Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0007181 ( Pmc/Corpus ); précédent : 0007180; suivant : 0007182 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Inoue, Yuuki" sort="Inoue, Yuuki" uniqKey="Inoue Y" first="Yuuki" last="Inoue">Yuuki Inoue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Nobuyuki" sort="Tanaka, Nobuyuki" uniqKey="Tanaka N" first="Nobuyuki" last="Tanaka">Nobuyuki Tanaka</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Yoshinori" sort="Tanaka, Yoshinori" uniqKey="Tanaka Y" first="Yoshinori" last="Tanaka">Yoshinori Tanaka</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Shingo" sort="Inoue, Shingo" uniqKey="Inoue S" first="Shingo" last="Inoue">Shingo Inoue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morita, Kouichi" sort="Morita, Kouichi" uniqKey="Morita K" first="Kouichi" last="Morita">Kouichi Morita</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Min" sort="Zhuang, Min" uniqKey="Zhuang M" first="Min" last="Zhuang">Min Zhuang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hattori, Toshio" sort="Hattori, Toshio" uniqKey="Hattori T" first="Toshio" last="Hattori">Toshio Hattori</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sugamura, Kazuo" sort="Sugamura, Kazuo" uniqKey="Sugamura K" first="Kazuo" last="Sugamura">Kazuo Sugamura</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17522231</idno>
<idno type="pmc">1951348</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951348</idno>
<idno type="RBID">PMC:1951348</idno>
<idno type="doi">10.1128/JVI.00253-07</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000718</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000718</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Inoue, Yuuki" sort="Inoue, Yuuki" uniqKey="Inoue Y" first="Yuuki" last="Inoue">Yuuki Inoue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Nobuyuki" sort="Tanaka, Nobuyuki" uniqKey="Tanaka N" first="Nobuyuki" last="Tanaka">Nobuyuki Tanaka</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Yoshinori" sort="Tanaka, Yoshinori" uniqKey="Tanaka Y" first="Yoshinori" last="Tanaka">Yoshinori Tanaka</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Shingo" sort="Inoue, Shingo" uniqKey="Inoue S" first="Shingo" last="Inoue">Shingo Inoue</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morita, Kouichi" sort="Morita, Kouichi" uniqKey="Morita K" first="Kouichi" last="Morita">Kouichi Morita</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Min" sort="Zhuang, Min" uniqKey="Zhuang M" first="Min" last="Zhuang">Min Zhuang</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hattori, Toshio" sort="Hattori, Toshio" uniqKey="Hattori T" first="Toshio" last="Hattori">Toshio Hattori</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sugamura, Kazuo" sort="Sugamura, Kazuo" uniqKey="Sugamura K" first="Kazuo" last="Sugamura">Kazuo Sugamura</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Virology</title>
<idno type="ISSN">0022-538X</idno>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The penetration of various viruses into host cells is accomplished by hijacking the host endocytosis machinery. In the case of severe acute respiratory syndrome coronavirus (SARS-CoV) infection, viral entry is reported to require a low pH in intracytoplasmic vesicles; however, little is known about how SARS-CoV invades such compartments. Here we demonstrate that SARS-CoV mainly utilizes the clathrin-mediated endocytosis pathway for its entry to target cells by using infectious SARS-CoV, as well as a SARS-CoV pseudovirus packaged in the SARS-CoV envelope. The SARS-CoV entered caveolin-1-negative HepG2 cells, and the entry was significantly inhibited by treatment with chlorpromazine, an inhibitor for clathrin-dependent endocytosis, and by small interfering RNA-mediated gene silencing for the clathrin heavy chain. Furthermore, the SARS-CoV entered COS7 cells transfected with the mutant of ACE2 with the cytoplasmic tail deleted, SARS-CoV receptor, as well as the wild-type ACE2, and their entries were significantly inhibited by treatment with chlorpromazine. In addition, ACE2 translocated into EEA1-positive early endosomes immediately after the virus attachment to ACE2. These results suggest that when SARS-CoV binds ACE2 it is internalized and penetrates early endosomes in a clathrin-dependent manner and that the cytoplasmic tail of ACE2 is not required for the penetration of SARS-CoV.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Virol</journal-id>
