Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology

Identifieur interne : 000816 ( Pmc/Corpus ); précédent : 000815; suivant : 000817

Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology

Auteurs : Jody D. Berry ; Kevin Hay ; James M. Rini ; Meng Yu ; Linfa Wang ; Francis A. Plummer ; Cindi R. Corbett ; Anton Andonov

Source :

RBID : PMC:2828578

Abstract

Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.1,2 Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.


Url:
PubMed: 20168090
PubMed Central: 2828578

Links to Exploration step

PMC:2828578

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology</title>
<author>
<name sortKey="Berry, Jody D" sort="Berry, Jody D" uniqKey="Berry J" first="Jody D" last="Berry">Jody D. Berry</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Department of Immunology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hay, Kevin" sort="Hay, Kevin" uniqKey="Hay K" first="Kevin" last="Hay">Kevin Hay</name>
<affiliation>
<nlm:aff id="A3">Department of Immunology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
<affiliation>
<nlm:aff id="A4">Departments of Molecular Genetics and Biochemistry; University of Toronto; Toronto, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Meng" sort="Yu, Meng" uniqKey="Yu M" first="Meng" last="Yu">Meng Yu</name>
<affiliation>
<nlm:aff id="A5">CSIRO Livestock Industries; Australian Animal Health Laboratory; Geelong, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Linfa" sort="Wang, Linfa" uniqKey="Wang L" first="Linfa" last="Wang">Linfa Wang</name>
<affiliation>
<nlm:aff id="A5">CSIRO Livestock Industries; Australian Animal Health Laboratory; Geelong, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Plummer, Francis A" sort="Plummer, Francis A" uniqKey="Plummer F" first="Francis A" last="Plummer">Francis A. Plummer</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Corbett, Cindi R" sort="Corbett, Cindi R" uniqKey="Corbett C" first="Cindi R" last="Corbett">Cindi R. Corbett</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20168090</idno>
<idno type="pmc">2828578</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828578</idno>
<idno type="RBID">PMC:2828578</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000816</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000816</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology</title>
<author>
<name sortKey="Berry, Jody D" sort="Berry, Jody D" uniqKey="Berry J" first="Jody D" last="Berry">Jody D. Berry</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Department of Immunology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hay, Kevin" sort="Hay, Kevin" uniqKey="Hay K" first="Kevin" last="Hay">Kevin Hay</name>
<affiliation>
<nlm:aff id="A3">Department of Immunology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
<affiliation>
<nlm:aff id="A4">Departments of Molecular Genetics and Biochemistry; University of Toronto; Toronto, CA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Meng" sort="Yu, Meng" uniqKey="Yu M" first="Meng" last="Yu">Meng Yu</name>
<affiliation>
<nlm:aff id="A5">CSIRO Livestock Industries; Australian Animal Health Laboratory; Geelong, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Linfa" sort="Wang, Linfa" uniqKey="Wang L" first="Linfa" last="Wang">Linfa Wang</name>
<affiliation>
<nlm:aff id="A5">CSIRO Livestock Industries; Australian Animal Health Laboratory; Geelong, Victoria Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Plummer, Francis A" sort="Plummer, Francis A" uniqKey="Plummer F" first="Francis A" last="Plummer">Francis A. Plummer</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Corbett, Cindi R" sort="Corbett, Cindi R" uniqKey="Corbett C" first="Cindi R" last="Corbett">Cindi R. Corbett</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
<affiliation>
<nlm:aff id="A1">Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">National Microbiology Laboratory; Health Canada; Winnipeg, Canada</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mAbs</title>
<idno type="ISSN">1942-0862</idno>
<idno type="eISSN">1942-0870</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.
<xref ref-type="bibr" rid="R1">1</xref>
,
<xref ref-type="bibr" rid="R2">2</xref>
Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.</p>
</div>
</front>
</TEI>
<pmc article-type="brief-report">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">MAbs</journal-id>
<journal-id journal-id-type="publisher-id">mAbs</journal-id>
<journal-title-group>
<journal-title>mAbs</journal-title>
</journal-title-group>
<issn pub-type="ppub">1942-0862</issn>
<issn pub-type="epub">1942-0870</issn>
<publisher>
<publisher-name>Landes Bioscience</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20168090</article-id>
<article-id pub-id-type="pmc">2828578</article-id>
<article-id pub-id-type="publisher-id">1942-0862-2-1-7</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Report</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Berry</surname>
<given-names>Jody D</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hay</surname>
<given-names>Kevin</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rini</surname>
<given-names>James M</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yu</surname>
<given-names>Meng</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Linfa</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Plummer</surname>
<given-names>Francis A</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Corbett</surname>
<given-names>Cindi R</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Andonov</surname>
<given-names>Anton</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<aff id="A1">
<label>1</label>
Department of Medical Microbiology; University of Manitoba; Winnipeg, CA</aff>
<aff id="A2">
<label>2</label>
National Microbiology Laboratory; Health Canada; Winnipeg, Canada</aff>
<aff id="A3">
<label>3</label>
Department of Immunology; University of Manitoba; Winnipeg, CA</aff>
<aff id="A4">
<label>4</label>
Departments of Molecular Genetics and Biochemistry; University of Toronto; Toronto, CA</aff>
<aff id="A5">
<label>5</label>
CSIRO Livestock Industries; Australian Animal Health Laboratory; Geelong, Victoria Australia</aff>
</contrib-group>
<author-notes>
<corresp>Correspondence to: Jody D. Berry; Email:
<email>jberry@cangene.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Jan-Feb</season>
<year>2010</year>
</pub-date>
<volume>2</volume>
<issue>1</issue>
<fpage>53</fpage>
<lpage>66</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>10</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>11</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>© 2010 Landes Bioscience</copyright-statement>
<copyright-year>2010</copyright-year>
</permissions>
<abstract>
<p>Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.
<xref ref-type="bibr" rid="R1">1</xref>
,
<xref ref-type="bibr" rid="R2">2</xref>
Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.</p>
</abstract>
<kwd-group>
<title>Key words</title>
<kwd>SARS coronavirus</kwd>
<kwd>monoclonal antibody</kwd>
<kwd>neutralizing</kwd>
<kwd>epitope</kwd>
<kwd>immunochemistry</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000816 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000816 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2828578
   |texte=   Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:20168090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021