Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS and MERS: recent insights into emerging coronaviruses

Identifieur interne : 000569 ( Pmc/Corpus ); précédent : 000568; suivant : 000570

SARS and MERS: recent insights into emerging coronaviruses

Auteurs : Emmie De Wit ; Neeltje Van Doremalen ; Darryl Falzarano ; Vincent J. Munster

Source :

RBID : PMC:7097822

Abstract

Key Points

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Although disease progression is fairly similar for SARS and MERS, the case fatality rate of MERS is much higher than that of SARS.

Comorbidities have an important role in SARS and MERS. Several risk factors are associated with progression to acute respiratory distress syndrome (ARDS) in SARS and MERS cases, especially advanced age and male sex. For MERS, additional risk factors that are associated with severe disease include chronic conditions such as diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections.

Although the ancestors of SARS-CoV and MERS-CoV probably circulate in bats, zoonotic transmission of SARS-CoV required an incidental amplifying host. Dromedary camels are the MERS-CoV reservoir from which zoonotic transmission occurs; serological evidence indicates that MERS-CoV-like viruses have been circulating in dromedary camels for at least three decades.

Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly in health care settings. Patients do not shed large amounts of virus until well after the onset of symptoms, when patients are most probably already seeking medical care. Analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of infectious virus.

Our understanding of the pathogenesis of SARS-CoV and MERS-CoV is still incomplete, but the combination of viral replication in the lower respiratory tract and an aberrant immune response is thought to have a crucial role in the severity of both syndromes.

The severity of the diseases that are caused by emerging coronaviruses highlights the need to develop effective therapeutic measures against these viruses. Although several treatments for SARS and MERS (based on inhibition of viral replication with drugs or neutralizing antibodies, or on dampening the host response) have been identified in animal models and in vitro studies, efficacy data from human clinical trials are urgently required.

Supplementary information

The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1038/nrmicro.2016.81
PubMed: 27344959
PubMed Central: 7097822