<journal-id journal-id-type="publisher-id">jvi</journal-id>
<journal-title>Journal of Virology</journal-title>
<issn pub-type="ppub">0022-538X</issn>
<issn pub-type="epub">1098-5514</issn>
<publisher>
<publisher-name>American Society for Microbiology</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17522231</article-id>
<article-id pub-id-type="pmc">1951348</article-id>
<article-id pub-id-type="publisher-id">0253-07</article-id>
<article-id pub-id-type="doi">10.1128/JVI.00253-07</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Virus-Cell Interactions</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted
<xref ref-type="fn" rid="fn1"></xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Inoue</surname>
<given-names>Yuuki</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tanaka</surname>
<given-names>Nobuyuki</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">4</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tanaka</surname>
<given-names>Yoshinori</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Inoue</surname>
<given-names>Shingo</given-names>
</name>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morita</surname>
<given-names>Kouichi</given-names>
</name>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhuang</surname>
<given-names>Min</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hattori</surname>
<given-names>Toshio</given-names>
</name>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sugamura</surname>
<given-names>Kazuo</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
</contrib-group>
<aff id="aff1">Department of Microbiology and Immunology,
<label>1</label>
Department of Infectious and Respiratory Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan,
<label>2</label>
Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan,
<label>3</label>
Division of Immunology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
<label>4</label>
</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Corresponding author. Mailing address: Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, 980-8575 Japan. Phone: 81-22-717-8096. Fax: 81-22-717-8097. E-mail:
<email>n-tanaka@mail.tains.tohoku.ac.jp</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2007</year>
</pub-date>
<pub-date pub-type="epub">
<day>23</day>
<month>5</month>
<year>2007</year>
</pub-date>
<volume>81</volume>
<issue>16</issue>
<fpage>8722</fpage>
<lpage>8729</lpage>
<history>
<date date-type="received">
<day>6</day>
<month>2</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>3</month>
<year>2007</year>
</date>
</history>
<copyright-statement>Copyright © 2007, American Society for Microbiology</copyright-statement>
<copyright-year>2007</copyright-year>
<self-uri xlink:title="pdf" xlink:href="zjv01607008722.pdf"></self-uri>
<abstract>
<p>The penetration of various viruses into host cells is accomplished by hijacking the host endocytosis machinery. In the case of severe acute respiratory syndrome coronavirus (SARS-CoV) infection, viral entry is reported to require a low pH in intracytoplasmic vesicles; however, little is known about how SARS-CoV invades such compartments. Here we demonstrate that SARS-CoV mainly utilizes the clathrin-mediated endocytosis pathway for its entry to target cells by using infectious SARS-CoV, as well as a SARS-CoV pseudovirus packaged in the SARS-CoV envelope. The SARS-CoV entered caveolin-1-negative HepG2 cells, and the entry was significantly inhibited by treatment with chlorpromazine, an inhibitor for clathrin-dependent endocytosis, and by small interfering RNA-mediated gene silencing for the clathrin heavy chain. Furthermore, the SARS-CoV entered COS7 cells transfected with the mutant of ACE2 with the cytoplasmic tail deleted, SARS-CoV receptor, as well as the wild-type ACE2, and their entries were significantly inhibited by treatment with chlorpromazine. In addition, ACE2 translocated into EEA1-positive early endosomes immediately after the virus attachment to ACE2. These results suggest that when SARS-CoV binds ACE2 it is internalized and penetrates early endosomes in a clathrin-dependent manner and that the cytoplasmic tail of ACE2 is not required for the penetration of SARS-CoV.</p>
