Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interferons at age 50: past, current and future impact on biomedicine

Identifieur interne : 000556 ( Pmc/Corpus ); précédent : 000555; suivant : 000557

Interferons at age 50: past, current and future impact on biomedicine

Auteurs : Ernest C. Borden ; Ganes C. Sen ; Gilles Uze ; Robert H. Silverman ; Richard M. Ransohoff ; Graham R. Foster ; George R. Stark

Source :

RBID : PMC:7097588

Abstract

Key Points

On the 50th anniversary of the discovery of interferon (IFN), we offer a perspective from more than 100,000 published papers, highlighting initial pivotal discoveries and more recent findings of conceptual importance. This covers the mechanisms of IFN induction, the cellular actions of IFN and IFN-stimulated genes (ISGs), and human therapeutic applications.

The synthesis of IFNs requires stimulation by viruses or microbial products binding to Toll-like receptors, or chemical inducers. The development of small-molecule modulators is still in its infancy, but the delineation of the responsible signalling pathways has identified many target proteins.

IFNs constitute a large protein family that can be subdivided into three types, binding to different receptors. These receptors initiate signalling by activating a complex signalling cascade regulated at many levels, resulting in a diverse pattern of ISG induction.

ISGs are a diverse group of more than 300 genes, which can have direct antiviral and antitumour functions. These are attractive targets for high-throughput screening for the identification of new modulators of the IFN system.

IFNs were initially investigated for their potential as antivirals, and are now commonly used in anti-HBV (hepatitis B virus) and anti-HCV (hepatitis C virus) therapy. They might also have prophylactic or therapeutic effectiveness in SARS (severe acute respiratory syndrome), influenza or another virus pandemic.

The first FDA approval of an IFN was, however, not for virus infection but for cancer. The mechanisms of antitumour action are incompletely understood. Aberrations of the IFN system are also emerging as important contributors to cancer development.

IFNs also proved effectiveness in relapsing, remitting multiple sclerosis. It is now common practice to initiate IFN-β treatment at the time of diagnosis.

Because of the effectiveness of IFNs in limiting virus replication, reducing tumour cell mass, controlling disease symptoms and prolonging survival, market sales of IFNs approach US$4 billion. As all the effects of IFNs are mediated through ISGs, understanding of the function of these genes might lead to more efficacious antiviral and anti-cancer drugs.


