Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Is systems biology the key to preventing the next pandemic?

Identifieur interne : 000C13 ( Pmc/Corpus ); précédent : 000C12; suivant : 000C14

Is systems biology the key to preventing the next pandemic?

Auteurs : Jennifer R. Tisoncik ; Sarah E. Belisle ; Deborah L. Diamond ; Marcus J. Korth ; Michael G. Katze

Source :

RBID : PMC:2843927

Abstract

Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic. Effective therapeutics and vaccines are essential to protect against current and future pandemics. The best route to effective therapeutics and vaccines is through a detailed and global view of virus–host interactions that can be achieved using a systems biology approach. Here, we provide our perspective on the role of systems biology in deepening our understanding of virus–host interactions and in improving drug and vaccine development. We offer examples from influenza virus research, as well as from research on other pandemics of our time – HIV/AIDS and HCV – to demonstrate that systems biology offers one possible key to stopping the cycle of viral pandemics.


Url:
DOI: 10.2217/fvl.09.53
PubMed: 20352075
PubMed Central: 2843927

Links to Exploration step

PMC:2843927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Is systems biology the key to preventing the next pandemic?</title>
<author>
<name sortKey="Tisoncik, Jennifer R" sort="Tisoncik, Jennifer R" uniqKey="Tisoncik J" first="Jennifer R" last="Tisoncik">Jennifer R. Tisoncik</name>
</author>
<author>
<name sortKey="Belisle, Sarah E" sort="Belisle, Sarah E" uniqKey="Belisle S" first="Sarah E" last="Belisle">Sarah E. Belisle</name>
</author>
<author>
<name sortKey="Diamond, Deborah L" sort="Diamond, Deborah L" uniqKey="Diamond D" first="Deborah L" last="Diamond">Deborah L. Diamond</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20352075</idno>
<idno type="pmc">2843927</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843927</idno>
<idno type="RBID">PMC:2843927</idno>
<idno type="doi">10.2217/fvl.09.53</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000C13</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000C13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Is systems biology the key to preventing the next pandemic?</title>
<author>
<name sortKey="Tisoncik, Jennifer R" sort="Tisoncik, Jennifer R" uniqKey="Tisoncik J" first="Jennifer R" last="Tisoncik">Jennifer R. Tisoncik</name>
</author>
<author>
<name sortKey="Belisle, Sarah E" sort="Belisle, Sarah E" uniqKey="Belisle S" first="Sarah E" last="Belisle">Sarah E. Belisle</name>
</author>
<author>
<name sortKey="Diamond, Deborah L" sort="Diamond, Deborah L" uniqKey="Diamond D" first="Deborah L" last="Diamond">Deborah L. Diamond</name>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J" last="Korth">Marcus J. Korth</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</analytic>
<series>
<title level="j">Future virology</title>
<idno type="ISSN">1746-0794</idno>
<idno type="eISSN">1746-0808</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic. Effective therapeutics and vaccines are essential to protect against current and future pandemics. The best route to effective therapeutics and vaccines is through a detailed and global view of virus–host interactions that can be achieved using a systems biology approach. Here, we provide our perspective on the role of systems biology in deepening our understanding of virus–host interactions and in improving drug and vaccine development. We offer examples from influenza virus research, as well as from research on other pandemics of our time – HIV/AIDS and HCV – to demonstrate that systems biology offers one possible key to stopping the cycle of viral pandemics.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101278124</journal-id>
<journal-id journal-id-type="pubmed-jr-id">34879</journal-id>
<journal-id journal-id-type="nlm-ta">Future Virol</journal-id>
<journal-title>Future virology</journal-title>
<issn pub-type="ppub">1746-0794</issn>
<issn pub-type="epub">1746-0808</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20352075</article-id>
<article-id pub-id-type="pmc">2843927</article-id>
<article-id pub-id-type="doi">10.2217/fvl.09.53</article-id>
<article-id pub-id-type="manuscript">NIHMS171802</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Is systems biology the key to preventing the next pandemic?</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tisoncik</surname>
<given-names>Jennifer R</given-names>
</name>