Links to Exploration step

PMC:7097822

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS and MERS: recent insights into emerging coronaviruses</title>
<author>
<name sortKey="De Wit, Emmie" sort="De Wit, Emmie" uniqKey="De Wit E" first="Emmie" last="De Wit">Emmie De Wit</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Doremalen, Neeltje" sort="Van Doremalen, Neeltje" uniqKey="Van Doremalen N" first="Neeltje" last="Van Doremalen">Neeltje Van Doremalen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Falzarano, Darryl" sort="Falzarano, Darryl" uniqKey="Falzarano D" first="Darryl" last="Falzarano">Darryl Falzarano</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.25152.31</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2154 235X</institution-id>
<institution>Vaccine and Infectious Disease Organization – International Vaccine Centre and Department of Veterinary Microbiology,</institution>
<institution>University of Saskatchewan,</institution>
</institution-wrap>
120 Veterinary Road, Saskatoon, S7N 5E3 Saskatchewan Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Munster, Vincent J" sort="Munster, Vincent J" uniqKey="Munster V" first="Vincent J." last="Munster">Vincent J. Munster</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27344959</idno>
<idno type="pmc">7097822</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097822</idno>
<idno type="RBID">PMC:7097822</idno>
<idno type="doi">10.1038/nrmicro.2016.81</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000569</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">SARS and MERS: recent insights into emerging coronaviruses</title>
<author>
<name sortKey="De Wit, Emmie" sort="De Wit, Emmie" uniqKey="De Wit E" first="Emmie" last="De Wit">Emmie De Wit</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Doremalen, Neeltje" sort="Van Doremalen, Neeltje" uniqKey="Van Doremalen N" first="Neeltje" last="Van Doremalen">Neeltje Van Doremalen</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Falzarano, Darryl" sort="Falzarano, Darryl" uniqKey="Falzarano D" first="Darryl" last="Falzarano">Darryl Falzarano</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.25152.31</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2154 235X</institution-id>
<institution>Vaccine and Infectious Disease Organization – International Vaccine Centre and Department of Veterinary Microbiology,</institution>
<institution>University of Saskatchewan,</institution>
</institution-wrap>
120 Veterinary Road, Saskatoon, S7N 5E3 Saskatchewan Canada</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Munster, Vincent J" sort="Munster, Vincent J" uniqKey="Munster V" first="Vincent J." last="Munster">Vincent J. Munster</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Reviews. Microbiology</title>
<idno type="ISSN">1740-1526</idno>
<idno type="eISSN">1740-1534</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Key Points</title>
<p id="Par5">
<list list-type="bullet">
<list-item>
<p id="Par6">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Although disease progression is fairly similar for SARS and MERS, the case fatality rate of MERS is much higher than that of SARS.</p>
</list-item>
<list-item>
<p id="Par7">Comorbidities have an important role in SARS and MERS. Several risk factors are associated with progression to acute respiratory distress syndrome (ARDS) in SARS and MERS cases, especially advanced age and male sex. For MERS, additional risk factors that are associated with severe disease include chronic conditions such as diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections.</p>
</list-item>
<list-item>
<p id="Par8">Although the ancestors of SARS-CoV and MERS-CoV probably circulate in bats, zoonotic transmission of SARS-CoV required an incidental amplifying host. Dromedary camels are the MERS-CoV reservoir from which zoonotic transmission occurs; serological evidence indicates that MERS-CoV-like viruses have been circulating in dromedary camels for at least three decades.</p>
</list-item>
<list-item>
<p id="Par9">Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly in health care settings. Patients do not shed large amounts of virus until well after the onset of symptoms, when patients are most probably already seeking medical care. Analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of infectious virus.</p>
</list-item>
<list-item>
<p id="Par10">Our understanding of the pathogenesis of SARS-CoV and MERS-CoV is still incomplete, but the combination of viral replication in the lower respiratory tract and an aberrant immune response is thought to have a crucial role in the severity of both syndromes.</p>
</list-item>
<list-item>
<p id="Par11">The severity of the diseases that are caused by emerging coronaviruses highlights the need to develop effective therapeutic measures against these viruses. Although several treatments for SARS and MERS (based on inhibition of viral replication with drugs or neutralizing antibodies, or on dampening the host response) have been identified in animal models and
<italic>in vitro</italic>
studies, efficacy data from human clinical trials are urgently required.</p>
</list-item>
</list>
</p>
<sec>
<title>Supplementary information</title>
<p>The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, Ns" uniqKey="Zhong N">NS Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, N" uniqKey="Lee N">N Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, Tg" uniqKey="Ksiazek T">TG Ksiazek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, Xy" uniqKey="Ge X">XY Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ra" uniqKey="Fouchier R">RA Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hijawi, B" uniqKey="Hijawi B">B Hijawi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wise, J" uniqKey="Wise J">J Wise</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasternak, Ao" uniqKey="Pasternak A">AO Pasternak</name>
</author>
<author>
<name sortKey="Spaan, Wj" uniqKey="Spaan W">WJ Spaan</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
<author>
<name sortKey="Netland, J" uniqKey="Netland J">J Netland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fehr, Ar" uniqKey="Fehr A">AR Fehr</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knoops, K" uniqKey="Knoops K">K Knoops</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckerle, Ld" uniqKey="Eckerle L">LD Eckerle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sevajol, M" uniqKey="Sevajol M">M Sevajol</name>
</author>
<author>
<name sortKey="Subissi, L" uniqKey="Subissi L">L Subissi</name>
</author>
<author>
<name sortKey="Decroly, E" uniqKey="Decroly E">E Decroly</name>
</author>
<author>
<name sortKey="Canard, B" uniqKey="Canard B">B Canard</name>
</author>
<author>
<name sortKey="Imbert, I" uniqKey="Imbert I">I Imbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masters, Ps" uniqKey="Masters P">PS Masters</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Lf" uniqKey="Wang L">LF Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drexler, Jf" uniqKey="Drexler J">JF Drexler</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, Ei" uniqKey="Azhar E">EI Azhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabir, Js" uniqKey="Sabir J">JS Sabir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunter, Jc" uniqKey="Hunter J">JC Hunter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bin, Sy" uniqKey="Bin S">SY Bin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucharski, Aj" uniqKey="Kucharski A">AJ Kucharski</name>
</author>
<author>
<name sortKey="Althaus, Cl" uniqKey="Althaus C">CL Althaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, Md" uniqKey="Oh M">MD Oh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Dl" uniqKey="Ng D">DL Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuba, K" uniqKey="Kuba K">K Kuba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imai, Y" uniqKey="Imai Y">Y Imai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Wk" uniqKey="Wang W">WK Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poissy, J" uniqKey="Poissy J">J Poissy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binnie, A" uniqKey="Binnie A">A Binnie</name>
</author>
<author>
<name sortKey="Tsang, Jl" uniqKey="Tsang J">JL Tsang</name>
</author>
<author>
<name sortKey="Dos Santos, Cc" uniqKey="Dos Santos C">CC dos Santos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Ae" uniqKey="Williams A">AE Williams</name>
</author>
<author>
<name sortKey="Chambers, Rc" uniqKey="Chambers R">RC Chambers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baas, T" uniqKey="Baas T">T Baas</name>
</author>
<author>
<name sortKey="Taubenberger, Jk" uniqKey="Taubenberger J">JK Taubenberger</name>
</author>
<author>
<name sortKey="Chong, Py" uniqKey="Chong P">PY Chong</name>
</author>
<author>
<name sortKey="Chui, P" uniqKey="Chui P">P Chui</name>
</author>
<author>
<name sortKey="Katze, Mg" uniqKey="Katze M">MG Katze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faure, E" uniqKey="Faure E">E Faure</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Sl" uniqKey="Kong S">SL Kong</name>
</author>
<author>
<name sortKey="Chui, P" uniqKey="Chui P">P Chui</name>
</author>
<author>
<name sortKey="Lim, B" uniqKey="Lim B">B Lim</name>
</author>
<author>
<name sortKey="Salto Tellez, M" uniqKey="Salto Tellez M">M Salto-Tellez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Nl" uniqKey="Tang N">NL Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cameron, Mj" uniqKey="Cameron M">MJ Cameron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gralinski, Le" uniqKey="Gralinski L">LE Gralinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensen, S" uniqKey="Jensen S">S Jensen</name>
</author>
<author>
<name sortKey="Thomsen, Ar" uniqKey="Thomsen A">AR Thomsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheahan, T" uniqKey="Sheahan T">T Sheahan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wilde, Ah" uniqKey="De Wilde A">AH de Wilde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouvet, M" uniqKey="Bouvet M">M Bouvet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
<author>
<name sortKey="Debbink, K" uniqKey="Debbink K">K Debbink</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, L" uniqKey="Cui L">L Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X Lu</name>
</author>
<author>
<name sortKey="Pan, J" uniqKey="Pan J">J Pan</name>
</author>
<author>
<name sortKey="Tao, J" uniqKey="Tao J">J Tao</name>
</author>
<author>
<name sortKey="Guo, D" uniqKey="Guo D">D Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niemeyer, D" uniqKey="Niemeyer D">D Niemeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siu, Kl" uniqKey="Siu K">KL Siu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frieman, M" uniqKey="Frieman M">M Frieman</name>
</author>
<author>
<name sortKey="Ratia, K" uniqKey="Ratia K">K Ratia</name>
</author>
<author>
<name sortKey="Johnston, Re" uniqKey="Johnston R">RE Johnston</name>
</author>
<author>
<name sortKey="Mesecar, Ad" uniqKey="Mesecar A">AD Mesecar</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devaraj, Sg" uniqKey="Devaraj S">SG Devaraj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, K" uniqKey="Matthews K">K Matthews</name>
</author>
<author>
<name sortKey="Schafer, A" uniqKey="Schafer A">A Schafer</name>
</author>
<author>
<name sortKey="Pham, A" uniqKey="Pham A">A Pham</name>
</author>
<author>
<name sortKey="Frieman, M" uniqKey="Frieman M">M Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey Elkin, Ba" uniqKey="Bailey Elkin B">BA Bailey-Elkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamitani, W" uniqKey="Kamitani W">W Kamitani</name>
</author>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Narayanan, K" uniqKey="Narayanan K">K Narayanan</name>
</author>
<author>
<name sortKey="Lokugamage, Kg" uniqKey="Lokugamage K">KG Lokugamage</name>
</author>
<author>
<name sortKey="Makino, S" uniqKey="Makino S">S Makino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, T" uniqKey="Tanaka T">T Tanaka</name>
</author>
<author>
<name sortKey="Kamitani, W" uniqKey="Kamitani W">W Kamitani</name>
</author>
<author>
<name sortKey="Dediego, Ml" uniqKey="Dediego M">ML DeDiego</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
<author>
<name sortKey="Matsuura, Y" uniqKey="Matsuura Y">Y Matsuura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wathelet, Mg" uniqKey="Wathelet M">MG Wathelet</name>
</author>
<author>
<name sortKey="Orr, M" uniqKey="Orr M">M Orr</name>
</author>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lokugamage, Kg" uniqKey="Lokugamage K">KG Lokugamage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freundt, Ec" uniqKey="Freundt E">EC Freundt</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Park, E" uniqKey="Park E">E Park</name>
</author>
<author>
<name sortKey="Lenardo, Mj" uniqKey="Lenardo M">MJ Lenardo</name>
</author>
<author>
<name sortKey="Xu, Xn" uniqKey="Xu X">XN Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopecky Bromberg, Sa" uniqKey="Kopecky Bromberg S">SA Kopecky-Bromberg</name>
</author>
<author>
<name sortKey="Martinez Sobrido, L" uniqKey="Martinez Sobrido L">L Martinez-Sobrido</name>
</author>
<author>
<name sortKey="Frieman, M" uniqKey="Frieman M">M Frieman</name>
</author>
<author>
<name sortKey="Baric, Ra" uniqKey="Baric R">RA Baric</name>
</author>
<author>
<name sortKey="Palese, P" uniqKey="Palese P">P Palese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lei, Y" uniqKey="Lei Y">Y Lei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graci, Jd" uniqKey="Graci J">JD Graci</name>
</author>
<author>
<name sortKey="Cameron, Ce" uniqKey="Cameron C">CE Cameron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Tawfiq, Ja" uniqKey="Al Tawfiq J">JA Al-Tawfiq</name>
</author>
<author>
<name sortKey="Momattin, H" uniqKey="Momattin H">H Momattin</name>
</author>
<author>
<name sortKey="Dib, J" uniqKey="Dib J">J Dib</name>
</author>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ling, Y" uniqKey="Ling Y">Y Ling</name>
</author>
<author>
<name sortKey="Qu, R" uniqKey="Qu R">R Qu</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Booth, Cm" uniqKey="Booth C">CM Booth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poutanen, Sm" uniqKey="Poutanen S">SM Poutanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="So, Lk" uniqKey="So L">LK So</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsang, Kw" uniqKey="Tsang K">KW Tsang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loutfy, Mr" uniqKey="Loutfy M">MR Loutfy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Z" uniqKey="Zhao Z">Z Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Ly" uniqKey="Hsu L">LY Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Ec" uniqKey="Smith E">EC Smith</name>
</author>
<author>
<name sortKey="Blanc, H" uniqKey="Blanc H">H Blanc</name>
</author>
<author>
<name sortKey="Surdel, Mc" uniqKey="Surdel M">MC Surdel</name>
</author>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M Vignuzzi</name>
</author>
<author>
<name sortKey="Denison, Mr" uniqKey="Denison M">MR Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hart, Bj" uniqKey="Hart B">BJ Hart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B Morgenstern</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Baer, Pc" uniqKey="Baer P">PC Baer</name>
</author>
<author>
<name sortKey="Doerr, Hw" uniqKey="Doerr H">HW Doerr</name>
</author>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omrani, As" uniqKey="Omrani A">AS Omrani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalhoub, S" uniqKey="Shalhoub S">S Shalhoub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalid, M" uniqKey="Khalid M">M Khalid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Ks" uniqKey="Chan K">KS Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Cm" uniqKey="Chu C">CM Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spanakis, N" uniqKey="Spanakis N">N Spanakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Wj" uniqKey="Choi W">WJ Choi</name>
</author>
<author>
<name sortKey="Lee, Kn" uniqKey="Lee K">KN Lee</name>
</author>
<author>
<name sortKey="Kang, Ej" uniqKey="Kang E">EJ Kang</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Kw" uniqKey="Cheng K">KW Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomar, S" uniqKey="Tomar S">S Tomar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wilde, Ah" uniqKey="De Wilde A">AH de Wilde</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mair Jenkins, J" uniqKey="Mair Jenkins J">J Mair-Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Xc" uniqKey="Tang X">XC Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T Ying</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luke, T" uniqKey="Luke T">T Luke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corti, D" uniqKey="Corti D">D Corti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pascal, Ke" uniqKey="Pascal K">KE Pascal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houser, Kv" uniqKey="Houser K">KV Houser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Rf" uniqKey="Johnson R">RF Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohnuma, K" uniqKey="Ohnuma K">K Ohnuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elshabrawy, Ha" uniqKey="Elshabrawy H">HA Elshabrawy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glowacka, I" uniqKey="Glowacka I">I Glowacka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R Wang</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H Xiao</name>
</author>
<author>
<name sortKey="Guo, R" uniqKey="Guo R">R Guo</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Shen, B" uniqKey="Shen B">B Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Josset, L" uniqKey="Josset L">L Josset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Rl" uniqKey="Graham R">RL Graham</name>
</author>
<author>
<name sortKey="Donaldson, Ef" uniqKey="Donaldson E">EF Donaldson</name>
</author>
<author>
<name sortKey="Baric, Rs" uniqKey="Baric R">RS Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roper, Rl" uniqKey="Roper R">RL Roper</name>
</author>
<author>
<name sortKey="Rehm, Ke" uniqKey="Rehm K">KE Rehm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lan, J" uniqKey="Lan J">J Lan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthumani, K" uniqKey="Muthumani K">K Muthumani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mastalerz Migas, A" uniqKey="Mastalerz Migas A">A Mastalerz-Migas</name>
</author>
<author>
<name sortKey="Bujnowska Fedak, M" uniqKey="Bujnowska Fedak M">M Bujnowska-Fedak</name>
</author>
<author>
<name sortKey="Brydak, Lb" uniqKey="Brydak L">LB Brydak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A Zumla</name>
</author>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Abdallat, Mm" uniqKey="Al Abdallat M">MM Al-Abdallat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saad, M" uniqKey="Saad M">M Saad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feikin, Dr" uniqKey="Feikin D">DR Feikin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majumder, Ms" uniqKey="Majumder M">MS Majumder</name>
</author>
<author>
<name sortKey="Kluberg, Sa" uniqKey="Kluberg S">SA Kluberg</name>
</author>
<author>
<name sortKey="Mekaru, Sr" uniqKey="Mekaru S">SR Mekaru</name>
</author>
<author>
<name sortKey="Brownstein, Js" uniqKey="Brownstein J">JS Brownstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gretebeck, Lm" uniqKey="Gretebeck L">LM Gretebeck</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Sk" uniqKey="Lau S">SK Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, Dr" uniqKey="Adney D">DR Adney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, Mm" uniqKey="Becker M">MM Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Rev Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat. Rev. Microbiol</journal-id>
