation state of nsp8, we docked the first two nucleotides base pair complementary (GTP in +1 and CTP in +2) to the ssRNA template. These two nucleotides are the first two to be incorporated in the nascent RNA chain. These two nucleotides of the new strand were manually docked on the top of the head respecting Watson and Crick base pairing dictated by the template. A last round of energy minimization was performed on this quaternary structure (primase/template/incorporated nucleotides).</p>
</sec>
<sec id="embj7601368-sec-0017">
<title>Supplementary data</title>
<p>Supplementary data are available at
<italic>The EMBO Journal</italic>
Online (
<ext-link ext-link-type="uri" xlink:href="http://www.embojournal.org">http://www.embojournal.org</ext-link>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="embj7601368-sup-0001">
<caption>
<p>Supplementary Figure 1</p>
</caption>
<media xlink:href="EMBJ-25-4933-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="embj7601368-sup-0002">
<caption>
<p>Supplementary Figure 2</p>
</caption>
<media xlink:href="EMBJ-25-4933-s002.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="embj7601368-sup-0003">
<caption>
<p>Supplementary Figure 3</p>
</caption>
<media xlink:href="EMBJ-25-4933-s003.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="embj7601368-sup-0004">
<caption>
<p>Supplementary Figure 4</p>
</caption>
<media xlink:href="EMBJ-25-4933-s004.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="embj7601368-sup-0005">
<caption>
<p>Supplementary Figure 5</p>
</caption>
<media xlink:href="EMBJ-25-4933-s005.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="embj7601368-sec-0018">
<title>Acknowledgements</title>
<p>We thank Hélène Dutartre for stimulating discussions and critical reading of the manuscript; Arnaud Gruez for helpful advice, Claire Debarnot and Sacha Grisel for excellent technical assistance. We acknowledge Eric J Snijder, Christian Cambillau, Valérie Campanacci and Sonia Longhi for materials and their help in the initial phase of the project. This work was supported by the Structural Proteomics in Europe (SPINE) Project of the European Union 5th framework research program (Grant QLRT‐2001‐00988) and subsequently by the Euro‐Asian SARS‐DTV Network (SP22‐CT‐2004‐511064) from the European Commission specific research and technological development Programme ‘Integrating and strengthening the European Research area’.</p>
</ack>
<ref-list content-type="cited-references">
<title>References</title>
<ref id="embj7601368-bib-0001">
<mixed-citation publication-type="journal" id="embj7601368-citation-0001">
<string-name>
<surname>Ackermann</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Padmanabhan</surname>
<given-names>R</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>
<italic>De novo</italic>
synthesis of RNA by the dengue virus RNA‐dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>276</volume>
:
<fpage>39926</fpage>
<lpage>39937</lpage>
<pub-id pub-id-type="pmid">11546770</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0053">
<mixed-citation publication-type="journal" id="embj7601368-citation-0053">
<string-name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</string-name>
,
<string-name>
<surname>Madden</surname>
<given-names>TL</given-names>
</string-name>
,
<string-name>
<surname>Schaffer</surname>
<given-names>AA</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>25</volume>
:
<fpage>3389</fpage>
<lpage>3402</lpage>
<pub-id pub-id-type="pmid">9254694</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0002">
<mixed-citation publication-type="journal" id="embj7601368-citation-0002">
<string-name>
<surname>Barrette‐Ng</surname>
<given-names>IH</given-names>
</string-name>
,
<string-name>
<surname>Ng</surname>
<given-names>KK</given-names>
</string-name>
,
<string-name>
<surname>Mark</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Van Aken</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Cherney</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Garen</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Kolodenko</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>James</surname>
<given-names>MN</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Structure of arterivirus nsp4. The smallest chymotrypsin‐like proteinase with an alpha/beta C‐terminal extension and alternate conformations of the oxyanion hole</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>277</volume>
:
<fpage>39960</fpage>
<lpage>39966</lpage>
<pub-id pub-id-type="pmid">12163505</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0054">
<mixed-citation publication-type="journal" id="embj7601368-citation-0054">
<string-name>
<surname>Bateman</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Birney</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Durbin</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Eddy</surname>
<given-names>SR</given-names>
</string-name>
,
<string-name>
<surname>Finn</surname>
<given-names>RD</given-names>
</string-name>
,
<string-name>
<surname>Sonnhammer</surname>
<given-names>EL</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>27</volume>
:
<fpage>260</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="pmid">9847196</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0003">
<mixed-citation publication-type="journal" id="embj7601368-citation-0003">