<aff id="A1">University of Washington, Department of Microbiology, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6120, Fax: +1 206 732 6056</aff>
<email>tisoncik@u.washington.edu</email>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Belisle</surname>
<given-names>Sarah E</given-names>
</name>
<aff id="A2">University of Washington, Department of Microbiology, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6119, Fax: +1 206 732 6056</aff>
<email>sbelisle@u.washington.edu</email>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Diamond</surname>
<given-names>Deborah L</given-names>
</name>
<aff id="A3">University of Washington, Department of Microbiology, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6047, Fax: +1 206 732 6056</aff>
<email>ddiamond@u.washington.edu</email>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Korth</surname>
<given-names>Marcus J</given-names>
</name>
<aff id="A4">University of Washington, Department of Microbiology, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6154, Fax: +1 206 732 6154</aff>
<email>korth@u.washington.edu</email>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Katze</surname>
<given-names>Michael G</given-names>
</name>
<xref rid="FN1" ref-type="author-notes"></xref>
<aff id="A5">University of Washington, Department of Microbiology and Washington National Primate Research Center, Box 358070, Seattle, WA 98195-8070, USA, Tel.: +1 206 732 6135, Fax: +1 206 732 6056</aff>
<email>honey@u.washingon.edu</email>
</contrib>
</contrib-group>
<author-notes>
<corresp id="FN1">
<label></label>
Author for correspondence: University of Washington, Department of Microbiology and Washington National Primate Research Center, Box 358070, Seattle, WA 98195-98070, USA ▪ Tel.: +1 206 732 6135 ▪ Fax: +1 206 732 6056 ▪
<email>honey@u.washingon.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>19</day>
<month>2</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<day>1</day>
<month>11</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>9</month>
<year>2010</year>
</pub-date>
<volume>4</volume>
<issue>6</issue>
<fpage>553</fpage>
<lpage>561</lpage>
<abstract>
<p id="P1">Sporadic outbreaks of epizootics including SARS coronavirus and H5N1 avian influenza remind us of the potential for communicable diseases to quickly spread into worldwide epidemics. To confront emerging viral threats, nations have implemented strategies to prepare for pandemics and to control virus spread. Despite improved surveillance and quarantine measures, we find ourselves in the midst of a H1N1 influenza pandemic. Effective therapeutics and vaccines are essential to protect against current and future pandemics. The best route to effective therapeutics and vaccines is through a detailed and global view of virus–host interactions that can be achieved using a systems biology approach. Here, we provide our perspective on the role of systems biology in deepening our understanding of virus–host interactions and in improving drug and vaccine development. We offer examples from influenza virus research, as well as from research on other pandemics of our time – HIV/AIDS and HCV – to demonstrate that systems biology offers one possible key to stopping the cycle of viral pandemics.</p>
</abstract>
<kwd-group>
<kwd>antiviral therapeutics</kwd>
<kwd>genomics</kwd>
<kwd>metabolomics</kwd>
<kwd>next-generation sequencing</kwd>
<kwd>proteomics</kwd>
<kwd>systems biology</kwd>
<kwd>vaccines</kwd>
<kwd>viral pandemics</kwd>
</kwd-group>
<contract-num rid="RR1">R24 RR016354-07 ||RR</contract-num>
<contract-num rid="HL1">R01 HL080621-04 ||HL</contract-num>
<contract-num rid="AI1">R01 AI022646-24 ||AI</contract-num>
<contract-num rid="RR1">P51 RR000166-440122 ||RR</contract-num>
<contract-num rid="DA1">P30 DA015625-08 ||DA</contract-num>
<contract-num rid="AI1">P01 AI058113-050006 ||AI</contract-num>
<contract-sponsor id="RR1">National Center for Research Resources : NCRR</contract-sponsor>
<contract-sponsor id="HL1">National Heart, Lung, and Blood Institute : NHLBI</contract-sponsor>
<contract-sponsor id="AI1">National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID</contract-sponsor>
<contract-sponsor id="DA1">National Institute on Drug Abuse : NIDA</contract-sponsor>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000C13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2843927
   |texte=   Is systems biology the key to preventing the next pandemic?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:20352075" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021