<journal-title-group>
<journal-title>Nature Reviews. Microbiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1740-1526</issn>
<issn pub-type="epub">1740-1534</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27344959</article-id>
<article-id pub-id-type="pmc">7097822</article-id>
<article-id pub-id-type="publisher-id">BFnrmicro201681</article-id>
<article-id pub-id-type="doi">10.1038/nrmicro.2016.81</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>SARS and MERS: recent insights into emerging coronaviruses</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>de Wit</surname>
<given-names>Emmie</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par1">Emmie de Wit is a staff scientist in the Disease Modelling and Transmission Section of the Laboratory of Virology at the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA. She received her Ph.D. in virology from Erasmus University Rotterdam, The Netherlands, where she studied the molecular determinants of influenza A virus replication and pathogenesis. Her current research focuses on the pathogenesis and transmission of Ebola virus, Nipah virus and Middle East respiratory syndrome coronavirus (MERS-CoV), and the development of countermeasures against these viruses.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van Doremalen</surname>
<given-names>Neeltje</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par2">Neeltje van Doremalen is a visiting postdoctoral fellow in the Virus Ecology Unit of the Laboratory of Virology at the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA. She received her B.Sc. in biochemistry from the Hogeschool of Arnhem and Nijmegen, Nijmegen, The Netherlands; her M.Sc. in biomedical science from Radboud University, Nijmegen; and her Ph.D. from Imperial College, London, UK, for her studies of the receptor-binding and transmission of influenza viruses. She currently studies the species tropism and transmission of Middle East respiratory syndrome coronavirus (MERS-CoV).</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Falzarano</surname>
<given-names>Darryl</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
<bio>
<p id="Par3">Darryl Falzarano is a research scientist at the Vaccine and Infectious Disease Organization–International Vaccine Centre (VIDO–InterVac) and an adjunct professor in the Department of Veterinary Microbiology, both at the University of Saskatchewan, Saskatoon, Canada. He received his Ph.D. in medical microbiology from the University of Manitoba, Winnipeg, Canada, where he studied the relationship between protein structure and function of Ebola virus glycoproteins. As a visiting fellow at the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA, he developed antiviral therapeutic strategies and animal models for MERS-CoV. His laboratory is currently focused on the development of vaccine strategies and large-animal models for Middle East respiratory syndrome coronavirus (MERS-CoV).
<ext-link ext-link-type="uri" xlink:href="http://vido.org/team/project-leaders/darryl-falzarano">Darryl Falzarano's homepage</ext-link>
.</p>
</bio>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Munster</surname>
<given-names>Vincent J.</given-names>
</name>
<address>
<email>vincent.munster@nih.gov</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par4">Vincent J. Munster is the chief of the Virus Ecology Unit of the Laboratory of Virology at the Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA. He received his Ph.D. in virology from Erasmus University Rotterdam, The Netherlands, where he studied the ecology, evolution and pathogenesis of avian influenza viruses. His laboratory focuses on the ecology of emerging viruses and drivers of zoonotic and cross-species transmission.
<ext-link ext-link-type="uri" xlink:href="http://www.niaid.nih.gov/labsandresources/labs/aboutlabs/lv/virusecology/Pages/default.aspx">Vincent J. Munster's homepage</ext-link>
.</p>
</bio>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419681.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2164 9667</institution-id>
<institution>Division of Intramural Research,</institution>
<institution>Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories,</institution>
</institution-wrap>
Hamilton, 59840 Montana USA</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.25152.31</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2154 235X</institution-id>
<institution>Vaccine and Infectious Disease Organization – International Vaccine Centre and Department of Veterinary Microbiology,</institution>
<institution>University of Saskatchewan,</institution>
</institution-wrap>
120 Veterinary Road, Saskatoon, S7N 5E3 Saskatchewan Canada</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>27</day>
<month>6</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<volume>14</volume>
<issue>8</issue>
<fpage>523</fpage>
<lpage>534</lpage>
<permissions>
<copyright-statement>© Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1" abstract-type="KeyPoints">
<title>Key Points</title>
<p id="Par5">
<list list-type="bullet">
<list-item>
<p id="Par6">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Although disease progression is fairly similar for SARS and MERS, the case fatality rate of MERS is much higher than that of SARS.</p>
</list-item>
<list-item>
<p id="Par7">Comorbidities have an important role in SARS and MERS. Several risk factors are associated with progression to acute respiratory distress syndrome (ARDS) in SARS and MERS cases, especially advanced age and male sex. For MERS, additional risk factors that are associated with severe disease include chronic conditions such as diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections.</p>
</list-item>
<list-item>
<p id="Par8">Although the ancestors of SARS-CoV and MERS-CoV probably circulate in bats, zoonotic transmission of SARS-CoV required an incidental amplifying host. Dromedary camels are the MERS-CoV reservoir from which zoonotic transmission occurs; serological evidence indicates that MERS-CoV-like viruses have been circulating in dromedary camels for at least three decades.</p>
</list-item>
<list-item>
<p id="Par9">Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly in health care settings. Patients do not shed large amounts of virus until well after the onset of symptoms, when patients are most probably already seeking medical care. Analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of infectious virus.</p>
</list-item>
<list-item>
<p id="Par10">Our understanding of the pathogenesis of SARS-CoV and MERS-CoV is still incomplete, but the combination of viral replication in the lower respiratory tract and an aberrant immune response is thought to have a crucial role in the severity of both syndromes.</p>
</list-item>
<list-item>
<p id="Par11">The severity of the diseases that are caused by emerging coronaviruses highlights the need to develop effective therapeutic measures against these viruses. Although several treatments for SARS and MERS (based on inhibition of viral replication with drugs or neutralizing antibodies, or on dampening the host response) have been identified in animal models and
<italic>in vitro</italic>
studies, efficacy data from human clinical trials are urgently required.</p>
</list-item>
</list>
</p>
<sec>
<title>Supplementary information</title>
<p>The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<abstract id="Abs2" abstract-type="web-summary">
<p id="Par12">Insights into coronavirus emergence, replication and pathogenesis gained from the SARS and MERS outbreaks have guided the development of preventive and therapeutic measures. In this Review, Munster and colleagues highlight recent achievements and areas that need to be addressed to combat novel coronaviruses.</p>
<sec>
<title>Supplementary information</title>
<p>The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<abstract id="Abs3">
<p id="Par13">The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002–2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.</p>
<sec>
<title>Supplementary information</title>
<p>The online version of this article (doi:10.1038/nrmicro.2016.81) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group kwd-group-type="npg-subject">
<title>Subject terms</title>
<kwd>SARS virus</kwd>
<kwd>Viral pathogenesis</kwd>
<kwd>Antivirals</kwd>
<kwd>Viral transmission</kwd>
<kwd>Viral reservoirs</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Nature Limited 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Main</title>
<p id="Par14">This century has seen the global spread of two previously unknown coronaviruses. In November 2002, the first known case of severe acute respiratory syndrome (SARS) occurred in Foshan, China
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. New cases emerged in mainland China, and by February 2003, more than 300 cases had been reported, around one-third of which were in health care workers
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. Individuals who were infected and subsequently travelled spread the outbreak to Hong Kong
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
and from there to Vietnam, Canada and several other countries
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
. In March 2003, the WHO established a network of laboratories to determine the causative agent of SARS. A remarkable global effort led to the identification of SARS coronavirus (SARS-CoV) in early April of that year
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. By July 2003 and after a total of 8,096 reported cases, including 774 deaths in 27 countries
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
, no more infections were detected, and the SARS pandemic was declared to be over. Five additional SARS cases, resulting from zoonotic transmission, occurred in December 2003–January 2004 (Ref.
<xref ref-type="bibr" rid="CR8">8</xref>
), but no human SARS cases have been detected since. Measures of infection control, rather than medical interventions, ended the SARS pandemic. However, certain SARS-CoV-like viruses found in bats have recently been shown to be able to infect human cells without prior adaptation
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, which indicates that SARS could re-emerge.</p>
<p id="Par15">In June 2012, 10 years after the first emergence of SARS-CoV, a man in Saudi Arabia died of acute pneumonia and renal failure. A novel coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV), was isolated from his sputum
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. A cluster of cases of severe respiratory disease had occurred in April 2012 in a hospital in Jordan and was retrospectively diagnosed as MERS
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
, and a cluster of three cases of MERS in the UK was identified in September 2012 (Ref.
<xref ref-type="bibr" rid="CR13">13</xref>
). MERS-CoV continued to emerge and spread to countries outside of the Arabian Peninsula as a result of travel of infected persons; often, these imported MERS cases resulted in
<xref rid="Glos1" ref-type="list">nosocomial transmission</xref>
. In May 2015, a single person returning from the Middle East started a nosocomial outbreak of MERS in South Korea that involved 16 hospitals and 186 patients
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. As of 26 April 2016, there have been 1,728 confirmed cases of MERS, including 624 deaths in 27 countries
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
.</p>
<p id="Par16">This Review highlights the pandemic and epidemic potential of emerging coronaviruses and discusses our current knowledge of the biology of SARS-CoV and MERS-CoV, including their transmission, their pathogenesis and the development of medical countermeasures. Key features of these viruses are the dominance of nosocomial transmission, and pathogenesis that is driven by a combination of viral replication in the lower respiratory tract and an aberrant host immune response. Several potential treatments for SARS and MERS have been identified in animal and
<italic>in vitro</italic>
models, including small-molecule protease inhibitors, neutralizing antibodies and inhibitors of the host immune response. However, efficacy data from human clinical trials are lacking but are needed to move these potential countermeasures forward.</p>
</sec>
<sec id="Sec2">
<title>Replication of SARS-CoV and MERS-CoV</title>
<p id="Par17">SARS-CoV and MERS-CoV belong to the Coronavirus genus in the
<italic>Coronaviridae</italic>
family and have large, positive-sense RNA genomes of 27.9 kb and 30.1 kb, respectively (
<xref rid="Fig1" ref-type="fig">Fig. 1a</xref>
). Similarly to all viruses in the order
<italic>Nidovirales</italic>
, SARS-CoV and MERS-CoV have a unique coding strategy: two-thirds of the viral RNA is translated into two large polyproteins, and the remainder of the viral genome is transcribed into a nested set of subgenomic mRNAs
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
(
<xref rid="Fig1" ref-type="fig">Fig. 1b</xref>
). The two polyproteins, pp1a and pp1ab, encode 16 non-structural proteins (nsp1–nsp16)
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
that make up the viral replicase–transcriptase complex. The polyproteins are cleaved by two proteases, papain-like protease (PLpro; corresponding to nsp3) and a main protease, 3C-like protease (3CLpro; corresponding to nsp5). The nsps rearrange membranes that are derived from the rough endoplasmic reticulum (RER) into double-membrane vesicles, in which viral replication and transcription occur
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. One unique feature of coronaviruses is the exoribonuclease (ExoN) function of nsp14 (Ref.
<xref ref-type="bibr" rid="CR20">20</xref>
), which provides the
<xref rid="Glos2" ref-type="list">proofreading</xref>
capability required to maintain a large RNA genome without the accumulation of detrimental mutations
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. SARS-CoV and MERS-CoV transcribe 12 and 9 subgenomic RNAs, respectively, and these encode the four structural proteins spike (S), envelope (E), membrane (M) and nucleocapsid (N), as well as several accessory proteins that are not involved in viral replication but interfere with the host innate immune response or are of unknown or poorly understood function.
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<title>SARS-CoV and MERS-CoV structure and replication.</title>
<p>
<bold>a</bold>
| The single-stranded RNA (ssRNA) genomes of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) encode two large polyproteins, pp1a and pp1ab, which are proteolytically cleaved into 16 non-structural proteins (nsps), including papain-like protease (PLpro), 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), helicase (Hel) and exonuclease (ExoN). An additional 9–12 ORFs are encoded through the transcription of a nested set of subgenomic RNAs. SARS-CoV and MERS-CoV form spherical particles that consist of four structural proteins. The envelope glycoprotein spike (S) forms a layer of glycoproteins that protrude from the envelope. Two additional transmembrane glycoproteins are incorporated in the virion: envelope (E) and membrane (M). Inside the viral envelope resides the helical nucleocapsid, which consists of the viral positive-sense RNA ((+)RNA) genome encapsidated by protein nucleocapsid (N).
<bold>b</bold>
| Following entry of the virus into the host cell, the viral RNA is uncoated in the cytoplasm. ORF1a and ORF1ab are translated to produce pp1a and pp1ab, which are cleaved by the proteases that are encoded by ORF1a to yield 16 nsps that form the RNA replicase–transcriptase complex. This complex localizes to modified intracellular membranes that are derived from the rough endoplasmic reticulum (ER) in the perinuclear region, and it drives the production of negative-sense RNAs ((−)RNAs) through both replication and transcription. During replication, full-length (−)RNA copies of the genome are produced and used as templates for full-length (+)RNA genomes. During transcription, a subset of 7–9 subgenomic RNAs, including those encoding all structural proteins, is produced through discontinuous transcription. In this process, subgenomic (−)RNAs are synthesized by combining varying lengths of the 3′ end of the genome with the 5′ leader sequence necessary for translation. These subgenomic (−)RNAs are then transcribed into subgenomic (+)mRNAs. Although the different subgenomic mRNAs may contain several ORFs, only the first ORF (that closest to the 5′ end) is translated. The resulting structural proteins are assembled into the nucleocapsid and viral envelope at the ER–Golgi intermediate compartment (ERGIC), followed by release of the nascent virion from the infected cell.</p>
<p>
<xref rid="MOESM6" ref-type="media">PowerPoint slide</xref>
</p>
</caption>
<graphic xlink:href="41579_2016_Article_BFnrmicro201681_Fig1_HTML" id="d29e432"></graphic>
</fig>
</p>
<p id="Par18">The envelope spike glycoprotein binds to its cellular receptor, angiotensin-converting enzyme 2 (ACE2) for SARS-CoV and dipeptidyl peptidase 4 (DPP4) for MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
. After membrane fusion, either directly with the host cell membrane or with the endosome membrane, the viral RNA genome is released into the cytoplasm, and the RNA is uncoated to allow translation of the two polyproteins, transcription of the subgenomic RNAs and replication of the viral genome (
<xref rid="Fig1" ref-type="fig">Fig. 1b</xref>
). Newly formed envelope glycoproteins are inserted in the RER or Golgi membranes; genomic RNA and nucleocapsid proteins combine to form nucleocapsids, and the viral particles bud into the
<xref rid="Glos3" ref-type="list">ER–Golgi intermediate compartment</xref>
(ERGIC). Virion-containing vesicles subsequently fuse with the plasma membrane to release the virus
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
.</p>
</sec>
<sec id="Sec3">
<title>Reservoirs and transmission</title>
<p id="Par19">The first indication of the source of SARS-CoV was the detection of the virus in masked palm civets and a raccoon dog and the detection of antibodies against the virus in Chinese ferret badgers in a live-animal market in Shenzhen, China
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
. However, these animals were only incidental hosts, as there was no evidence for the circulation of SARS-CoV-like viruses in palm civets in the wild or in breeding facilities
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. Rather, bats are the reservoir of a wide variety of coronaviruses, including SARS-CoV-like and MERS-CoV-like viruses
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
(
<xref rid="Fig2" ref-type="fig">Fig. 2</xref>
).
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<title>The emergence of SARS-CoV and MERS-CoV.</title>
<p>Bats harbour a wide range of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV)-like and Middle East respiratory syndrome coronavirus (MERS-CoV)-like viruses. SARS-CoV crossed the species barrier into masked palm civets and other animals in live-animal markets in China; genetic analysis suggests that this occurred in late 2002. Several people in close proximity to palm civets became infected with SARS-CoV. A MERS-CoV ancestral virus crossed the species barrier into dromedary camels; serological evidence suggests that this happened more than 30 years ago. Abundant circulation of MERS-CoV in dromedary camels results in frequent zoonotic transmission of this virus. SARS-CoV and MERS-CoV spread between humans mainly through nosocomial transmission, which results in the infection of health care workers and patients at a higher frequency than infection of their relatives.</p>
<p>
<xref rid="MOESM7" ref-type="media">PowerPoint slide</xref>
</p>
</caption>