<string-name>
<surname>Bhardwaj</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Guarino</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Kao</surname>
<given-names>CC</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>12218</fpage>
<lpage>12224</lpage>
<pub-id pub-id-type="pmid">15507608</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0004">
<mixed-citation publication-type="journal" id="embj7601368-citation-0004">
<string-name>
<surname>Brierley</surname>
<given-names>I</given-names>
</string-name>
(
<year>1995</year>
)
<article-title>Ribosomal frameshifting viral RNAs</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>76</volume>
<edition>(Part 8)</edition>
:
<fpage>1885</fpage>
<lpage>1892</lpage>
<pub-id pub-id-type="pmid">7636469</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0005">
<mixed-citation publication-type="journal" id="embj7601368-citation-0005">
<string-name>
<surname>Brunger</surname>
<given-names>AT</given-names>
</string-name>
,
<string-name>
<surname>Adams</surname>
<given-names>PD</given-names>
</string-name>
,
<string-name>
<surname>Clore</surname>
<given-names>GM</given-names>
</string-name>
,
<string-name>
<surname>DeLano</surname>
<given-names>WL</given-names>
</string-name>
,
<string-name>
<surname>Gros</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Grosse‐Kunstleve</surname>
<given-names>RW</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>JS</given-names>
</string-name>
,
<string-name>
<surname>Kuszewski</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Nilges</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Pannu</surname>
<given-names>NS</given-names>
</string-name>
,
<string-name>
<surname>Read</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Rice</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Simonson</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Warren</surname>
<given-names>GL</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Crystallography & NMR system: a new software suite for macromolecular structure determination</article-title>
.
<source xml:lang="en">Acta Crystallogr D</source>
<volume>54</volume>
<edition>(Part 5)</edition>
:
<fpage>905</fpage>
<lpage>921</lpage>
<pub-id pub-id-type="pmid">9757107</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0006">
<mixed-citation publication-type="journal" id="embj7601368-citation-0006">
<string-name>
<surname>Bullock</surname>
<given-names>PA</given-names>
</string-name>
,
<string-name>
<surname>Tevosian</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Jones</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Denis</surname>
<given-names>D</given-names>
</string-name>
(
<year>1994</year>
)
<article-title>Mapping initiation sites for simian virus 40 DNA synthesis events
<italic>in vitro</italic>
</article-title>
.
<source xml:lang="en">Mol Cell Biol</source>
<volume>14</volume>
:
<fpage>5043</fpage>
<lpage>5055</lpage>
<pub-id pub-id-type="pmid">8035788</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0007">
<mixed-citation publication-type="journal" id="embj7601368-citation-0007">
<string-name>
<surname>Campanacci</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Egloff</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Longhi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ferron</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Rancurel</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Salomoni</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Durousseau</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Tocque</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Bremond</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Dobbe</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Canard</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Cambillau</surname>
<given-names>C</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Structural genomics of the SARS coronavirus: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein</article-title>
.
<source xml:lang="en">Acta Crystallogr D</source>
<volume>59</volume>
:
<fpage>1628</fpage>
<lpage>1631</lpage>
<pub-id pub-id-type="pmid">12925794</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0008">
<mixed-citation publication-type="journal" id="embj7601368-citation-0008">
<string-name>
<surname>Castro</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Arnold</surname>
<given-names>JJ</given-names>
</string-name>
,
<string-name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Incorporation fidelity of the viral RNA‐dependent RNA polymerase: a kinetic, thermodynamic and structural perspective</article-title>
.
<source xml:lang="en">Virus Res</source>
<volume>107</volume>
:
<fpage>141</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="pmid">15649560</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0009">
<mixed-citation publication-type="journal" id="embj7601368-citation-0009">
<string-name>
<surname>Cheng</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Arnold</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Sarafianos</surname>
<given-names>SG</given-names>
</string-name>
,
<string-name>
<surname>Ding</surname>
<given-names>J</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Expression, purification, and characterization of SARS coronavirus RNA polymerase</article-title>
.
