Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation

Identifieur interne : 000729 ( Pmc/Corpus ); précédent : 000728; suivant : 000730

Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation

Auteurs : Matthew Frieman ; Ralph Baric

Source :

RBID : PMC:2593566

Abstract

Summary: The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of ∼30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.


Url:
DOI: 10.1128/MMBR.00015-08
PubMed: 19052324
PubMed Central: 2593566

Links to Exploration step

PMC:2593566

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation</title>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation>
<nlm:aff id="aff0">University of North Carolina, 2107 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, North Carolina 27599</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:aff id="aff0">University of North Carolina, 2107 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, North Carolina 27599</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19052324</idno>
<idno type="pmc">2593566</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593566</idno>
<idno type="RBID">PMC:2593566</idno>
<idno type="doi">10.1128/MMBR.00015-08</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000729</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000729</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation</title>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation>
<nlm:aff id="aff0">University of North Carolina, 2107 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, North Carolina 27599</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation>
<nlm:aff id="aff0">University of North Carolina, 2107 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, North Carolina 27599</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiology and Molecular Biology Reviews : MMBR</title>
<idno type="ISSN">1092-2172</idno>
<idno type="eISSN">1098-5557</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Summary: The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of ∼30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Microbiol Mol Biol Rev</journal-id>
<journal-id journal-id-type="publisher-id">mmbr</journal-id>
<journal-title>Microbiology and Molecular Biology Reviews : MMBR</journal-title>
<issn pub-type="ppub">1092-2172</issn>
<issn pub-type="epub">1098-5557</issn>
<publisher>
<publisher-name>American Society for Microbiology (ASM)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19052324</article-id>
<article-id pub-id-type="pmc">2593566</article-id>
<article-id pub-id-type="publisher-id">0015-08</article-id>
<article-id pub-id-type="doi">10.1128/MMBR.00015-08</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Reviews</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Frieman</surname>
<given-names>Matthew</given-names>
</name>
<xref ref-type="aff" rid="aff0"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baric</surname>
<given-names>Ralph</given-names>
</name>
<xref ref-type="aff" rid="aff0"></xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff0">University of North Carolina, 2107 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, North Carolina 27599</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Corresponding author. Mailing address: University of North Carolina, 210 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599. Phone: (919) 966-3895. Fax: (919) 966-0584. E-mail:
<email>rbaric@email.unc.edu</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>12</month>
<year>2008</year>
</pub-date>
<volume>72</volume>
<issue>4</issue>
<fpage>672</fpage>
<lpage>685</lpage>
<permissions>
<copyright-statement>Copyright © 2008, American Society for Microbiology</copyright-statement>
</permissions>
<self-uri xlink:title="pdf" xlink:href="zmr00408000672.pdf"></self-uri>
<abstract>
<p>Summary: The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of ∼30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.</p>
</abstract>
</article-meta>
</front>
<floats-wrap>
<fig position="float" id="f1">
<label>FIG. 1.</label>
<caption>
<p>SARS-CoV and MHV genome structure. The genome structure of coronaviruses is very conserved among all known coronaviruses. In each coronavirus, the N-terminal two-thirds of the genome encodes the nonstructural proteins, also called the replicase proteins (orange box). The C-terminal one-third of the genome encodes the structural (red boxes) and accessory (gray boxes) ORFs. The structural ORFs encode the spike, envelope (E), membrane (M), and nucleocapsid (N) proteins. Each coronavirus has similar structural ORFs in their genomes. The accessory ORFs, in gray, are unique to each coronavirus. There is no sequence or structural similarities between the MHV and SARS-CoV accessory proteins.</p>
</caption>
<graphic xlink:href="zmr0040822000001"></graphic>
</fig>
<fig position="float" id="f2">
<label>FIG. 2.</label>
<caption>
<p>The innate immune induction pathway and SARS-CoV. The major proteins in the innate induction pathway are shown as they signal from sensing a pathogen to induction of IFN-β. Initially, RIG-I and MDA5 sense dsRNA in the cytoplasm, produced as a by-product of RNA virus replication. They signal to the mitochondrial membrane protein MAVS, which in turn activates the kinases TBK1 and IKKɛ. These kinases then phosphorylate IRF3, causing it to dimerize and traffic to the nucleus, where it, along with NF-κB, induces the transcription of IFN-β. SARS-CoV proteins actively modulate this pathway. ORF3b, N, and NSP1 affect the signal transduction pathway that activates IRF3 by an unknown mechanism. NSP1 also affects the mRNA stability of IFN-β transcript. The PLP of SARS-CoV also affects IRF3 and NF-κB. PLP blocks the phosphorylation of IRF3 and its activation while also blocking the activation of NF-κB. This results in a block in IFN-β induction.</p>
</caption>
<graphic xlink:href="zmr0040822000002"></graphic>
</fig>
<fig position="float" id="f3">
<label>FIG. 3.</label>
<caption>
<p>The JAK/STAT signaling pathway and SARS-CoV. The JAK/STAT pathway responds to type I IFN secreted from neighboring cells. The IFN-α/β receptor binds to either IFN-α or -β and signals to the Jak1 or TYK1 kinase. These kinases phosphorylate both STAT1 and STAT2. This phosphorylation induces the complex formation of STAT1/STAT2/IRF9 (the ISGF3 complex) and targets the complex to the nucleus with the help of the import factors KPNA1 (Kα1) and KPNB1 (Kβ1). Once in the nucleus, the complex turns on genes containing an ISRE in their promoter. SARS-CoV proteins have been shown to affect this pathway. NSP1 reduces the levels of Jak1 in the cytoplasm and affects it kinase activity. ORF6 blocks the nuclear import of ISGF3 by reducing the free Kβ1 in the cytoplasm and retaining it on the ER/Golgi membrane.</p>
</caption>
<graphic xlink:href="zmr0040822000003"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>TABLE 1.</label>
<caption>
<p>Types of IFN identified</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="center" valign="bottom">IFN type</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">IFN class(es)</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Receptor</th>
<th colspan="1" rowspan="1" align="center" valign="bottom">Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">I</td>
<td colspan="1" rowspan="1" align="left" valign="top">α, β, δ, ω</td>
<td colspan="1" rowspan="1" align="left" valign="top">IFN-α/β (IFNAR1, IFNAR2)</td>
<td colspan="1" rowspan="1" align="left" valign="top">ISGF3 (STAT1/STAT2/IRF9)</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">I</td>
<td colspan="1" rowspan="1" align="left" valign="top">τ (also known as ε)</td>
<td colspan="1" rowspan="1" align="left" valign="top">IFN-α/β (IFNAR1, IFNAR2)</td>
<td colspan="1" rowspan="1" align="left" valign="top">Pregnancy specific</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">II</td>
<td colspan="1" rowspan="1" align="left" valign="top">γ</td>
<td colspan="1" rowspan="1" align="left" valign="top">IFN-γ (IFNGR1, IFNGR2)</td>
<td colspan="1" rowspan="1" align="left" valign="top">STAT1/STAT1 homodimers</td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">III</td>
<td colspan="1" rowspan="1" align="left" valign="top">λ</td>
<td colspan="1" rowspan="1" align="left" valign="top">1L-28α/IL-1ORβ</td>
<td colspan="1" rowspan="1" align="left" valign="top">ISGF3</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000729 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000729 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2593566
   |texte=   Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:19052324" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021