<graphic xlink:href="41579_2016_Article_BFnrmicro201681_Fig2_HTML" id="d29e484"></graphic>
</fig>
</p>
<p id="Par20">Thus, the search for the reservoir of MERS-CoV initially focused on bats, but a serological survey in dromedary camels from Oman and the Canary Islands showed a high prevalence of MERS-CoV-neutralizing antibodies in these animals
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. In addition, MERS-CoV RNA was detected in swabs that were collected from dromedary camels at a farm in Qatar that was linked to two human cases of MERS, and infectious virus was isolated from dromedary camels in Saudi Arabia and Qatar
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
. Serological evidence for the circulation of a MERS-CoV-like virus in dromedary camels has been obtained in the Middle East, Eastern Africa and Northern Africa, dating back as far as 1983 (Ref.
<xref ref-type="bibr" rid="CR33">33</xref>
). Dromedary camels in Saudi Arabia harbour several viral genetic lineages
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
, including those that have caused human outbreaks. Taken together, these data strongly point to the role of dromedary camels as a reservoir for MERS-CoV. The ubiquity of infected dromedary camels close to humans and the resulting continuing zoonotic transmission may explain why MERS-CoV continues to cause infections in humans, whereas SARS-CoV, without the continuing presence of an infected intermediate host and with relatively infrequent human–bat interactions, has caused no more infections in humans.</p>
<p id="Par21">Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly through nosocomial transmission; 43.5–100% of MERS cases in individual outbreaks were linked to hospitals, and very similar observations were made for some of the SARS clusters
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
. Transmission between family members occurred in only 13–21% of MERS cases and 22–39% of SARS cases. Transmission of MERS-CoV between patients was the most common route of infection (62–79% of cases), whereas for SARS-CoV, infection of health care workers by infected patients was very frequent (33–42%)
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. The predominance of nosocomial transmission is probably due to the fact that substantial virus shedding occurs only after the onset of symptoms
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
, when most patients are already seeking medical care
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. An analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of viral RNA in the environment for several days after patients no longer tested positive
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. Moreover, many patients with SARS or MERS were infected through
<xref rid="Glos4" ref-type="list">super spreaders</xref>
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
.</p>
</sec>
<sec id="Sec4">
<title>The pathogenesis of SARS-CoV and MERS-CoV</title>
<p id="Par22">The clinical courses of SARS and MERS are remarkably similar, although there are subtle differences (
<xref rid="Sec5" ref-type="sec">Box 1</xref>
). Owing to the current sparsity of data on human MERS-CoV infections
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
, the pathogenesis of this virus is poorly understood; however, similar mechanisms may underlie the pathogenesis of both MERS and SARS.</p>
<p id="Par23">The binding of spike protein to ACE2 and the subsequent downregulation of this receptor contribute to lung injury during SARS
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. Although it seems counterintuitive that receptor downregulation would increase pathology, it has been shown that ACE2 can protect against acute lung injury. The downregulation of ACE2 results in the excessive production of angiotensin II by the related enzyme ACE, and it has been suggested that the stimulation of type 1a angiotensin II receptor (AGTR1A) increases pulmonary vascular permeability, thus potentially explaining the increased lung pathology when the expression of ACE2 is decreased
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
.</p>
<p id="Par24">
<bold>
<italic>Immunopathology.</italic>
</bold>
The immune response is essential for the resolution of an infection, but it can also result in immunopathogenesis. One indication that immunopathogenesis may contribute to SARS was the observation that viral loads were found to be decreasing while disease severity increased
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
. It is unclear whether a similar trend applies to MERS
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
. Moreover, progression to
<xref rid="Glos5" ref-type="list">acute respiratory distress syndrome</xref>
(ARDS) is associated with the upregulation of pro-inflammatory cytokines and chemokines, particularly interleukin-1β (IL-1β), IL-8, IL-6, CXC-chemokine ligand 10 (CXCL10) and CC-chemokine ligand 2 (CCL2)
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
,
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
; increased plasma levels of these molecules have been detected in patients with SARS
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
,
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. Retrospective longitudinal studies in patients who recovered from SARS versus those who succumbed to the disease have shown an early expression of interferon-α (IFNα), IFNγ, CXCL10, CCL2 and proteins that are encoded by IFN-stimulated genes (ISGs) in all patients, but only patients who survived then had gene expression profiles that are indicative of the development of an adaptive immune response. By contrast, patients who succumbed maintained high levels of CXCL10, CCL2 and ISG-encoded proteins, whereas spike-specific antibodies were present at low levels or were absent
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
, which suggests that severe disease is related to the lack of a switch from an innate immune response to an adaptive immune response.</p>
<p id="Par25">Experiments using
<xref rid="Glos6" ref-type="list">Collaborative Cross mouse</xref>
lines and mouse-adapted SARS-CoV identified one host gene,
<italic>Trim55</italic>
, as important for SARS pathogenesis. Although there was no difference in clinical signs or viral replication in
<italic>Trim55</italic>
<sup>−/−</sup>
mice compared with wild-type mice,
<xref rid="Glos7" ref-type="list">perivascular cuffing</xref>
and the number of inflammatory cells in the lungs were reduced in the
<italic>Trim55</italic>
<sup>−/−</sup>
mice
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
.</p>
<p id="Par26">The involvement of the host immune response in the pathogenesis of SARS, and most likely also that of MERS, suggests that drugs which inhibit viral replication will need to be combined with treatments that control detrimental immune responses.</p>
<p id="Par27">
<bold>
<italic>Immune evasion.</italic>
</bold>
SARS-CoV and MERS-CoV use several strategies to avoid the innate immune response. Viral pathogen-associated molecular patterns (PAMPs), such as double-stranded RNA (dsRNA) or uncapped mRNA, are detected by pattern recognition receptors (PRRs), such as retinoic acid-inducible gene I protein (RIG-I; also known as DDX58) or melanoma differentiation-associated protein 5 (MDA5; also known as IFIH1)
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
. This triggers complex signalling cascades involving MYD88 that lead to the production of
<xref rid="Glos8" ref-type="list">type I IFNs</xref>
and the activation of the transcription factor nuclear factor-κB (NF-κB). In turn, active NF-κB induces the transcription of pro-inflammatory cytokines (
<xref rid="Fig3" ref-type="fig">Fig. 3a</xref>
). Type I IFNs signal through IFNα/β receptor (IFNAR) and downstream molecules such as signal transducer and activator of transcription (STAT) proteins to stimulate the production of antiviral proteins that are encoded by ISGs, such as IFN-induced protein with tetratricopeptide repeats 1 (IFIT1;
<xref rid="Fig3" ref-type="fig">Fig. 3b</xref>
). Collectively, this establishes an antiviral immune response that limits viral replication in infected and in neighbouring cells (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
).
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<title>Evasion of the innate immune response by SARS-CoV and MERS-CoV.</title>
<p>
<bold>a</bold>
| The innate immune response is activated by the detection of viral pathogen-associated molecular patterns (PAMPs), such as double-stranded RNA (dsRNA) or uncapped mRNA. This occurs via host pattern recognition receptors (PRRs), such as retinoic acid-inducible gene I protein (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), potentially via dsRNA-binding partners such as IFN-inducible dsRNA-dependent protein kinase activator A (PRKRA). Following PRR-mediated detection of a PAMP, the resulting interaction of PRRs with mitochondrial antiviral-signalling protein (MAVS) activates nuclear factor-κB (NF-κB) through a signalling cascade involving several kinases. Activated NF-κB translocates to the nucleus, where it induces the transcription of pro-inflammatory cytokines. The kinases also phosphorylate (P) IFN-regulatory factor 3 (IRF3) and IRF7, which form homodimers and heterodimers and enter the nucleus to initiate the transcription of type I interferons (type I IFNs). Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have developed mechanisms to interfere with these signalling pathways, as shown; these subversion strategies involve both structural proteins (membrane (M) and nucleocapsid (N)) and non-structural proteins (nsp1, nsp3b, nsp4a, nsp4b, nsp5, nsp6 and papain-like protease (PLpro); indicated in the figure by just their nsp numbers and letters).
<bold>b</bold>
| Binding of type I IFNs to their dimeric receptor, IFNα/β receptor (IFNAR), activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signalling pathway, in which JAK1 and TYK2 kinases phosphorylate STAT1 and STAT2, which form complexes with IRF9. These complexes move into the nucleus to initiate the transcription of IFN-stimulated genes (ISGs) under the control of promoters that contain an IFN-stimulated response element (ISRE). Collectively, the expression of cytokines, IFNs and ISGs establishes an antiviral innate immune response that limits viral replication in infected and in neighbouring cells. Again, viral proteins have been shown to inhibit these host signalling pathways to evade this immune response. IκBα, NF-κB inhibitor-α.</p>
<p>
<xref rid="MOESM8" ref-type="media">PowerPoint slide</xref>
</p>
</caption>
<graphic xlink:href="41579_2016_Article_BFnrmicro201681_Fig3_HTML" id="d29e698"></graphic>
</fig>
</p>
<p id="Par28">Infection of knockout mice revealed the importance of innate immunity. Infection of
<italic>Myd88</italic>
<sup>−/−</sup>
and
<italic>Stat1</italic>
<sup>−/−</sup>
mice, but not mice that were deficient in IFN receptors, with a mouse-adapted strain of SARS-CoV resulted in more severe disease than infection with a non-adapted SARS-CoV strain
<sup>
<xref ref-type="bibr" rid="CR59">59</xref>
,
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
. Moreover, MERS-CoV infection of wild-type mice that were transduced with human DPP4 caused mild disease, but symptoms were more severe in
<italic>Myd88</italic>
<sup>−/−</sup>
mice and
<italic>Ifnar1</italic>
<sup>−/−</sup>
mice
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
.</p>
<p id="Par29">SARS-CoV and MERS-CoV avoid host detection of their dsRNA by replicating in virus-induced double-membrane vesicles that lack PRRs
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
. Moreover, the recognition of SARS-CoV mRNAs, for example, by MDA5 and IFIT1 is prevented by capping of the viral mRNAs by nsp14 and the nsp10–nsp16 complex
<sup>
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
. Recombinant SARS-CoV that lacks the methylation activity of nsp16 is attenuated and exhibits increased sensitivity to type I IFNs. This effect is dependent on IFIT1 or MDA5, as the same virus is not attenuated in mice that are deficient in either molecule
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
. Although mRNA capping has not yet been shown for MERS-CoV, structural similarity between the MERS-CoV nsp10–nsp16 complex and the SARS-CoV nsp10–nsp16 complex suggests that a similar mechanism exists to avoid host recognition of MERS-CoV mRNAs by cytosolic PRRs
<sup>
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
.</p>
<p id="Par30">SARS-CoV encodes at least eight proteins that interact with the signalling cascades downstream of PRRs; in MERS-CoV, several proteins have been identified with similar functions (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
). The nucleocapsid protein of SARS-CoV has been associated with the suppression of
<xref rid="Glos9" ref-type="list">RNAi</xref>
in mammalian cells
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
. Furthermore, this protein antagonizes IFN induction, probably early in the signalling cascade, as downstream signalling molecules relieve the inhibition
<sup>
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
. MERS-CoV ORF4a has a similar IFN-antagonistic function, involving the binding of dsRNA and subsequent inhibition of MDA5 activation
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
</sup>
, potentially through interaction with IFN-inducible dsRNA-dependent protein kinase activator A (PRKRA; also known as PACT), which interacts with MDA5 and RIG-I
<sup>
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
. Moreover, MERS-CoV ORF4a, ORF4b, ORF5 and membrane protein inhibit the nuclear trafficking of IFN-regulatory factor 3 (IRF3) and activation of the
<italic>IFNB</italic>
promoter
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
. These viral proteins, except for ORF5, also inhibit the expression of genes that are under the control of an IFN-stimulated response element (ISRE), and ORF4a reduces the expression of genes that are stimulated by NF-κB
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
. Finally, MERS-CoV ORF4b interacts with TBK1 and inhibitor of NF-κB kinase-ɛ (IKKɛ), thereby suppressing the interaction between IKKɛ and mitochondrial antiviral-signalling protein (MAVS) and inhibiting the phosphorylation of IRF3 (Ref.
<xref ref-type="bibr" rid="CR72">72</xref>
).</p>
<p id="Par31">The membrane protein of SARS-CoV inhibits the formation of a signalling complex that contains IKKɛ, thus repressing the activation of IRF3 and IRF7 and their induction of type I IFN expression. The membrane protein of MERS-CoV inhibits IRF3 function and the expression of genes that are regulated by an ISRE, including IFNβ
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
, but whether this occurs through a mechanism similar to that of SARS-CoV is unclear.</p>
<p id="Par32">SARS-CoV PLpro disrupts NF-κB signalling
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
and blocks the phosphorylation of IRF3 indirectly
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
,
<xref ref-type="bibr" rid="CR74">74</xref>
</sup>
. Furthermore, SARS-CoV PLpro inhibits the induction of type I IFNs, potentially through the deubiquitylation of phosphorylated IRF3 (Refs
<xref ref-type="bibr" rid="CR73">73</xref>
,
<xref ref-type="bibr" rid="CR75">75</xref>
). Similar functions have been described for MERS-CoV PLpro
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
.</p>
<p id="Par33">Experiments involving recombinantly expressed proteins,
<italic>in vitro</italic>
translation, protein overexpression and
<xref rid="Glos10" ref-type="list">minireplicon systems</xref>
have shown that nsp1 of SARS-CoV blocks the IFN response through the inhibition of STAT1, degradation of host mRNAs and inactivation of the host translational machinery through a tight association with the 40S ribosomal subunit
<sup>
<xref ref-type="bibr" rid="CR77">77</xref>
,
<xref ref-type="bibr" rid="CR78">78</xref>
,
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
. Nsp1 of MERS-CoV also inhibits the translation of mRNAs and induces mRNA degradation, although the translational inhibition is achieved through a different mechanism than ribosome binding, which selectively targets the translation of nuclear mRNAs and thereby spares cytoplasmic viral mRNAs
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
.</p>
<p id="Par34">SARS-CoV ORF3b inhibits the production of type I IFN, the phosphorylation of IRF3 and gene expression from an ISRE promoter
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR83">83</xref>
</sup>
. SARS-CoV ORF6 also blocks the nuclear translocation of STAT1 (Ref.
<xref ref-type="bibr" rid="CR83">83</xref>
).</p>
<p id="Par35">Both nsp7 and nsp15 from SARS-CoV were also suggested to be IFN antagonists, but the underlying mechanism is unknown
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
. nsp15 is an inhibitor of MAVS-induced apoptosis; however, this occurs through an IFN-independent mechanism
<sup>
<xref ref-type="bibr" rid="CR84">84</xref>
</sup>
. Finally, transcriptomic and proteomic analysis of human airway cell cultures showed that MERS-CoV but not SARS-CoV induces repressive histone modifications that downregulate the expression of certain ISGs
<sup>
<xref ref-type="bibr" rid="CR85">85</xref>
</sup>
.</p>
<p id="Par36">It should be noted that most of the interactions of SARS-CoV and MERS-CoV proteins with innate immune pathways were established in
<italic>in vitro</italic>
systems, which rely on the overexpression of viral and, sometimes, cellular proteins, and these interactions have rarely been confirmed in the context of viral replication
<italic>in vitro</italic>
or
<italic>in vivo</italic>
.</p>
<sec id="Sec5">
<boxed-text>
<label>Box 1: Clinical features of SARS and MERS</label>
<p id="Par37">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have an incubation period of ∼5 days, and 95% of patients develop disease within 13 days of exposure
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR145">145</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
</sup>
. Common early symptoms are fever, chills, coughing, malaise, myalgia and headache, and less common symptoms include diarrhoea, vomiting and nausea
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
,
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
</sup>
. Upper respiratory tract symptoms and viral shedding are rare, which explains difficulties in obtaining a laboratory diagnosis from nasal or nasopharyngeal swabs
<sup>
<xref ref-type="bibr" rid="CR149">149</xref>
</sup>
. Abnormal chest X-rays are more common in patients with MERS (90–100%)
<sup>
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
</sup>
than in those with SARS (60–100%)
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
</sup>
. Accordingly, only 20–30% of patients with SARS require intensive care and subsequent mechanical ventilation, whereas 50–89% of patients with MERS require intensive care
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
</sup>
. The higher incidence of acute respiratory distress syndrome (ARDS) in individuals with MERS is reflected in the case fatality rate: this is ∼36% for MERS compared with ∼10% for SARS
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR145">145</xref>
</sup>
.</p>
<p id="Par38">Comorbidities have an important role in both SARS and MERS. Several risk factors are associated with poor disease outcome, especially advanced age and male sex
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
,
<xref ref-type="bibr" rid="CR150">150</xref>
,
<xref ref-type="bibr" rid="CR151">151</xref>
</sup>
. For MERS, additional risk factors for a poor outcome include diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
,
<xref ref-type="bibr" rid="CR150">150</xref>
,