<source xml:lang="en">Virology</source>
<volume>335</volume>
:
<fpage>165</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="pmid">15840516</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0010">
<mixed-citation publication-type="journal" id="embj7601368-citation-0010">
<string-name>
<surname>Dougherty</surname>
<given-names>DA</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>Cation‐pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp</article-title>
.
<source xml:lang="en">Science</source>
<volume>271</volume>
:
<fpage>163</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="pmid">8539615</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0011">
<mixed-citation publication-type="journal" id="embj7601368-citation-0011">
<string-name>
<surname>Draker</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Roper</surname>
<given-names>RL</given-names>
</string-name>
,
<string-name>
<surname>Petric</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Tellier</surname>
<given-names>R</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>The complete sequence of the bovine torovirus genome</article-title>
.
<source xml:lang="en">Virus Res</source>
<volume>115</volume>
:
<fpage>56</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">16137782</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0012">
<mixed-citation publication-type="journal" id="embj7601368-citation-0012">
<string-name>
<surname>Drosten</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Preiser</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Gunther</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Schmitz</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Severe acute respiratory syndrome: identification of the etiological agent</article-title>
.
<source xml:lang="en">Trends Mol Med</source>
<volume>9</volume>
:
<fpage>325</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="pmid">12928032</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0013">
<mixed-citation publication-type="journal" id="embj7601368-citation-0013">
<string-name>
<surname>Dutartre</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Boretto</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Guillemot</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Canard</surname>
<given-names>B</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>A relaxed discrimination of 2′‐
<italic>O</italic>
‐methyl‐GTP relative to GTP between
<italic>de novo</italic>
and elongative RNA synthesis by the hepatitis C RNA‐dependent RNA polymerase NS5B</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>280</volume>
:
<fpage>6359</fpage>
<lpage>6368</lpage>
<pub-id pub-id-type="pmid">15561709</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0014">
<mixed-citation publication-type="journal" id="embj7601368-citation-0014">
<string-name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>32</volume>
:
<fpage>1792</fpage>
<lpage>1797</lpage>
<pub-id pub-id-type="pmid">15034147</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0015">
<mixed-citation publication-type="journal" id="embj7601368-citation-0015">
<string-name>
<surname>Emsley</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Cowtan</surname>
<given-names>K</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Coot: model‐building tools for molecular graphics</article-title>
.
<source xml:lang="en">Acta Crystallogr D</source>
<volume>60</volume>
:
<fpage>2126</fpage>
<lpage>2132</lpage>
<pub-id pub-id-type="pmid">15572765</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0016">
<mixed-citation publication-type="journal" id="embj7601368-citation-0016">
<string-name>
<surname>Enokizono</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Konishi</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Nagata</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Ouhashi</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Uesugi</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Ishikawa</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Katahira</surname>
<given-names>M</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Structure of hnRNP D complexed with single‐stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>280</volume>
:
<fpage>18862</fpage>
<lpage>18870</lpage>
<pub-id pub-id-type="pmid">15734733</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0055">
<mixed-citation publication-type="journal" id="embj7601368-citation-0055">
<string-name>
<surname>Feder</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Pas</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Wyrwicz</surname>
<given-names>LS</given-names>
</string-name>
,
<string-name>
<surname>Bujnicki</surname>
<given-names>JM</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2′‐
<italic>O</italic>
‐methyltransferases</article-title>
.
<source xml:lang="en">Gene</source>
<volume>302</volume>
:
<fpage>129</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="pmid">12527203</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0017">
<mixed-citation publication-type="journal" id="embj7601368-citation-0017">
<string-name>
<surname>Frick</surname>
<given-names>DN</given-names>
</string-name>
,
<string-name>
<surname>Richardson</surname>
<given-names>CC</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>DNA primases</article-title>
.
<source xml:lang="en">Annu Rev Biochem</source>
<volume>70</volume>
:
<fpage>39</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">11395402</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0018">
<mixed-citation publication-type="journal" id="embj7601368-citation-0018">
<string-name>
<surname>Galtier</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Gouy</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Gautier</surname>
<given-names>C</given-names>
</string-name>
(
<year>1996</year>
)
<article-title>SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny</article-title>
.