</abstract>
</article-meta>
</front>
<floats-wrap>
<fig position="float" id="f1">
<label>FIG. 1.</label>
<caption>
<p>Effects of chlorpromazine and MBCD on pseudoviruses and SARS-CoV infection. (A and B) HepG2 cells were treated with the indicated doses of chlorpromazine or MBCD and then infected with SARS-CoV(HIV), VSV(HIV), or A-MLV(HIV) for overnight. The effects of chlorpromazine and MBCD on the infectivity of each pseudovirus were evaluated by measuring the luciferase activities. The columns represent the mean values of triplicate experiments; bars indicate maximum values. (C) HepG2 cells treated with the indicated doses of chlorpromazine were infected with SARS-CoV (Vietnam/NB-04/2003) for 24 h, and their expressions of viral RNA were measured by RT-PCR.</p>
</caption>
<graphic xlink:href="zjv0160794970001"></graphic>
</fig>
<fig position="float" id="f2">
<label>FIG. 2.</label>
<caption>
<p>Effects of CHC-specific siRNA on pseudoviruses and SARS-CoV infection. (A) HepG2 cells were transfected with the CHC-specific siRNA or the control siRNA and analyzed by immunoblotting with anti-CHC or anti-tubulin monoclonal antibody after 48 h of transfection. (B) The cells were treated with 2.5 mM MBCD for 30 min and then infected with each pseudovirus. The infectivities of the pseudoviruses are represented as luciferase activities. The experiment was performed in triplicate. (C) The cells were also infected with SARS-CoV (Vietnam/NB-04/2003) for 24 h, and their expressions of viral RNA were measured by RT-PCR.</p>
</caption>
<graphic xlink:href="zjv0160794970002"></graphic>
</fig>
<fig position="float" id="f3">
<label>FIG. 3.</label>
<caption>
<p>Receptor activity of ACE2 mutants for pseudoviruses and SARS-CoV infection. (A) COS7 cells were transiently transfected with ACE2-wt, ACE2-Δtail, ACE2-Δtail-TM, ACE2-sol or control plasmids, and after 48 h of transfection their lysates were tested by immunoblotting with anti-ACE2 or anti-tubulin monoclonal antibody. (B and C) The transfected cells were infected with SARS-CoV(HIV) (B) or SARS-CoV (Vietnam/NB-04/2003) (C). Their luciferase activities were measured in triplicate, and their expressions of viral RNA were measured by RT-PCR.</p>
</caption>
<graphic xlink:href="zjv0160794970003"></graphic>
</fig>
<fig position="float" id="f4">
<label>FIG. 4.</label>
<caption>
<p>Effects of chlorpromazine on pseudovirus infection to cells expressing ACE2-Δtail. COS7 cells were transiently transfected with ACE2-wt or ACE2-Δtail and then treated with the indicated amounts of chlorpromazine. Subsequently, the cells were infected with SARS-CoV(HIV). Their luciferase activities were measured in triplicate.</p>
</caption>
<graphic xlink:href="zjv0160794970004"></graphic>
</fig>
<fig position="float" id="f5">
<label>FIG. 5.</label>
<caption>
<p>Immunohistochemical localization of ACE2 after pseudovirus infection. HepG2 cells were cultured in the FCS-free medium to induce ACE2 on cell surfaces and incubated with concentrated SARS-CoV(HIV) for 10 min at 37°C. They were then stained for ACE2 and EEA1 by immunofluorescence.</p>
</caption>
<graphic xlink:href="zjv0160794970005"></graphic>
</fig>
<fig position="float" id="f6">
<label>FIG. 6.</label>
<caption>
<p>Dependence on acidic environment for infection by the pseudoviruses. COS7 cells transiently transfected with ACE2-wt, ACE2-Δtail, or control plasmids were treated with 20 mM NH
<sub>4</sub>
Cl and then infected with SARS-CoV(HIV) and VSV(HIV). Their infectivities were evaluated by measuring the luciferase activity. The experiment was performed in triplicate.</p>
</caption>
<graphic xlink:href="zjv0160794970006"></graphic>
</fig>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0007181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0007181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021