<xref ref-type="bibr" rid="CR151">151</xref>
</sup>
.</p>
<p id="Par39">Health care settings seem to increase the risk of viral transmission owing to aerosol-generating procedures such as intubation and bronchoscopy. Appropriate hospital hygiene practices and awareness are crucial to limit future nosocomial outbreaks.</p>
</boxed-text>
</sec>
</sec>
<sec id="Sec6">
<title>Treatment of severe coronavirus infections</title>
<p id="Par40">Several strategies are being considered to treat infections with MERS-CoV (
<xref rid="Tab1" ref-type="table">Table 1</xref>
) and SARS-CoV, including the use of antibodies, IFNs, inhibitors of viral and host proteases, and host-directed therapies.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<title>Potential therapeutics for MERS</title>
<p>
<xref rid="MOESM9" ref-type="media">PowerPoint slide</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Treatment</th>
<th>Stage of development</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host protease inhibitors</td>
<td>
<italic>In vitro</italic>
inhibition</td>
<td>
<xref ref-type="bibr" rid="CR132">132</xref>
</td>
</tr>
<tr>
<td>Viral protease inhibitors</td>
<td>
<italic>In vitro</italic>
inhibition</td>
<td>
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR112">112</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
,
<xref ref-type="bibr" rid="CR114">114</xref>
</td>
</tr>
<tr>
<td>Repurposed FDA-approved drugs</td>
<td>
<italic>In vitro</italic>
inhibition</td>
<td>
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
</td>
</tr>
<tr>
<td>Monoclonal and polyclonal antibodies</td>
<td>Effective in mouse, rabbit and non-human primate models</td>
<td>
<xref ref-type="bibr" rid="CR118">118</xref>
,
<xref ref-type="bibr" rid="CR119">119</xref>
,
<xref ref-type="bibr" rid="CR120">120</xref>
,
<xref ref-type="bibr" rid="CR121">121</xref>
,
<xref ref-type="bibr" rid="CR123">123</xref>
,
<xref ref-type="bibr" rid="CR124">124</xref>
,
<xref ref-type="bibr" rid="CR125">125</xref>
,
<xref ref-type="bibr" rid="CR126">126</xref>
,
<xref ref-type="bibr" rid="CR127">127</xref>
,
<xref ref-type="bibr" rid="CR128">128</xref>
</td>
</tr>
<tr>
<td>Convalescent plasma</td>
<td>Effective in a mouse model; clinical trial approved</td>
<td>
<xref ref-type="bibr" rid="CR122">122</xref>
</td>
</tr>
<tr>
<td>Interferons</td>
<td>Effective in non-human primate models; off-label use in patients</td>
<td>
<xref ref-type="bibr" rid="CR87">87</xref>
,
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR98">98</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR101">101</xref>
,
<xref ref-type="bibr" rid="CR102">102</xref>
,
<xref ref-type="bibr" rid="CR103">103</xref>
,
<xref ref-type="bibr" rid="CR104">104</xref>
,
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR108">108</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>Effective in a non-human primate model; off-label use in patients</td>
<td>
<xref ref-type="bibr" rid="CR87">87</xref>
,
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR101">101</xref>
,
<xref ref-type="bibr" rid="CR102">102</xref>
,
<xref ref-type="bibr" rid="CR108">108</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>Failed to protect in a non-human primate model</td>
<td>
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
</td>
</tr>
<tr>
<td>Lopinavir and ritonavir</td>
<td>Effective in a non-human primate model; off-label use in patients</td>
<td>
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>MERS, Middle East respiratory syndrome.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par41">
<bold>
<italic>Current therapies.</italic>
</bold>
In the absence of a clinically proven effective antiviral therapy against SARS-CoV and MERS-CoV, patients mainly receive supportive care, which is often supplemented by different combinations of drugs.
<xref rid="Glos11" ref-type="list">Ribavirin</xref>
<sup>
<xref ref-type="bibr" rid="CR86">86</xref>
</sup>
and various types of IFN have been given to patients with MERS in Saudi Arabia
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
and China
<sup>
<xref ref-type="bibr" rid="CR88">88</xref>
</sup>
, typically in combination with a broad-spectrum antibiotic and oxygen. The efficacy of treatments for SARS-CoV and MERS-CoV infection currently remains unclear. In addition, treatment for MERS is typically started only in a late disease stage, when immunopathology predominates and antiviral drugs are likely to provide little benefit.</p>
<p id="Par42">Ribavirin was used most frequently during the SARS outbreak, often in combination with corticosteroids, which have an anti-inflammatory effect
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR91">91</xref>
,
<xref ref-type="bibr" rid="CR92">92</xref>
</sup>
. IFNα was also given, usually in combination with immunoglobulins or thymosins, which stimulate the development of T cells, and in a small number of cases in combination with ribavirin
<sup>
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
</sup>
. None of these treatments was tested in a clinical trial, which makes it difficult to assess their efficacy. In fact, retrospective analysis did not yield a treatment combination that was clearly effective. Moreover, the data from patients are contradictory about whether ribavirin, when used alone, provided a benefit or was possibly even detrimental
<sup>
<xref ref-type="bibr" rid="CR89">89</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
</sup>
.
<italic>In vitro</italic>
coronaviruses have a lower sensitivity to ribavirin than other viruses. Deletion of the nsp14-encoding sequence increases the sensitivity of coronaviruses to ribavirin; however, the underlying mechanism is unclear and is not related to the proofreading function of nsp14 (Ref.
<xref ref-type="bibr" rid="CR96">96</xref>
). Therefore, ribavirin should be considered only in combination with other antiviral treatments.</p>
<p id="Par43">Although IFNs are effective against MERS-CoV
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR98">98</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
, their effect in humans has yet to be proved. The effectiveness of IFN is increased
<italic>in vitro</italic>
if ribavirin is added
<sup>
<xref ref-type="bibr" rid="CR98">98</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
</sup>
, and a combined use of the two drugs reduces disease severity in a rhesus macaque model of MERS
<sup>
<xref ref-type="bibr" rid="CR101">101</xref>
</sup>
. The potential side effects of these treatments, such as fatigue, depression and anaemia, have inhibited their use as a first-line treatment for MERS, and they are generally administered only after a patient's condition starts to deteriorate. For example, one study of five patients who were infected with MERS-CoV indicated no survival following ribavirin and IFNα2b therapy; however, therapy was not started until 10 days after admission
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
. A separate study found an improvement in survival 14 days after MERS diagnosis and the start of treatment, but not 28 days after
<sup>
<xref ref-type="bibr" rid="CR102">102</xref>
</sup>
. In a third study, a combination of IFNα2a and ribavirin or IFNβ1a and ribavirin did not improve survival; however, some of the patients were more than 50 years old and had pre-existing renal failure
<sup>
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
. In a single case in which ribavirin and IFNα2b were started shortly after admission to hospital, the patient started to improve on day 6 after admission and made a complete recovery
<sup>
<xref ref-type="bibr" rid="CR104">104</xref>
</sup>
.</p>
<p id="Par44">IFNβ1b is a more potent inhibitor of MERS-CoV replication
<italic>in vitro</italic>
than other types of IFN
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
, and an improved outcome of disease was observed in common marmosets after challenge with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
. Thus, the type of IFN that is used for treatment in humans should be reconsidered (usually, IFNα is used). Furthermore, ribavirin and/or IFNs should be tested in clinical trials to determine their efficacy in MERS treatment and to establish treatment protocols.</p>
<p id="Par45">
<bold>
<italic>Additional antiviral treatments.</italic>
</bold>
The protease inhibitors lopinavir and ritonavir, which are used in combination to treat infection with HIV, improved the outcome of patients with SARS when combined with ribavirin, compared with patients who were treated with ribavirin alone
<sup>
<xref ref-type="bibr" rid="CR106">106</xref>
,
<xref ref-type="bibr" rid="CR107">107</xref>
</sup>
. Lopinavir showed no clear antiviral activity against MERS-CoV
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
</sup>
, and it is thus rarely used in patients with MERS. However, lopinavir and ritonavir improve the outcome in common marmosets when treatment is initiated 6 hours after infection with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
. Thus, the testing of lopinavir and ritonavir in clinical trials in patients with MERS should be reconsidered. One patient who received
<xref rid="Glos12" ref-type="list">pegylated</xref>
IFNα, ribavirin, lopinavir and ritonavir in combination had undetectable levels of MERS-CoV in the blood 2 days after the initiation of therapy; however, this patient did not survive
<sup>
<xref ref-type="bibr" rid="CR108">108</xref>
</sup>
. The combination of IFNα, ribavirin, lopinavir and ritonavir was also used for MERS treatment in South Korea, but efficacy data are not yet available. However, three case reports indicate recovery in five out of seven patients who were treated with this combination
<sup>
<xref ref-type="bibr" rid="CR109">109</xref>
,
<xref ref-type="bibr" rid="CR110">110</xref>
,
<xref ref-type="bibr" rid="CR111">111</xref>
</sup>
.</p>
<p id="Par46">As 3CLpro and PLpro are essential for cleavage of the viral polyproteins and are distinct from cellular proteases, they are ideal drug targets, in particular PLpro, which is involved in both viral replication and IFN antagonism. Indeed, most antiviral drug-like molecules have been developed against 3CLpro and PLpro, which was aided by the rapid report of crystal structures of these proteases
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
</sup>
.</p>
<p id="Par47">PLpro was initially identified as a drugable target for SARS-CoV; recently, it has been noted that some of the compounds that target PLpro from SARS-CoV are also active against PLpro from MERS-CoV. For example, both 6-mercaptopurine and 6-thioguanine inhibit MERS-CoV and SARS-CoV
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR113">113</xref>
</sup>
; however, the efficacy of these molecules has not yet been tested
<italic>in vivo</italic>
. Mycophenolic acid also inhibits the replication of MERS-CoV
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
through the inhibition of PLpro
<sup>
<xref ref-type="bibr" rid="CR113">113</xref>
</sup>
, but it had no effect in marmosets
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
.</p>
<p id="Par48">As new coronaviruses are likely to emerge from bats, protease inhibitors were designed against bat coronaviruses with the goal of developing a universal antiviral compound against emerging zoonotic coronaviruses. This approach yielded an inhibitor of Tylonycteris bat coronavirus HKU4 (HKU4-CoV), which is closely related to MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. This inhibitor, named SG85, indeed inhibits MERS-CoV replication
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
</sup>
. Similarly,
<xref rid="Glos13" ref-type="list">peptidomimetics</xref>
that target and inhibit 3CLpro of MERS-CoV, HKU4-CoV and Pipistrellus bat coronavirus HKU5 (HKU5-CoV) have also been identified, but have not yet progressed beyond the
<italic>in vitro</italic>
stage
<sup>
<xref ref-type="bibr" rid="CR114">114</xref>
</sup>
.</p>
<p id="Par49">Several other drugs that were approved for use in humans were shown to inhibit the replication of MERS-CoV
<italic>in vitro</italic>
, notably chloroquine, chlorpromazine, loperamide and cyclosporine A
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR113">113</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
</sup>
, although their mechanisms of action are unknown, and the benefit of cyclosporine A in patients is debatable owing to the immunosuppressive effect of the drug. Although cyclophilin inhibitors that do not result in immunosuppression are available, their activity against MERS-CoV has not yet been tested.</p>
<p id="Par50">
<bold>
<italic>Antibody and plasma therapy.</italic>
</bold>
Plasma from convalescent patients and/or antibody therapies have been the leading proposed treatment for MERS so far
<sup>
<xref ref-type="bibr" rid="CR116">116</xref>
</sup>
. There are several potential advantages to this approach. For example, as case numbers increase, the pool of survivors becomes larger; provided these individuals have sufficiently high antibody titres and are willing and able to donate plasma, this is a low-tech, reasonably safe treatment option. Furthermore, generation of monoclonal antibodies for use in humans is well established, with a fairly straightforward path to safety and efficacy testing. However, to date, there are very few reports on the use of convalescent plasma and none on the use of monoclonal antibodies as treatments for acute, severe respiratory disease in humans. A post hoc meta-analysis of 32 studies of either SARS or severe influenza found a significant reduction in the pooled odds of mortality when convalescent plasma was used
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
. However, study design was rated as low or very low quality, as there were generally a lack of control groups and a moderate-to-high risk of bias, which suggests that a properly designed clinical trial of convalescent plasma use in severe respiratory infections is needed
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
. Potent monoclonal antibodies that neutralize the MERS-COV spike protein
<italic>in vitro</italic>
have been developed
<sup>
<xref ref-type="bibr" rid="CR118">118</xref>
,
<xref ref-type="bibr" rid="CR119">119</xref>
,
<xref ref-type="bibr" rid="CR120">120</xref>
,
<xref ref-type="bibr" rid="CR121">121</xref>
</sup>
. However, with a few exceptions,
<italic>in vivo</italic>
data relating to the use of convalescent plasma or monoclonal antibodies in the treatment of MERS are currently lacking. Serum from high-titre dromedary camels decreased MERS-CoV loads in the lungs of mice that had been transduced with human DPP4 (Ref.
<xref ref-type="bibr" rid="CR122">122</xref>
). Human polyclonal antibodies against the spike protein were generated by vaccinating transchromosomic bovines, and treatment with these antibodies reduced viral titres in the lungs of DPP4-transduced mice when treatment was administered 24 or 48 hours after challenge with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR123">123</xref>
</sup>
. DPP4-transduced mice were also treated with humanized neutralizing monoclonal antibody 4C2h, which is directed against the receptor-binding domain of the MERS-CoV spike protein, 1 day after MERS-CoV challenge, and this treatment also decreased viral titres in the lungs
<sup>
<xref ref-type="bibr" rid="CR124">124</xref>
</sup>
, as did the neutralizing antibody LCA60, which was obtained from a convalescent patient and produced recombinantly
<sup>
<xref ref-type="bibr" rid="CR125">125</xref>
</sup>
. Human neutralizing monoclonal antibodies REGN3048 and REGN3051 also provided a benefit in mice that expressed human DPP4 and were challenged with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR126">126</xref>
</sup>
. The human neutralizing monoclonal antibody m332 reduced MERS-CoV replication in the lungs of rabbits following prophylactic, but not therapeutic, treatment
<sup>
<xref ref-type="bibr" rid="CR127">127</xref>
</sup>
. Treatment of rhesus macaques with the human monoclonal antibody 311B-N1 day after challenge resulted in reduced lung pathology
<sup>
<xref ref-type="bibr" rid="CR128">128</xref>
</sup>
. In all of these studies, viral replication was not completely inhibited, and there were some pathological alterations to the lungs, despite the therapy. Furthermore, none of the studies addressed the potential emergence of escape mutants
<italic>in vivo</italic>
.</p>
<p id="Par51">Alternatively, antibodies that target the region of DPP4 that binds to the spike protein could be used to prevent entry of MERS-CoV; this approach was successful
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR129">129</xref>
</sup>
. However, whether such a treatment would be feasible and would not have substantial adverse effects in humans remains to be determined.</p>
<p id="Par52">
<bold>
<italic>Host-directed therapies.</italic>
</bold>
Host-directed strategies can also limit viral replication. For example, the spike protein of SARS-CoV is cleaved by cathepsin B and cathepsin L, transmembrane protease serine 2 (TMPRSS2) and possibly other host proteases
<sup>
<xref ref-type="bibr" rid="CR130">130</xref>
,
<xref ref-type="bibr" rid="CR131">131</xref>
</sup>
. Inhibition of host serine proteases by camostat reduced the entry of SARS-CoV and increased survival in a mouse model
<sup>
<xref ref-type="bibr" rid="CR132">132</xref>
</sup>
. However, the targeting of host proteases is more likely to result in undesirable side effects than the targeting of viral proteases.</p>
<p id="Par53">Another underappreciated strategy is attenuation of detrimental host responses. The development of such treatments would require a thorough understanding of the host responses that are involved in acute lung injury and ARDS, processes that are unfortunately poorly understood at the moment. Nonetheless,
<italic>in vitro</italic>
studies and limited studies in animal models with other respiratory viruses have shown that
<xref rid="Glos14" ref-type="list">anaphylatoxin C5a</xref>
is important for the development of acute lung injury, and blocking anaphylatoxin C5a can reduce lung pathology
<sup>
<xref ref-type="bibr" rid="CR133">133</xref>
</sup>
.</p>
<p id="Par54">Changes in gene expression during
<italic>in vitro</italic>
MERS-CoV infection were used to predict potential effective drugs. One of the drugs with predicted efficacy, the kinase inhibitor SB203580, modestly inhibited SARS-CoV and MERS-CoV replication following the treatment of cells prior to infection, but treatment after infection inhibited replication of only SARS-CoV and not MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR134">134</xref>
</sup>
.</p>
<p id="Par55">
<bold>
<italic>Vaccines.</italic>
</bold>
Vaccination could be used to prevent infection or to reduce disease severity, viral shedding and thereby transmission, thus helping to control MERS outbreaks. Several vaccination strategies were developed against SARS-CoV and tested in animals, such as an inactivated virus, a live-attenuated virus, viral vectors,
<xref rid="Glos15" ref-type="list">subunit vaccines</xref>
, recombinant proteins and
<xref rid="Glos16" ref-type="list">DNA vaccines</xref>
<sup>
<xref ref-type="bibr" rid="CR135">135</xref>
,
<xref ref-type="bibr" rid="CR136">136</xref>
</sup>
. Similar approaches have been used for the development of experimental MERS-CoV vaccines
<sup>
<xref ref-type="bibr" rid="CR137">137</xref>
</sup>
. To date, three MERS-CoV vaccines have been evaluated in non-human primates. In one study, rhesus macaques were primed with DNA encoding the spike protein, followed by boosts with spike DNA and with recombinant protein consisting of the spike subunit containing the receptor-binding domain, or primed and boosted once with the subunit protein. Both approaches reduced pathological changes in lung function in animals that were infected with MERS-CoV 19 weeks after the last vaccination