<source xml:lang="en">Comput Appl Biosci</source>
<volume>12</volume>
:
<fpage>543</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="pmid">9021275</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0019">
<mixed-citation publication-type="journal" id="embj7601368-citation-0019">
<string-name>
<surname>Gonzalez</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Gomez‐Puertas</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Cavanagh</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae</article-title>
.
<source xml:lang="en">Arch Virol</source>
<volume>148</volume>
:
<fpage>2207</fpage>
<lpage>2235</lpage>
<pub-id pub-id-type="pmid">14579179</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0020">
<mixed-citation publication-type="journal" id="embj7601368-citation-0020">
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Big nidovirus genome. When count and order of domains matter</article-title>
.
<source xml:lang="en">Adv Exp Med Biol</source>
<volume>494</volume>
:
<fpage>1</fpage>
<lpage>17</lpage>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0021">
<mixed-citation publication-type="journal" id="embj7601368-citation-0021">
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Koonin</surname>
<given-names>EV</given-names>
</string-name>
,
<string-name>
<surname>Donchenko</surname>
<given-names>AP</given-names>
</string-name>
,
<string-name>
<surname>Blinov</surname>
<given-names>VM</given-names>
</string-name>
(
<year>1989</year>
)
<article-title>Coronavirus genome: prediction of putative functional domains in the non‐structural polyprotein by comparative amino acid sequence analysis</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>17</volume>
:
<fpage>4847</fpage>
<lpage>4861</lpage>
<pub-id pub-id-type="pmid">2526320</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0022">
<mixed-citation publication-type="journal" id="embj7601368-citation-0022">
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Pringle</surname>
<given-names>FM</given-names>
</string-name>
,
<string-name>
<surname>Zeddam</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Luke</surname>
<given-names>BT</given-names>
</string-name>
,
<string-name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</string-name>
,
<string-name>
<surname>Kalmakoff</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Hanzlik</surname>
<given-names>TN</given-names>
</string-name>
,
<string-name>
<surname>Gordon</surname>
<given-names>KH</given-names>
</string-name>
,
<string-name>
<surname>Ward</surname>
<given-names>VK</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>The palm subdomain‐based active site is internally permuted in viral RNA‐dependent RNA polymerases of an ancient lineage</article-title>
.
<source xml:lang="en">J Mol Biol</source>
<volume>324</volume>
:
<fpage>47</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">12421558</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0023">
<mixed-citation publication-type="journal" id="embj7601368-citation-0023">
<string-name>
<surname>Gosert</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Kanjanahaluethai</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Egger</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Bienz</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
<given-names>SC</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>RNA replication of mouse hepatitis virus takes place at double‐membrane vesicles</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>3697</fpage>
<lpage>3708</lpage>
<pub-id pub-id-type="pmid">11907209</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0024">
<mixed-citation publication-type="journal" id="embj7601368-citation-0024">
<string-name>
<surname>Hansen</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Long</surname>
<given-names>AM</given-names>
</string-name>
,
<string-name>
<surname>Schultz</surname>
<given-names>SC</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Structure of the RNA‐dependent RNA polymerase of poliovirus</article-title>
.
<source xml:lang="en">Structure</source>
<volume>5</volume>
:
<fpage>1109</fpage>
<lpage>1122</lpage>
<pub-id pub-id-type="pmid">9309225</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0025">
<mixed-citation publication-type="journal" id="embj7601368-citation-0025">
<string-name>
<surname>Hauschka</surname>
<given-names>PV</given-names>
</string-name>
(
<year>1973</year>
)
<article-title>Analysis of nucleotide pools in animal cells</article-title>
.
<source xml:lang="en">Methods Cell Biol</source>
<volume>7</volume>
:
<fpage>361</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="pmid">4592524</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0026">
<mixed-citation publication-type="journal" id="embj7601368-citation-0026">
<string-name>
<surname>Ivanov</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Hertzig</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Rozanov</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Bayer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
(
<year>1994a</year>
)
<article-title>Major genetic marker of nidoviruses encodes a replicative endoribonuclease</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>101</volume>
:
<fpage>12694</fpage>
<lpage>12699</lpage>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0027">
<mixed-citation publication-type="journal" id="embj7601368-citation-0027">
<string-name>
<surname>Ivanov</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Dobbe</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>van der Meer</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
(
<year>1994b</year>
)
<article-title>Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>5619</fpage>
<lpage>5632</lpage>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0028">
<mixed-citation publication-type="journal" id="embj7601368-citation-0028">
<string-name>
<surname>Kao</surname>
<given-names>CC</given-names>
</string-name>
,
<string-name>
<surname>Singh</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Ecker</surname>
<given-names>DJ</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>
<italic>De novo</italic>
initiation of viral RNA‐dependent RNA synthesis</article-title>
.