Url:
DOI: 10.1038/nrd2422
PubMed: 18049472
PubMed Central: 7097588

Links to Exploration step

PMC:7097588

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interferons at age 50: past, current and future impact on biomedicine</title>
<author>
<name sortKey="Borden, Ernest C" sort="Borden, Ernest C" uniqKey="Borden E" first="Ernest C." last="Borden">Ernest C. Borden</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sen, Ganes C" sort="Sen, Ganes C" uniqKey="Sen G" first="Ganes C." last="Sen">Ganes C. Sen</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uze, Gilles" sort="Uze, Gilles" uniqKey="Uze G" first="Gilles" last="Uze">Gilles Uze</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.464150.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0383 9805</institution-id>
<institution>CNRS UMR 5235, Place Eugene Bataillon,</institution>
</institution-wrap>
Montpellier, Cedex 5 FR34095 France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Silverman, Robert H" sort="Silverman, Robert H" uniqKey="Silverman R" first="Robert H." last="Silverman">Robert H. Silverman</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ransohoff, Richard M" sort="Ransohoff, Richard M" uniqKey="Ransohoff R" first="Richard M." last="Ransohoff">Richard M. Ransohoff</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Foster, Graham R" sort="Foster, Graham R" uniqKey="Foster G" first="Graham R." last="Foster">Graham R. Foster</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.4868.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2171 1133</institution-id>
<institution>Institute of Cell and Molecular Science, Queen Mary's School of Medicine,</institution>
</institution-wrap>
4 Newark Street, London, E1 4AT UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stark, George R" sort="Stark, George R" uniqKey="Stark G" first="George R." last="Stark">George R. Stark</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18049472</idno>
<idno type="pmc">7097588</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097588</idno>
<idno type="RBID">PMC:7097588</idno>
<idno type="doi">10.1038/nrd2422</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000556</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Interferons at age 50: past, current and future impact on biomedicine</title>
<author>
<name sortKey="Borden, Ernest C" sort="Borden, Ernest C" uniqKey="Borden E" first="Ernest C." last="Borden">Ernest C. Borden</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sen, Ganes C" sort="Sen, Ganes C" uniqKey="Sen G" first="Ganes C." last="Sen">Ganes C. Sen</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uze, Gilles" sort="Uze, Gilles" uniqKey="Uze G" first="Gilles" last="Uze">Gilles Uze</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.464150.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0383 9805</institution-id>
<institution>CNRS UMR 5235, Place Eugene Bataillon,</institution>
</institution-wrap>
Montpellier, Cedex 5 FR34095 France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Silverman, Robert H" sort="Silverman, Robert H" uniqKey="Silverman R" first="Robert H." last="Silverman">Robert H. Silverman</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ransohoff, Richard M" sort="Ransohoff, Richard M" uniqKey="Ransohoff R" first="Richard M." last="Ransohoff">Richard M. Ransohoff</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Foster, Graham R" sort="Foster, Graham R" uniqKey="Foster G" first="Graham R." last="Foster">Graham R. Foster</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.4868.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2171 1133</institution-id>
<institution>Institute of Cell and Molecular Science, Queen Mary's School of Medicine,</institution>
</institution-wrap>
4 Newark Street, London, E1 4AT UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stark, George R" sort="Stark, George R" uniqKey="Stark G" first="George R." last="Stark">George R. Stark</name>
<affiliation>
<nlm:aff id="Aff1">Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Reviews. Drug Discovery</title>
<idno type="ISSN">1474-1776</idno>
<idno type="eISSN">1474-1784</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Key Points</title>
<p id="Par8">
<list list-type="bullet">
<list-item>
<p id="Par9">On the 50th anniversary of the discovery of interferon (IFN), we offer a perspective from more than 100,000 published papers, highlighting initial pivotal discoveries and more recent findings of conceptual importance. This covers the mechanisms of IFN induction, the cellular actions of IFN and IFN-stimulated genes (ISGs), and human therapeutic applications.</p>
</list-item>
<list-item>
<p id="Par10">The synthesis of IFNs requires stimulation by viruses or microbial products binding to Toll-like receptors, or chemical inducers. The development of small-molecule modulators is still in its infancy, but the delineation of the responsible signalling pathways has identified many target proteins.</p>
</list-item>
<list-item>
<p id="Par11">IFNs constitute a large protein family that can be subdivided into three types, binding to different receptors. These receptors initiate signalling by activating a complex signalling cascade regulated at many levels, resulting in a diverse pattern of ISG induction.</p>
</list-item>
<list-item>
<p id="Par12">ISGs are a diverse group of more than 300 genes, which can have direct antiviral and antitumour functions. These are attractive targets for high-throughput screening for the identification of new modulators of the IFN system.</p>
</list-item>
<list-item>
<p id="Par13">IFNs were initially investigated for their potential as antivirals, and are now commonly used in anti-HBV (hepatitis B virus) and anti-HCV (hepatitis C virus) therapy. They might also have prophylactic or therapeutic effectiveness in SARS (severe acute respiratory syndrome), influenza or another virus pandemic.</p>
</list-item>
<list-item>