<sup>
<xref ref-type="bibr" rid="CR138">138</xref>
</sup>
. Moreover, three vaccinations with a recombinantly expressed protein that contains the receptor-binding domain of the spike protein reduced viral loads and lung pathology in rhesus macaques that were infected 2 weeks after the last vaccination
<sup>
<xref ref-type="bibr" rid="CR139">139</xref>
</sup>
. Three DNA vaccinations with a construct encoding the full-length spike sequence reduced viral loads and pathology in the lungs after challenge with MERS-CoV 5 weeks after the last vaccination
<sup>
<xref ref-type="bibr" rid="CR140">140</xref>
</sup>
.</p>
<p id="Par56">One concern of vaccination in humans is vaccine-mediated enhancement of disease, a process in which the disease following infection is more severe in vaccinated individuals than in unvaccinated individuals. Although this was observed in only a small subset of vaccine studies that were carried out for SARS-CoV
<sup>
<xref ref-type="bibr" rid="CR136">136</xref>
</sup>
and has not yet been observed in any of the published MERS-CoV vaccine studies, it is an important concern. Moreover, it is unclear who to vaccinate against MERS-CoV, as healthy individuals seem to be at little risk of severe disease. Older patients or patients with underlying disease, who have the highest risk of severe MERS, would be important target populations. However, vaccination in such patients can be problematic owing to their poor immune responses, as has been established for influenza virus
<sup>
<xref ref-type="bibr" rid="CR141">141</xref>
</sup>
. In addition, vaccination of people with a high risk of exposure to MERS-CoV, such as health care workers, slaughterhouse workers and camel herders, is advisable
<sup>
<xref ref-type="bibr" rid="CR142">142</xref>
</sup>
.</p>
</sec>
<sec id="Sec7">
<title>Outlook</title>
<p id="Par57">As our understanding of the pathogenesis of emerging coronaviruses increases, so will the opportunities for the rational design of therapeutics that target viral replication or immunopathology. The rational design of new drugs and the repurposing of existing compounds have already resulted in the development of PLpro inhibitors and the identification of kinase inhibitors that inhibit the replication of SARS-CoV and MERS-CoV
<italic>in vitro</italic>
. However, only a few potential treatments have progressed past the identification of an effect
<italic>in vitro</italic>
, and
<italic>in vivo</italic>
studies to select the most promising treatment options are required. The development of several mouse models of MERS is thus an important step forward (
<xref rid="Sec8" ref-type="sec">Box 2</xref>
). Owing to the acute nature of MERS and the important role of immunopathology, combination therapies aimed at simultaneously inhibiting viral replication, limiting viral dissemination and dampening the host response are likely to yield the best results. Furthermore, treatment should be started as early as possible, rather than waiting until the patient has already developed extensive lung damage.</p>
<p id="Par58">The development of therapies against SARS and MERS needs to focus on testing in humans, in properly controlled clinical trials. The current non-standardized, uncontrolled approach to treatment is not informative and may not be beneficial to the patient. The recent Ebola outbreak has demonstrated that rapid clinical trial design and approval are possible and that exceptional situations call for deviations from normal procedures (
<xref rid="Sec9" ref-type="sec">Box 3</xref>
).</p>
<p id="Par59">While treatments are being developed and evaluated, the prevention of viral transmission is key to reducing the burden of MERS. The large proportion of nosocomial MERS-CoV infections indicates that preventive measures in hospitals are currently either not fully implemented or insufficient. Prevention of zoonotic transmission from dromedary camels is another possibility to decrease the number of MERS cases. The first vaccines against MERS-CoV have been tested in dromedary camels
<sup>
<xref ref-type="bibr" rid="CR140">140</xref>
,
<xref ref-type="bibr" rid="CR143">143</xref>
</sup>
; indeed, when camels were vaccinated with a modified vaccinia virus that expresses the MERS-CoV spike protein, subsequent challenge of these animals with MERS-CoV resulted in less viral shedding than in unvaccinated animals
<sup>
<xref ref-type="bibr" rid="CR143">143</xref>
</sup>
, thereby potentially limiting the transmission to naive animals or to humans. Certainly, there has been progress in the development of vaccines and therapies against emerging coronaviruses, but more research and rigorous testing is required if we are to successfully combat these novel pathogens.</p>
<sec id="Sec8">
<boxed-text>
<label>Box 2: Animal models</label>
<p id="Par60">Most of our understanding of the pathogenesis of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) comes from animal studies. Ideally, these models recapitulate all or specific aspects of human disease. Several mouse models have been established, for example by using mouse-adapted SARS coronavirus (SARS-CoV) or expressing human receptors in mice
<sup>
<xref ref-type="bibr" rid="CR152">152</xref>
</sup>
. Although it has been recognized that mice might poorly mimic specific human responses to infection, the availability of knockout and transgenic mice enables the targeted study of virus–host interactions. Several non-human primate models have been developed for SARS-CoV and MERS coronavirus (MERS-CoV)
<sup>
<xref ref-type="bibr" rid="CR152">152</xref>
</sup>
. The close relationship of non-human primates to humans often allows faithful recapitulation of a disease and the host response. However, these benefits are countered by the need for specialized husbandry, the sometimes limited availability of the animals and reagents, and high costs.</p>
<p id="Par61">The pathogenesis of SARS-CoV and MERS-CoV in their respective reservoir hosts is not nearly as well studied as that in humans. Currently, only one experimental-infection study has been carried out in bats with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR153">153</xref>
</sup>
, and none has been carried out for other coronaviruses. Thus, data are mostly limited to the detection of coronaviruses in naturally infected bats. The detection of coronaviruses mainly in faecal samples from bats and not in oral swabs suggests that replication in bats occurs predominantly in the gastrointestinal tract
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR154">154</xref>
,
<xref ref-type="bibr" rid="CR155">155</xref>
</sup>
. By contrast, a combination of intratracheal and intranasal inoculation of masked palm civets with SARS-CoV resulted in interstitial pneumonia, with oral and rectal viral shedding
<sup>
<xref ref-type="bibr" rid="CR156">156</xref>
</sup>
.</p>
<p id="Par62">The pathogenesis of MERS-CoV in dromedary camels has been studied experimentally in a limited number of animals. These animals developed transient mild disease; however, large quantities of MERS-CoV were shed from the upper respiratory tract, in line with the predominant replication of MERS-CoV in the nasal turbinates and larynx in these animals, which explains the frequent zoonotic transmission
<sup>
<xref ref-type="bibr" rid="CR157">157</xref>
</sup>
.</p>
</boxed-text>
</sec>
<sec id="Sec9">
<boxed-text>
<label>Box 3: Preparing for emerging viruses: lessons from SARS-CoV, MERS-CoV and Ebola virus</label>
<p id="Par63">When the severe acute respiratory syndrome (SARS) outbreak developed into the first pandemic of the twenty-first century, it became clear that the medical and scientific communities were not adequately prepared for the emergence of highly pathogenic viruses. Whereas several months elapsed and several thousand cases of SARS were observed before the causative agent was identified as SARS coronavirus (SARS-CoV)
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
, subsequent advances in molecular diagnostic tools, such as next generation sequencing, meant that Middle East respiratory syndrome coronavirus (MERS-CoV) was identified before it caused a large outbreak of MERS
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. The availability of the full-length genome of MERS-CoV enabled the rapid development and distribution of diagnostic assays. The first animal models of disease, several treatment efficacy studies and the identification of the reservoir followed soon after. Unfortunately, the SARS pandemic did not yield solid clinical data on the efficacy of treatment regimens. These data are urgently needed for the treatment of MERS, as well as to prepare for novel coronaviruses that may emerge. Several studies have used synthetic biology to study the zoonotic transmission potential of SARS-CoV-like viruses from bats
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR158">158</xref>
,
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
.</p>
<p id="Par64">The Ebola virus outbreak in West Africa has highlighted the need for fast-tracking of potential treatments, as several clinical trials were started only towards the end of the outbreak. The combined experiences of the outbreaks of SARS, MERS and Ebola provide a blueprint for the response to emerging pathogens: after the identification of the causative agent, diagnostic assays need to be developed and distributed rapidly, and simultaneously, awareness of the new syndrome and reporting of (suspected) cases must be increased. In addition, infection control measures in health care facilities are essential. Research needs to focus on understanding the epidemiology, including pathogen transmission and identification of the reservoir and/or intermediate hosts. Animal models need to be developed, as well as therapeutic and prophylactic measures. Finally, promising treatments need to be fast-tracked into clinical trials.</p>
</boxed-text>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec10">
<title>PowerPoint slides</title>
<p id="Par66">
<media position="anchor" xlink:href="41579_2016_BFnrmicro201681_MOESM6_ESM.ppt" id="MOESM6">
<caption>
<p>PowerPoint slide for Fig. 1</p>
</caption>
</media>
<media position="anchor" xlink:href="41579_2016_BFnrmicro201681_MOESM7_ESM.ppt" id="MOESM7">
<caption>
<p>PowerPoint slide for Fig. 2</p>
</caption>
</media>
<media position="anchor" xlink:href="41579_2016_BFnrmicro201681_MOESM8_ESM.ppt" id="MOESM8">
<caption>
<p>PowerPoint slide for Fig. 3</p>
</caption>
</media>
</p>
<p id="Par67">
<media position="anchor" xlink:href="41579_2016_BFnrmicro201681_MOESM9_ESM.ppt" id="MOESM9">
<caption>
<p>PowerPoint slide for Table 1</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<ack>
<title>Acknowledgements</title>
<p>The work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health.</p>
</ack>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par65">The authors declare no competing financial interests.</p>
</notes>
<glossary>
<title>Glossary</title>
<def-list>
<def-item id="Glos1">
<term>Nosocomial transmission</term>
<def>
<p>Transmission of an infectious agent by staff, equipment or the environment in a health care setting.</p>
</def>
</def-item>
<def-item id="Glos2">
<term>Proofreading</term>
<def>
<p>The correction of errors that are acquired during the replication of DNA or RNA.</p>
</def>
</def-item>
<def-item id="Glos3">
<term>ER–Golgi intermediate compartment</term>
<def>
<p>(ERGIC). A cellular compartment that facilitates transport between the endoplasmic reticulum (ER) and the Golgi complex.</p>
</def>
</def-item>
<def-item id="Glos4">
<term>Super spreaders</term>
<def>
<p>Infected individuals who each infect a disproportionately large number of secondary cases.</p>
</def>
</def-item>
<def-item id="Glos5">
<term>Acute respiratory distress syndrome</term>
<def>
<p>(ARDS). A life-threatening condition in which the accumulation of fluid and inflammatory cells in the lungs decreases the exchange of oxygen and carbon dioxide to dangerously low levels.</p>
</def>
</def-item>
<def-item id="Glos6">
<term>Collaborative Cross mouse</term>
<def>
<p>One of a panel of recombinant inbred mouse strains derived from a genetically diverse set of founder strains and designed for the analysis of complex traits.</p>
</def>
</def-item>
<def-item id="Glos7">
<term>Perivascular cuffing</term>
<def>
<p>The aggregation of leukocytes around blood vessels.</p>
</def>
</def-item>
<def-item id="Glos8">
<term>Type I IFNs</term>
<def>
<p>(Type I interferons). A group of IFNs, including IFNα and IFNβ, with immune-modulating and antiviral functions.</p>
</def>
</def-item>
<def-item id="Glos9">
<term>RNAi</term>
<def>
<p>A biological process in which small RNA molecules induce the degradation of specific mRNA molecules, thereby inhibiting gene expression.</p>
</def>
</def-item>
<def-item id="Glos10">
<term>Minireplicon systems</term>
<def>
<p>Systems in which a DNA molecule is produced that contains the viral leader and trailer sequences, with an assayable reporter replacing the viral ORFs. When combined with the expression of viral proteins in
<italic>trans</italic>
, this system can be used to model the viral life cycle without the necessity of using infectious virus.</p>
</def>
</def-item>
<def-item id="Glos11">
<term>Ribavirin</term>
<def>
<p>A broadly active antiviral nucleoside analogue with several direct and indirect mechanisms of action; mainly used for the treatment of hepatitis C, in combination with interferon.</p>
</def>
</def-item>
<def-item id="Glos12">
<term>Pegylated</term>
<def>
<p>Having polyethylene glycol (PEG) attached, to a drug for example; this moiety improves the solubility, decreases the immunogenicity and increases the stability, of the drug of interest, thereby allowing a reduced dosing frequency to be used.</p>
</def>
</def-item>
<def-item id="Glos13">
<term>Peptidomimetics</term>
<def>
<p>Compounds that mimic biologically active peptides or proteins.</p>
</def>
</def-item>
<def-item id="Glos14">
<term>Anaphylatoxin C5a</term>
<def>
<p>A complement-activated molecule that is important for the recruitment to and activation of inflammatory cells in the lungs.</p>
</def>
</def-item>
<def-item id="Glos15">
<term>Subunit vaccines</term>
<def>
<p>Vaccines that contain immunogenic parts of a pathogen rather than the entire pathogen.</p>
</def>
</def-item>
<def-item id="Glos16">
<term>DNA vaccines</term>
<def>
<p>Vaccines based on the direct introduction of a plasmid encoding an antigen; following
<italic>in situ</italic>
production of this antigen, an immune response is mounted against it.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>NS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>362</volume>
<fpage>1353</fpage>
<lpage>1358</lpage>
<pub-id pub-id-type="pmid">14585636</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A major outbreak of severe acute respiratory syndrome in Hong Kong</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>348</volume>
<fpage>1986</fpage>
<lpage>1994</lpage>
<pub-id pub-id-type="pmid">12682352</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>363</volume>
<fpage>99</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">14726162</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a novel coronavirus in patients with severe acute respiratory syndrome</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>348</volume>
<fpage>1967</fpage>
<lpage>1976</lpage>
<pub-id pub-id-type="pmid">12690091</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ksiazek</surname>
<given-names>TG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel coronavirus associated with severe acute respiratory syndrome</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>348</volume>
<fpage>1953</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="pmid">12690092</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coronavirus as a possible cause of severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1319</fpage>
<lpage>1325</lpage>
<pub-id pub-id-type="pmid">12711465</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7</label>
<mixed-citation publication-type="other">WHO. Summary of probably SARS cases with onset of illness from 1 November 2002 to 31 July 2003.
<italic>WHO</italic>
,
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/sars/country/table2004_04_21/en/">http://www.who.int/csr/sars/country/table2004_04_21/en/</ext-link>
(2004).</mixed-citation>
</ref>
<ref id="CR8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SARS-CoV infection in a restaurant from palm civet</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2005</year>
<volume>11</volume>
<fpage>1860</fpage>
<lpage>1865</lpage>
<pub-id pub-id-type="pmid">16485471</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ge</surname>
<given-names>XY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor</article-title>
<source>Nature</source>
<year>2013</year>
<volume>503</volume>
<fpage>535</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="pmid">24172901</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence</article-title>
<source>Nat. Med.</source>
<year>2015</year>
<volume>21</volume>
<fpage>1508</fpage>
<lpage>1513</lpage>
<pub-id pub-id-type="pmid">26552008</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N. Engl. J. Med.</source>
<year>2012</year>
<volume>367</volume>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hijawi</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation</article-title>
<source>East. Mediterr. Health J.</source>
<year>2013</year>
<volume>19</volume>
<issue>Suppl. 1</issue>
<fpage>S12</fpage>
<lpage>S18</lpage>
<pub-id pub-id-type="pmid">23888790</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wise</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Patient with new strain of coronavirus is treated in intensive care at London hospital</article-title>
<source>BMJ</source>
<year>2012</year>
<volume>345</volume>
<fpage>e6455</fpage>
<pub-id pub-id-type="pmid">23008211</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14</label>
<mixed-citation publication-type="other">Korea Centers for Disease Control and Prevention. Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015.
<italic>Osong Public Health Res. Perspect.</italic>
<bold>6</bold>
, 269–278 (2015).</mixed-citation>
</ref>
<ref id="CR15">
<label>15</label>
<mixed-citation publication-type="other">WHO. Coronavirus infections: disease outbreak news.
<italic>WHO</italic>
,
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/26-april-2016-mers-saudi-arabia/en/">http://www.who.int/csr/don/26-april-2016-mers-saudi-arabia/en/</ext-link>
(2016).</mixed-citation>
</ref>
<ref id="CR16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasternak</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Spaan</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Nidovirus transcription: how to make sense...?</article-title>
<source>J. Gen. Virol.</source>
<year>2006</year>
<volume>87</volume>
<fpage>1403</fpage>
<lpage>1421</lpage>
<pub-id pub-id-type="pmid">16690906</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Netland</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Coronaviruses post-SARS: update on replication and pathogenesis</article-title>
<source>Nat. Rev. Microbiol.</source>
<year>2009</year>
<volume>7</volume>
<fpage>439</fpage>
<lpage>450</lpage>
<pub-id pub-id-type="pmid">19430490</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fehr</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Coronaviruses: an overview of their replication and pathogenesis</article-title>
<source>Methods Mol. Biol.</source>
<year>2015</year>
<volume>1282</volume>
<fpage>1</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">25720466</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knoops</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum</article-title>