<source xml:lang="en">Virology</source>
<volume>287</volume>
:
<fpage>251</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">11531403</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0029">
<mixed-citation publication-type="journal" id="embj7601368-citation-0029">
<string-name>
<surname>Koonin</surname>
<given-names>EV</given-names>
</string-name>
(
<year>1991</year>
)
<article-title>The phylogeny of RNA‐dependent RNA polymerases of positive‐strand RNA viruses</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>72</volume>
<edition>(Part 9)</edition>
:
<fpage>2197</fpage>
<lpage>2206</lpage>
<pub-id pub-id-type="pmid">1895057</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0030">
<mixed-citation publication-type="journal" id="embj7601368-citation-0030">
<string-name>
<surname>Krissinel</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Henrick</surname>
<given-names>K</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Secondary‐structure matching (SSM), a new tool for fast protein structure alignment in three dimensions</article-title>
.
<source xml:lang="en">Acta Crystallogr D</source>
<volume>60</volume>
:
<fpage>2256</fpage>
<lpage>2268</lpage>
<pub-id pub-id-type="pmid">15572779</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0031">
<mixed-citation publication-type="journal" id="embj7601368-citation-0031">
<string-name>
<surname>Lai</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Cavanagh</surname>
<given-names>D</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>The molecular biology of coronaviruses</article-title>
.
<source xml:lang="en">Adv Virus Res</source>
<volume>48</volume>
:
<fpage>1</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="pmid">9233431</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0032">
<mixed-citation publication-type="journal" id="embj7601368-citation-0032">
<string-name>
<surname>Lai</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Holmes</surname>
<given-names>KV</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Coronaviruses</article-title>
.In
<source xml:lang="en">Field's Virology</source>
,Knipe DM, Howley PM (eds), Vol. 1, pp.
<fpage>1163</fpage>
<lpage>1185</lpage>
. Lippincott Williams & Wilkins: Philadelphia, PA</mixed-citation>
</ref>
<ref id="embj7601368-bib-0033">
<mixed-citation publication-type="journal" id="embj7601368-citation-0033">
<string-name>
<surname>Mak</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Kleiman</surname>
<given-names>L</given-names>
</string-name>
(
<year>1997</year>
)
<article-title>Primer tRNAs for reverse transcription</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>71</volume>
:
<fpage>8087</fpage>
<lpage>8095</lpage>
<pub-id pub-id-type="pmid">9343157</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0034">
<mixed-citation publication-type="journal" id="embj7601368-citation-0034">
<string-name>
<surname>Maris</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Dominguez</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Allain</surname>
<given-names>FH</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>The RNA recognition motif, a plastic RNA‐binding platform to regulate post‐transcriptional gene expression</article-title>
.
<source xml:lang="en">FEBS J</source>
<volume>272</volume>
:
<fpage>2118</fpage>
<lpage>2131</lpage>
<pub-id pub-id-type="pmid">15853797</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0035">
<mixed-citation publication-type="journal" id="embj7601368-citation-0035">
<string-name>
<surname>Minskaia</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Hertzig</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Campanacci</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Cambillau</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Canard</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis</article-title>
.
<source xml:lang="en">Proc Natl Acad Sci USA</source>
<volume>103</volume>
:
<fpage>5108</fpage>
<lpage>5113</lpage>
<pub-id pub-id-type="pmid">16549795</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0036">
<mixed-citation publication-type="journal" id="embj7601368-citation-0036">
<string-name>
<surname>Paul</surname>
<given-names>AV</given-names>
</string-name>
,
<string-name>
<surname>van Boom</surname>
<given-names>JH</given-names>
</string-name>
,
<string-name>
<surname>Filippov</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Wimmer</surname>
<given-names>E</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Protein‐primed RNA synthesis by purified poliovirus RNA polymerase</article-title>
.
<source xml:lang="en">Nature</source>
<volume>393</volume>
:
<fpage>280</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="pmid">9607767</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0037">
<mixed-citation publication-type="journal" id="embj7601368-citation-0037">
<string-name>
<surname>Perez Canadillas</surname>
<given-names>JM</given-names>
</string-name>
,
<string-name>
<surname>Varani</surname>
<given-names>G</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Recognition of GU‐rich polyadenylation regulatory elements by human CstF‐64 protein</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>22</volume>
:
<fpage>2821</fpage>
<lpage>2830</lpage>
<pub-id pub-id-type="pmid">12773396</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0038">
<mixed-citation publication-type="journal" id="embj7601368-citation-0038">
<string-name>
<surname>Plotch</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Bouloy</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Ulmanen</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Krug</surname>
<given-names>RM</given-names>
</string-name>
(
<year>1981</year>
)
<article-title>A unique cap(m7GpppXm)‐dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription</article-title>
.
<source xml:lang="en">Cell</source>
<volume>23</volume>
:
<fpage>847</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="pmid">6261960</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0039">
<mixed-citation publication-type="journal" id="embj7601368-citation-0039">
<string-name>
<surname>Prentice</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>McAuliffe</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Lu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Denison</surname>
<given-names>MR</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>78</volume>
:
<fpage>9977</fpage>
<lpage>9986</lpage>
<pub-id pub-id-type="pmid">15331731</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0040">
<mixed-citation publication-type="journal" id="embj7601368-citation-0040">
<string-name>
<surname>Ranjith‐Kumar</surname>
<given-names>CT</given-names>
</string-name>
,
<string-name>
<surname>Gutshall</surname>
<given-names>L</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>MJ</given-names>
</string-name>
,
<string-name>
<surname>Sarisky</surname>
<given-names>RT</given-names>
</string-name>
,
<string-name>
<surname>Kao</surname>
<given-names>CC</given-names>
</string-name>
(
<year>2002</year>
)
<article-title>Requirements for
<italic>de novo</italic>
initiation of RNA synthesis by recombinant flaviviral RNA‐dependent RNA polymerases</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>76</volume>
:
<fpage>12526</fpage>
<lpage>12536</lpage>
<pub-id pub-id-type="pmid">12438578</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0041">
<mixed-citation publication-type="journal" id="embj7601368-citation-0041">
<string-name>
<surname>Selisko</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Dutartre</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Guillemot</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Debarnot</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Benarroch</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Khromykh</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Despres</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Egloff</surname>
<given-names>MP</given-names>
</string-name>
,
<string-name>
<surname>Canard</surname>
<given-names>B</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Comparative mechanistic studies of
<italic>de novo</italic>
RNA synthesis by flavivirus RNA‐dependent RNA polymerases</article-title>
.
<source xml:lang="en">Virology</source>
<volume>351</volume>
:
<fpage>145</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">16631221</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0042">
<mixed-citation publication-type="journal" id="embj7601368-citation-0042">
<string-name>
<surname>Siddell</surname>
<given-names>SG</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Coronaviruses, Toroviruses, and Arteriviruses</article-title>
. In
<source xml:lang="en">Hodder Arnold</source>
, In: Mahy BWJ, ter Meulen J (eds), pp
<fpage>823</fpage>
<lpage>856</lpage>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0043">
<mixed-citation publication-type="journal" id="embj7601368-citation-0043">
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Bredenbeek</surname>
<given-names>PJ</given-names>
</string-name>
,
<string-name>
<surname>Dobbe</surname>
<given-names>JC</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>LL</given-names>
</string-name>
,
<string-name>
<surname>Guan</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Rozanov</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Spaan</surname>
<given-names>WJ</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Unique and conserved features of genome and proteome of SARS‐coronavirus, an early split‐off from the coronavirus group 2 lineage</article-title>
.
<source xml:lang="en">J Mol Biol</source>
<volume>331</volume>
:
<fpage>991</fpage>
<lpage>1004</lpage>
<pub-id pub-id-type="pmid">12927536</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0044">
<mixed-citation publication-type="journal" id="embj7601368-citation-0044">
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Herold</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Schelle</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Siddell</surname>
<given-names>SG</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Viral replicase gene products suffice for coronavirus discontinuous transcription</article-title>
.