<source>PLoS Biol.</source>
<year>2008</year>
<volume>6</volume>
<fpage>e226</fpage>
<pub-id pub-id-type="pmid">18798692</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage</article-title>
<source>J. Mol. Biol.</source>
<year>2003</year>
<volume>331</volume>
<fpage>991</fpage>
<lpage>1004</lpage>
<pub-id pub-id-type="pmid">12927536</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eckerle</surname>
<given-names>LD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Infidelity of SARS-CoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing</article-title>
<source>PLoS Pathog.</source>
<year>2010</year>
<volume>6</volume>
<fpage>e1000896</fpage>
<pub-id pub-id-type="pmid">20463816</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sevajol</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Subissi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Decroly</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Canard</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Imbert</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus</article-title>
<source>Virus Res.</source>
<year>2014</year>
<volume>194</volume>
<fpage>90</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">25451065</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Masters</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Fields Virology</source>
<year>2013</year>
<fpage>825</fpage>
<lpage>858</lpage>
</element-citation>
</ref>
<ref id="CR25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China</article-title>
<source>Science</source>
<year>2003</year>
<volume>302</volume>
<fpage>276</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="pmid">12958366</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>LF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Review of bats and SARS</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2006</year>
<volume>12</volume>
<fpage>1834</fpage>
<lpage>1840</lpage>
<pub-id pub-id-type="pmid">17326933</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drexler</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS</article-title>
<source>Antiviral Res.</source>
<year>2014</year>
<volume>101</volume>
<fpage>45</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">24184128</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: a comparative serological study</article-title>
<source>Lancet Infect. Dis.</source>
<year>2013</year>
<volume>13</volume>
<fpage>859</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="pmid">23933067</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
<source>Lancet Infect. Dis.</source>
<year>2014</year>
<volume>14</volume>
<fpage>140</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">24355866</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azhar</surname>
<given-names>EI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence for camel-to-human transmission of MERS coronavirus</article-title>
<source>N. Engl. J. Med.</source>
<year>2014</year>
<volume>370</volume>
<fpage>2499</fpage>
<lpage>2505</lpage>
<pub-id pub-id-type="pmid">24896817</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS coronavirus in dromedary camel herd, Saudi Arabia</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2014</year>
<volume>20</volume>
<fpage>1231</fpage>
<lpage>1234</lpage>
<pub-id pub-id-type="pmid">24964193</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2014</year>
<volume>20</volume>
<fpage>1339</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="pmid">25075761</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2014</year>
<volume>20</volume>
<fpage>2093</fpage>
<lpage>2095</lpage>
<pub-id pub-id-type="pmid">25425139</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sabir</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<fpage>81</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">26678874</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study</article-title>
<source>BMC Med.</source>
<year>2015</year>
<volume>13</volume>
<fpage>210</fpage>
<pub-id pub-id-type="pmid">26336062</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunter</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2016</year>
<volume>22</volume>
<fpage>647</fpage>
<lpage>656</lpage>
<pub-id pub-id-type="pmid">26981708</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic</article-title>
<source>Philos. Trans. R. Soc. Lond. B. Biol. Sci.</source>
<year>2004</year>
<volume>359</volume>
<fpage>1091</fpage>
<lpage>1105</lpage>
<pub-id pub-id-type="pmid">15306395</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015</article-title>
<source>Euro Surveill.</source>
<year>2015</year>
<volume>20</volume>
<fpage>7</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">26132767</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1767</fpage>
<lpage>1772</lpage>
<pub-id pub-id-type="pmid">12781535</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bin</surname>
<given-names>SY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea</article-title>
<source>Clin. Infect. Dis.</source>
<year>2015</year>
<volume>62</volume>
<fpage>755</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="pmid">26679623</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucharski</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Althaus</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission</article-title>
<source>Euro Surveill.</source>
<year>2015</year>
<volume>20</volume>
<fpage>14</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">26132768</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015</article-title>
<source>J. Korean Med. Sci.</source>
<year>2015</year>
<volume>30</volume>
<fpage>1701</fpage>
<lpage>1705</lpage>
<pub-id pub-id-type="pmid">26539018</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS, SARS, and Ebola: the role of super-spreaders in infectious disease</article-title>
<source>Cell Host Microbe</source>
<year>2015</year>
<volume>18</volume>
<fpage>398</fpage>
<lpage>401</lpage>
<pub-id pub-id-type="pmid">26468744</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014</article-title>
<source>Am. J. Pathol.</source>
<year>2016</year>
<volume>186</volume>
<fpage>652</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="pmid">26857507</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuba</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury</article-title>
<source>Nat. Med.</source>
<year>2005</year>
<volume>11</volume>
<fpage>875</fpage>
<lpage>879</lpage>
<pub-id pub-id-type="pmid">16007097</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imai</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiotensin-converting enzyme 2 protects from severe acute lung failure</article-title>
<source>Nature</source>
<year>2005</year>
<volume>436</volume>
<fpage>112</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">16001071</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>WK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome</article-title>
<source>Clin. Infect. Dis.</source>
<year>2004</year>
<volume>39</volume>
<fpage>1071</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="pmid">15472864</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Lancet Infect. Dis.</source>
<year>2013</year>
<volume>13</volume>
<fpage>745</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="pmid">23782859</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poissy</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases</article-title>
<source>J. Clin. Virol.</source>
<year>2014</year>
<volume>61</volume>
<fpage>275</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="pmid">25073585</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binnie</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>dos Santos</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Biomarkers in acute respiratory distress syndrome</article-title>
<source>Curr. Opin. Crit. Care</source>
<year>2014</year>
<volume>20</volume>
<fpage>47</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="pmid">24296379</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>The mercurial nature of neutrophils: still an enigma in ARDS?</article-title>
<source>Am. J. Physiol. Lung Cell. Mol. Physiol.</source>
<year>2014</year>
<volume>306</volume>
<fpage>L217</fpage>
<lpage>L230</lpage>
<pub-id pub-id-type="pmid">24318116</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baas</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Taubenberger</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Chong</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Chui</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Katze</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>SARS-CoV virus–host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>2006</year>
<volume>26</volume>
<fpage>309</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="pmid">16689659</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faure</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside?</article-title>
<source>PLoS ONE</source>
<year>2014</year>
<volume>9</volume>
<fpage>e88716</fpage>
<pub-id pub-id-type="pmid">24551142</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Chui</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Salto-Tellez</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients</article-title>
<source>Virus Res.</source>
<year>2009</year>
<volume>145</volume>
<fpage>260</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="pmid">19635508</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>NL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome</article-title>
<source>Clin. Chem.</source>
<year>2005</year>
<volume>51</volume>
<fpage>2333</fpage>
<lpage>2340</lpage>
<pub-id pub-id-type="pmid">16195357</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cameron</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome</article-title>
<source>J. Virol.</source>
<year>2007</year>
<volume>81</volume>
<fpage>8692</fpage>
<lpage>8706</lpage>
<pub-id pub-id-type="pmid">17537853</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gralinski</surname>
<given-names>LE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome wide identification of SARS-CoV susceptibility loci using the Collaborative Cross</article-title>
<source>PLoS Genet.</source>
<year>2015</year>
<volume>11</volume>
<fpage>e1005504</fpage>
<pub-id pub-id-type="pmid">26452100</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jensen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thomsen</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion</article-title>
<source>J. Virol.</source>
<year>2012</year>
<volume>86</volume>
<fpage>2900</fpage>
<lpage>2910</lpage>
<pub-id pub-id-type="pmid">22258243</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism</article-title>
<source>PLoS Pathog.</source>
<year>2010</year>
<volume>6</volume>
<fpage>e1000849</fpage>
<pub-id pub-id-type="pmid">20386712</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheahan</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV</article-title>
<source>PLoS Pathog.</source>
<year>2008</year>
<volume>4</volume>
<fpage>e1000240</fpage>
<pub-id pub-id-type="pmid">19079579</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>4970</fpage>
<lpage>4975</lpage>
<pub-id pub-id-type="pmid">24599590</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wilde</surname>
<given-names>AH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-coronavirus replication induces severe
<italic>in vitro</italic>
cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment</article-title>
<source>J. Gen. Virol.</source>
<year>2013</year>
<volume>94</volume>
<fpage>1749</fpage>
<lpage>1760</lpage>
<pub-id pub-id-type="pmid">23620378</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex</article-title>
<source>J. Virol.</source>
<year>2006</year>
<volume>80</volume>
<fpage>5927</fpage>
<lpage>5940</lpage>
<pub-id pub-id-type="pmid">16731931</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouvet</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
reconstitution of SARS-coronavirus mRNA cap methylation</article-title>
<source>PLoS Pathog.</source>
<year>2010</year>
<volume>6</volume>
<fpage>e1000863</fpage>
<pub-id pub-id-type="pmid">20421945</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>4251</fpage>
<lpage>4264</lpage>
<pub-id pub-id-type="pmid">24478444</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<name>
<surname>Debbink</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments</article-title>
<source>Virus Res.</source>
<year>2014</year>
<volume>194</volume>
<fpage>191</fpage>
<lpage>199</lpage>
<pub-id pub-id-type="pmid">25278144</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells</article-title>
<source>J. Virol.</source>
<year>2015</year>
<volume>89</volume>
<fpage>9029</fpage>
<lpage>9043</lpage>
<pub-id pub-id-type="pmid">26085159</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism</article-title>
<source>Virus Genes</source>
<year>2011</year>
<volume>42</volume>
<fpage>37</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">20976535</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niemeyer</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist</article-title>
<source>J. Virol.</source>
<year>2013</year>
<volume>87</volume>
<fpage>12489</fpage>
<lpage>12495</lpage>
<pub-id pub-id-type="pmid">24027320</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siu</surname>
<given-names>KL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>4866</fpage>
<lpage>4876</lpage>
<pub-id pub-id-type="pmid">24522921</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists</article-title>
<source>Protein Cell</source>
<year>2013</year>
<volume>4</volume>
<fpage>951</fpage>
<lpage>961</lpage>
<pub-id pub-id-type="pmid">24318862</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets</article-title>
<source>Sci. Rep.</source>
<year>2015</year>
<volume>5</volume>
<fpage>17554</fpage>
<pub-id pub-id-type="pmid">26631542</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frieman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ratia</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Mesecar</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling</article-title>
<source>J. Virol.</source>
<year>2009</year>
<volume>83</volume>
<fpage>6689</fpage>
<lpage>6705</lpage>
<pub-id pub-id-type="pmid">19369340</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Devaraj</surname>
<given-names>SG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus</article-title>
<source>J. Biol. Chem.</source>
<year>2007</year>
<volume>282</volume>
<fpage>32208</fpage>
<lpage>32221</lpage>
<pub-id pub-id-type="pmid">17761676</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matthews</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schafer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pham</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity</article-title>
<source>Virol. J.</source>
<year>2014</year>
<volume>11</volume>
<fpage>209</fpage>
<pub-id pub-id-type="pmid">25481026</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey-Elkin</surname>
<given-names>BA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression</article-title>
<source>J. Biol. Chem.</source>
<year>2014</year>
<volume>289</volume>
<fpage>34667</fpage>
<lpage>34682</lpage>
<pub-id pub-id-type="pmid">25320088</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage</article-title>
<source>PLoS Pathog.</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002433</fpage>
<pub-id pub-id-type="pmid">22174690</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamitani</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Narayanan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lokugamage</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Makino</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A two-pronged strategy to suppress host protein synthesis by SARS coronavirus nsp1 protein</article-title>
<source>Nat. Struct. Mol. Biol.</source>
<year>2009</year>
<volume>16</volume>
<fpage>1134</fpage>
<lpage>1140</lpage>
<pub-id pub-id-type="pmid">19838190</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kamitani</surname>
<given-names>W</given-names>
</name>
<name>
<surname>DeDiego</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Matsuura</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA</article-title>
<source>J. Virol.</source>
<year>2012</year>
<volume>86</volume>
<fpage>11128</fpage>
<lpage>11137</lpage>
<pub-id pub-id-type="pmid">22855488</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wathelet</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Orr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain</article-title>
<source>J. Virol.</source>
<year>2007</year>
<volume>81</volume>
<fpage>11620</fpage>
<lpage>11633</lpage>
<pub-id pub-id-type="pmid">17715225</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lokugamage</surname>
<given-names>KG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin</article-title>
<source>J. Virol.</source>
<year>2015</year>
<volume>89</volume>
<fpage>10970</fpage>
<lpage>10981</lpage>
<pub-id pub-id-type="pmid">26311885</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freundt</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lenardo</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>XN</given-names>
</name>
</person-group>
<article-title>Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein</article-title>
<source>J. Virol.</source>
<year>2009</year>
<volume>83</volume>
<fpage>6631</fpage>
<lpage>6640</lpage>
<pub-id pub-id-type="pmid">19403678</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kopecky-Bromberg</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Martinez-Sobrido</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Palese</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists</article-title>
<source>J. Virol.</source>
<year>2007</year>
<volume>81</volume>
<fpage>548</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="pmid">17108024</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lei</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MAVS-mediated apoptosis and its inhibition by viral proteins</article-title>
<source>PLoS ONE</source>
<year>2009</year>
<volume>4</volume>
<fpage>e5466</fpage>
<pub-id pub-id-type="pmid">19404494</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses</article-title>
<source>mBio</source>
<year>2014</year>
<volume>5</volume>
<fpage>e01174-14</fpage>
<pub-id pub-id-type="pmid">24846384</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graci</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Cameron</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Mechanisms of action of ribavirin against distinct viruses</article-title>
<source>Rev. Med. Virol.</source>
<year>2006</year>
<volume>16</volume>
<fpage>37</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="pmid">16287208</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Tawfiq</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Momattin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dib</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
</person-group>
<article-title>Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study</article-title>
<source>Int. J. Infect. Dis.</source>
<year>2014</year>
<volume>20</volume>
<fpage>42</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">24406736</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ling</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Clinical analysis of the first patient with imported Middle East respiratory syndrome in China</article-title>
<source>Zhonghua Wei Zhong Bing Ji Jiu Yi Xue</source>
<year>2015</year>
<volume>27</volume>
<fpage>630</fpage>
<lpage>634</lpage>