<source xml:lang="en">J Virol</source>
<volume>75</volume>
:
<fpage>6676</fpage>
<lpage>6681</lpage>
<pub-id pub-id-type="pmid">11413334</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0045">
<mixed-citation publication-type="journal" id="embj7601368-citation-0045">
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Ivanov</surname>
<given-names>KA</given-names>
</string-name>
,
<string-name>
<surname>Putics</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Hertzig</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Schelle</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Bayer</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Weissbrich</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Rabenau</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
,
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Mechanisms and enzymes involved in SARS coronavirus genome expression</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>84</volume>
:
<fpage>2305</fpage>
<lpage>2315</lpage>
<pub-id pub-id-type="pmid">12917450</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0046">
<mixed-citation publication-type="journal" id="embj7601368-citation-0046">
<string-name>
<surname>Thompson</surname>
<given-names>AA</given-names>
</string-name>
,
<string-name>
<surname>Peersen</surname>
<given-names>OB</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Structural basis for proteolysis‐dependent activation of the poliovirus RNA‐dependent RNA polymerase</article-title>
.
<source xml:lang="en">EMBO J</source>
<volume>23</volume>
:
<fpage>3462</fpage>
<lpage>3471</lpage>
<pub-id pub-id-type="pmid">15306852</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0047">
<mixed-citation publication-type="journal" id="embj7601368-citation-0047">
<string-name>
<surname>Yoda</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Yasuda</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>XW</given-names>
</string-name>
,
<string-name>
<surname>Okazaki</surname>
<given-names>T</given-names>
</string-name>
(
<year>1988</year>
)
<article-title>RNA‐primed initiation sites of DNA replication in the origin region of bacteriophage lambda genome</article-title>
.
<source xml:lang="en">Nucleic Acids Res</source>
<volume>16</volume>
:
<fpage>6531</fpage>
<lpage>6546</lpage>
<pub-id pub-id-type="pmid">2456527</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0048">
<mixed-citation publication-type="journal" id="embj7601368-citation-0048">
<string-name>
<surname>Zaric</surname>
<given-names>SD</given-names>
</string-name>
,
<string-name>
<surname>Popovic</surname>
<given-names>DM</given-names>
</string-name>
,
<string-name>
<surname>Knapp</surname>
<given-names>EW</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Metal ligand aromatic cation‐pi interactions in metalloproteins: ligands coordinated to metal interact with aromatic residues</article-title>
.
<source xml:lang="en">Chemistry</source>
<volume>6</volume>
:
<fpage>3935</fpage>
<lpage>3942</lpage>
<pub-id pub-id-type="pmid">11126954</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0049">
<mixed-citation publication-type="journal" id="embj7601368-citation-0049">
<string-name>
<surname>Zhai</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>F</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Pang</surname>
<given-names>H</given-names>
</string-name>
,
<string-name>
<surname>Xu</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Bartlam</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rao</surname>
<given-names>Z</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>Insights into SARS‐CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer</article-title>
.
<source xml:lang="en">Nat Struct Mol Biol</source>
<volume>12</volume>
:
<fpage>980</fpage>
<lpage>986</lpage>
<pub-id pub-id-type="pmid">16228002</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0050">
<mixed-citation publication-type="journal" id="embj7601368-citation-0050">
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
(
<year>2005</year>
)
<article-title>The coronavirus replicase</article-title>
.
<source xml:lang="en">Curr Top Microbiol Immunol</source>
<volume>287</volume>
:
<fpage>57</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">15609509</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0051">
<mixed-citation publication-type="journal" id="embj7601368-citation-0051">
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2000</year>
)
<article-title>Virus‐encoded proteinases and proteolytic processing in the Nidovirales</article-title>
.
<source xml:lang="en">J Gen Virol</source>
<volume>81</volume>
:
<fpage>853</fpage>
<lpage>879</lpage>
<pub-id pub-id-type="pmid">10725411</pub-id>
</mixed-citation>
</ref>
<ref id="embj7601368-bib-0052">
<mixed-citation publication-type="journal" id="embj7601368-citation-0052">
<string-name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Thiel</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain‐like proteases that cleave the same peptide bond</article-title>
.
<source xml:lang="en">J Biol Chem</source>
<volume>276</volume>
:
<fpage>33220</fpage>
<lpage>33232</lpage>
<pub-id pub-id-type="pmid">11431476</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:1618104
   |texte=   A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:17024178" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021