<pub-id pub-id-type="pmid">26255008</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Booth</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area</article-title>
<source>JAMA</source>
<year>2003</year>
<volume>289</volume>
<fpage>2801</fpage>
<lpage>2809</lpage>
<pub-id pub-id-type="pmid">12734147</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poutanen</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of severe acute respiratory syndrome in Canada</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>348</volume>
<fpage>1995</fpage>
<lpage>2005</lpage>
<pub-id pub-id-type="pmid">12671061</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>So</surname>
<given-names>LK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development of a standard treatment protocol for severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>361</volume>
<fpage>1615</fpage>
<lpage>1617</lpage>
<pub-id pub-id-type="pmid">12747883</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsang</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A cluster of cases of severe acute respiratory syndrome in Hong Kong</article-title>
<source>N. Engl. J. Med.</source>
<year>2003</year>
<volume>348</volume>
<fpage>1977</fpage>
<lpage>1985</lpage>
<pub-id pub-id-type="pmid">12671062</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loutfy</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study</article-title>
<source>JAMA</source>
<year>2003</year>
<volume>290</volume>
<fpage>3222</fpage>
<lpage>3228</lpage>
<pub-id pub-id-type="pmid">14693875</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China</article-title>
<source>J. Med. Microbiol.</source>
<year>2003</year>
<volume>52</volume>
<fpage>715</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="pmid">12867568</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>LY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2003</year>
<volume>9</volume>
<fpage>713</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">12781012</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Blanc</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Surdel</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Vignuzzi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Denison</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics</article-title>
<source>PLoS Pathog.</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003565</fpage>
<pub-id pub-id-type="pmid">23966862</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus</article-title>
<source>J. Infect.</source>
<year>2013</year>
<volume>67</volume>
<fpage>606</fpage>
<lpage>616</lpage>
<pub-id pub-id-type="pmid">24096239</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin</article-title>
<source>Sci. Rep.</source>
<year>2013</year>
<volume>3</volume>
<fpage>1686</fpage>
<pub-id pub-id-type="pmid">23594967</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hart</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays</article-title>
<source>J. Gen. Virol.</source>
<year>2014</year>
<volume>95</volume>
<fpage>571</fpage>
<lpage>577</lpage>
<pub-id pub-id-type="pmid">24323636</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baer</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2005</year>
<volume>326</volume>
<fpage>905</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="pmid">15607755</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques</article-title>
<source>Nat. Med.</source>
<year>2013</year>
<volume>19</volume>
<fpage>1313</fpage>
<lpage>1317</lpage>
<pub-id pub-id-type="pmid">24013700</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omrani</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study</article-title>
<source>Lancet Infect. Dis.</source>
<year>2014</year>
<volume>14</volume>
<fpage>1090</fpage>
<lpage>1095</lpage>
<pub-id pub-id-type="pmid">25278221</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalhoub</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study</article-title>
<source>J. Antimicrob. Chemother.</source>
<year>2015</year>
<volume>70</volume>
<fpage>2129</fpage>
<lpage>2132</lpage>
<pub-id pub-id-type="pmid">25900158</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khalid</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases</article-title>
<source>Antivir. Ther.</source>
<year>2015</year>
<volume>20</volume>
<fpage>87</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">24831606</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a non-human primate model of common marmoset</article-title>
<source>J. Infect. Dis.</source>
<year>2015</year>
<volume>212</volume>
<fpage>1904</fpage>
<lpage>1913</lpage>
<pub-id pub-id-type="pmid">26198719</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>KS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study</article-title>
<source>Hong Kong Med. J.</source>
<year>2003</year>
<volume>9</volume>
<fpage>399</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="pmid">14660806</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings</article-title>
<source>Thorax</source>
<year>2004</year>
<volume>59</volume>
<fpage>252</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="pmid">14985565</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanakis</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen</article-title>
<source>Int. J. Antimicrob. Agents</source>
<year>2014</year>
<volume>44</volume>
<fpage>528</fpage>
<lpage>532</lpage>
<pub-id pub-id-type="pmid">25288266</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome-coronavirus infection: a case report of serial computed tomographic findings in a young male patient</article-title>
<source>Korean J. Radiol</source>
<year>2016</year>
<volume>17</volume>
<fpage>166</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="pmid">26798230</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110</label>
<mixed-citation publication-type="other">Kim, U. J., Won, E. J., Kee, S. J., Jung, S. I. & Jang, H. C. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome: a case report.
<italic>Antivir. Ther.</italic>
10.3851/IMP3002 (2015).</mixed-citation>
</ref>
<ref id="CR111">
<label>111</label>
<mixed-citation publication-type="other">Rhee, J. Y., Hong, G. & Ryu, K. M. Clinical implications of five cases of Middle East respiratory syndrome coronavirus infection in South Korea Outbreak.
<italic>Jpn J. Infect. Dis.</italic>
10.7883/yoken.JJID.2015.445 (2016).</mixed-citation>
</ref>
<ref id="CR112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilgenfeld</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design</article-title>
<source>FEBS J.</source>
<year>2014</year>
<volume>281</volume>
<fpage>4085</fpage>
<lpage>4096</lpage>
<pub-id pub-id-type="pmid">25039866</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>KW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus</article-title>
<source>Antiviral Res.</source>
<year>2015</year>
<volume>115</volume>
<fpage>9</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="pmid">25542975</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomar</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ligand-induced dimerization of Middle East respiratory syndrome (MERS) coronavirus nsp5 protease (3CL
<sup>pro</sup>
): implications for nsp5 regulation and the development of antivirals</article-title>
<source>J. Biol. Chem.</source>
<year>2015</year>
<volume>290</volume>
<fpage>19403</fpage>
<lpage>19422</lpage>
<pub-id pub-id-type="pmid">26055715</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wilde</surname>
<given-names>AH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2014</year>
<volume>58</volume>
<fpage>4875</fpage>
<lpage>4884</lpage>
<pub-id pub-id-type="pmid">24841269</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116</label>
<mixed-citation publication-type="other">International Severe Acute Respiratory & Emerging Infection Consortium. Treatment of MERS-CoV: decision support tool.
<italic>International Severe Acute Respiratory & Emerging Infection Consortium</italic>
,
<ext-link ext-link-type="uri" xlink:href="https://isaric.tghn.org/site_media/media/articles/Decision_Support_Document_v1_1_20130729.pdf">https://isaric.tghn.org/site_media/media/articles/Decision_Support_Document_v1_1_20130729.pdf</ext-link>
(updated 29 July 2013).</mixed-citation>
</ref>
<ref id="CR117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mair-Jenkins</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis</article-title>
<source>J. Infect. Dis.</source>
<year>2015</year>
<volume>211</volume>
<fpage>80</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="pmid">25030060</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>7045</fpage>
<lpage>7053</lpage>
<pub-id pub-id-type="pmid">24719424</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein</article-title>
<source>Sci. Transl Med.</source>
<year>2014</year>
<volume>6</volume>
<fpage>234ra59</fpage>
<pub-id pub-id-type="pmid">24778414</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>XC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>E2018</fpage>
<lpage>E2026</lpage>
<pub-id pub-id-type="pmid">24778221</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>7796</fpage>
<lpage>7805</lpage>
<pub-id pub-id-type="pmid">24789777</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection</article-title>
<source>J. Virol.</source>
<year>2015</year>
<volume>89</volume>
<fpage>6117</fpage>
<lpage>6120</lpage>
<pub-id pub-id-type="pmid">25787284</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luke</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV
<italic>in vivo</italic>
</article-title>
<source>Sci. Transl Med.</source>
<year>2016</year>
<volume>8</volume>
<fpage>326ra21</fpage>
<pub-id pub-id-type="pmid">26888429</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein</article-title>
<source>Cell Res.</source>
<year>2015</year>
<volume>25</volume>
<fpage>1237</fpage>
<lpage>1249</lpage>
<pub-id pub-id-type="pmid">26391698</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corti</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2015</year>
<volume>112</volume>
<fpage>10473</fpage>
<lpage>10478</lpage>
<pub-id pub-id-type="pmid">26216974</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pascal</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2015</year>
<volume>112</volume>
<fpage>8738</fpage>
<lpage>8743</lpage>
<pub-id pub-id-type="pmid">26124093</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houser</surname>
<given-names>KV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prophylaxis with a MERS-CoV-specific human monoclonal antibody protects rabbits from MERS-CoV infection</article-title>
<source>J. Infect. Dis.</source>
<year>2016</year>
<volume>213</volume>
<fpage>1557</fpage>
<lpage>1561</lpage>
<pub-id pub-id-type="pmid">26941283</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>RF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012</article-title>
<source>Virology</source>
<year>2016</year>
<volume>490</volume>
<fpage>49</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="pmid">26828465</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohnuma</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody</article-title>
<source>J. Virol.</source>
<year>2013</year>
<volume>87</volume>
<fpage>13892</fpage>
<lpage>13899</lpage>
<pub-id pub-id-type="pmid">24067970</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elshabrawy</surname>
<given-names>HA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>4353</fpage>
<lpage>4365</lpage>
<pub-id pub-id-type="pmid">24501399</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glowacka</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response</article-title>
<source>J. Virol.</source>
<year>2011</year>
<volume>85</volume>
<fpage>4122</fpage>
<lpage>4134</lpage>
<pub-id pub-id-type="pmid">21325420</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protease inhibitors targeting coronavirus and filovirus entry</article-title>
<source>Antiviral Res.</source>
<year>2015</year>
<volume>116</volume>
<fpage>76</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">25666761</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The role of C5a in acute lung injury induced by highly pathogenic viral infections</article-title>
<source>Emerg. Microbes Infect.</source>
<year>2015</year>
<volume>4</volume>
<fpage>e28</fpage>
<pub-id pub-id-type="pmid">26060601</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Josset</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus</article-title>
<source>mBio</source>
<year>2013</year>
<volume>4</volume>
<fpage>e00165</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">23631916</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Donaldson</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>A decade after SARS: strategies for controlling emerging coronaviruses</article-title>
<source>Nat. Rev. Microbiol.</source>
<year>2013</year>
<volume>11</volume>
<fpage>836</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="pmid">24217413</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roper</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Rehm</surname>
<given-names>KE</given-names>
</name>
</person-group>
<article-title>SARS vaccines: where are we?</article-title>
<source>Expert Rev. Vaccines</source>
<year>2009</year>
<volume>8</volume>
<fpage>887</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="pmid">19538115</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome: current status and future prospects for vaccine development</article-title>
<source>Expert Opin. Biol. Ther.</source>
<year>2015</year>
<volume>15</volume>
<fpage>1647</fpage>
<lpage>1651</lpage>
<pub-id pub-id-type="pmid">26414077</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of candidate vaccine approaches for MERS-CoV</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>7712</fpage>
<pub-id pub-id-type="pmid">26218507</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge</article-title>
<source>EBioMedicine</source>
<year>2015</year>
<volume>2</volume>
<fpage>1438</fpage>
<lpage>1446</lpage>
<pub-id pub-id-type="pmid">26629538</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthumani</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates</article-title>
<source>Sci. Transl Med.</source>
<year>2015</year>
<volume>7</volume>
<fpage>301ra132</fpage>
<pub-id pub-id-type="pmid">26290414</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mastalerz-Migas</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bujnowska-Fedak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brydak</surname>
<given-names>LB</given-names>
</name>
</person-group>
<article-title>Immune efficacy of first and repeat trivalent influenza vaccine in healthy subjects and hemodialysis patients</article-title>
<source>Adv. Exp. Med. Biol.</source>
<year>2015</year>
<volume>836</volume>
<fpage>47</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">25248348</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study</article-title>
<source>Lancet Infect. Dis.</source>
<year>2015</year>
<volume>15</volume>
<fpage>629</fpage>
<pub-id pub-id-type="pmid">26008827</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">26678878</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study</article-title>
<source>Lancet Infect. Dis.</source>
<year>2013</year>
<volume>13</volume>
<fpage>752</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="pmid">23891402</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients</article-title>
<source>Ann. Intern. Med.</source>
<year>2004</year>
<volume>141</volume>
<fpage>662</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">15520422</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zumla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome</article-title>
<source>Lancet</source>
<year>2015</year>
<volume>386</volume>
<fpage>995</fpage>
<lpage>1007</lpage>
<pub-id pub-id-type="pmid">26049252</pub-id>
</element-citation>
</ref>
<ref id="CR147">
<label>147</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Abdallat</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description</article-title>
<source>Clin. Infect. Dis.</source>
<year>2014</year>
<volume>59</volume>
<fpage>1225</fpage>
<lpage>1233</lpage>
<pub-id pub-id-type="pmid">24829216</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saad</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia</article-title>
<source>Int. J. Infect. Dis.</source>
<year>2014</year>
<volume>29</volume>
<fpage>301</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">25303830</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<label>149</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome</article-title>
<source>J. Infect. Dis.</source>
<year>2014</year>
<volume>210</volume>
<fpage>1590</fpage>
<lpage>1594</lpage>
<pub-id pub-id-type="pmid">24837403</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feikin</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2015</year>
<volume>21</volume>
<fpage>2029</fpage>
<lpage>2035</lpage>
<pub-id pub-id-type="pmid">26488195</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majumder</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Kluberg</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Mekaru</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Brownstein</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2015</year>
<volume>21</volume>
<fpage>2088</fpage>
<lpage>2090</lpage>
<pub-id pub-id-type="pmid">26488869</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gretebeck</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Animal models for SARS and MERS coronaviruses</article-title>
<source>Curr. Opin. Virol.</source>
<year>2015</year>
<volume>13</volume>
<fpage>123</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="pmid">26184451</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Replication and shedding of MERS-CoV in Jamaican fruit bats (
<italic>Artibeus jamaicensis</italic>
)</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>21878</fpage>
<pub-id pub-id-type="pmid">26899616</pub-id>
</element-citation>
</ref>
<ref id="CR154">
<label>154</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>14040</fpage>
<lpage>14045</lpage>
<pub-id pub-id-type="pmid">16169905</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bats are natural reservoirs of SARS-like coronaviruses</article-title>
<source>Science</source>
<year>2005</year>
<volume>310</volume>
<fpage>676</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="pmid">16195424</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates</article-title>
<source>J. Virol.</source>
<year>2005</year>
<volume>79</volume>
<fpage>2620</fpage>
<lpage>2625</lpage>
<pub-id pub-id-type="pmid">15681462</pub-id>
</element-citation>
</ref>
<ref id="CR157">
<label>157</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adney</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2014</year>
<volume>20</volume>
<fpage>1999</fpage>
<lpage>2005</lpage>
<pub-id pub-id-type="pmid">25418529</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2008</year>
<volume>105</volume>
<fpage>19944</fpage>
<lpage>19949</lpage>
<pub-id pub-id-type="pmid">19036930</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SARS-like WIV1-CoV poised for human emergence</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2016</year>
<volume>113</volume>
<fpage>3048</fpage>
<lpage>3053</lpage>
<pub-id pub-id-type="pmid">26976607</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000569 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000569 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7097822
   |texte=   SARS and MERS: recent insights into emerging coronaviruses
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27344959" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021