<p id="Par14">The first FDA approval of an IFN was, however, not for virus infection but for cancer. The mechanisms of antitumour action are incompletely understood. Aberrations of the IFN system are also emerging as important contributors to cancer development.</p>
</list-item>
<list-item>
<p id="Par15">IFNs also proved effectiveness in relapsing, remitting multiple sclerosis. It is now common practice to initiate IFN-β treatment at the time of diagnosis.</p>
</list-item>
<list-item>
<p id="Par16">Because of the effectiveness of IFNs in limiting virus replication, reducing tumour cell mass, controlling disease symptoms and prolonging survival, market sales of IFNs approach US$4 billion. As all the effects of IFNs are mediated through ISGs, understanding of the function of these genes might lead to more efficacious antiviral and anti-cancer drugs.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Isaacs, A" uniqKey="Isaacs A">A Isaacs</name>
</author>
<author>
<name sortKey="Lindenmann, J" uniqKey="Lindenmann J">J Lindenmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O Takeuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Field, Ak" uniqKey="Field A">AK Field</name>
</author>
<author>
<name sortKey="Tytell, Aa" uniqKey="Tytell A">AA Tytell</name>
</author>
<author>
<name sortKey="Lampson, Gp" uniqKey="Lampson G">GP Lampson</name>
</author>
<author>
<name sortKey="Hilleman, Mr" uniqKey="Hilleman M">MR Hilleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sen, Gc" uniqKey="Sen G">GC Sen</name>
</author>
<author>
<name sortKey="Sarkar, Sn" uniqKey="Sarkar S">SN Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoneyama, M" uniqKey="Yoneyama M">M Yoneyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tabeta, K" uniqKey="Tabeta K">K Tabeta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kato, H" uniqKey="Kato H">H Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gitlin, L" uniqKey="Gitlin L">L Gitlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Goffic, R" uniqKey="Le Goffic R">R Le Goffic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meylan, E" uniqKey="Meylan E">E Meylan</name>
</author>
<author>
<name sortKey="Tschopp, J" uniqKey="Tschopp J">J Tschopp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T Kawai</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoneyama, M" uniqKey="Yoneyama M">M Yoneyama</name>
</author>
<author>
<name sortKey="Fujita, T" uniqKey="Fujita T">T Fujita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panne, D" uniqKey="Panne D">D Panne</name>
</author>
<author>
<name sortKey="Maniatis, T" uniqKey="Maniatis T">T Maniatis</name>
</author>
<author>
<name sortKey="Harrison, Sc" uniqKey="Harrison S">SC Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, K" uniqKey="Honda K">K Honda</name>
</author>
<author>
<name sortKey="Takaoka, A" uniqKey="Takaoka A">A Takaoka</name>
</author>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tenoever, Br" uniqKey="Tenoever B">BR Tenoever</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzgerald, Ka" uniqKey="Fitzgerald K">KA Fitzgerald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biron, Ca" uniqKey="Biron C">CA Biron</name>
</author>
<author>
<name sortKey="Sen, Gc" uniqKey="Sen G">GC Sen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiscott, J" uniqKey="Hiscott J">J Hiscott</name>
</author>
<author>
<name sortKey="Nguyen, T La" uniqKey="Nguyen T">T-LA Nguyen</name>
</author>
<author>
<name sortKey="Arguello, M" uniqKey="Arguello M">M Arguello</name>
</author>
<author>
<name sortKey="Nakhaei, P" uniqKey="Nakhaei P">P Nakhaei</name>
</author>
<author>
<name sortKey="Paz, S" uniqKey="Paz S">S Paz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foy, E" uniqKey="Foy E">E Foy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Sastre, A" uniqKey="Garcia Sastre A">A Garcia-Sastre</name>
</author>
<author>
<name sortKey="Biron, Ca" uniqKey="Biron C">CA Biron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finlay, Bb" uniqKey="Finlay B">BB Finlay</name>
</author>
<author>
<name sortKey="Mcfadden, G" uniqKey="Mcfadden G">G McFadden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pichlmair, A" uniqKey="Pichlmair A">A Pichlmair</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casrouge, A" uniqKey="Casrouge A">A Casrouge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmi, H" uniqKey="Hemmi H">H Hemmi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemmi, H" uniqKey="Hemmi H">H Hemmi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Zj" uniqKey="Roberts Z">ZJ Roberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Neill, La" uniqKey="O Neill L">LA O'Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krieg, Am" uniqKey="Krieg A">AM Krieg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Havell, Ea" uniqKey="Havell E">EA Havell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Streuli, M" uniqKey="Streuli M">M Streuli</name>
</author>
<author>
<name sortKey="Nagata, S" uniqKey="Nagata S">S Nagata</name>
</author>
<author>
<name sortKey="Weissmann, C" uniqKey="Weissmann C">C Weissmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goeddel, Dv" uniqKey="Goeddel D">DV Goeddel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pestka, S" uniqKey="Pestka S">S Pestka</name>
</author>
<author>
<name sortKey="Krause, Cd" uniqKey="Krause C">CD Krause</name>
</author>
<author>
<name sortKey="Walter, R" uniqKey="Walter R">R Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hardy, Mp" uniqKey="Hardy M">MP Hardy</name>
</author>
<author>
<name sortKey="Owczarek, Cm" uniqKey="Owczarek C">CM Owczarek</name>
</author>
<author>
<name sortKey="Jermiin, Ls" uniqKey="Jermiin L">LS Jermiin</name>
</author>
<author>
<name sortKey="Ejdeback, M" uniqKey="Ejdeback M">M Ejdeback</name>
</author>
<author>
<name sortKey="Hertzog, Pj" uniqKey="Hertzog P">PJ Hertzog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho, Lf" uniqKey="Coelho L">LF Coelho</name>
</author>
<author>
<name sortKey="De Freitas Almeida, Gm" uniqKey="De Freitas Almeida G">GM de Freitas Almeida</name>
</author>
<author>
<name sortKey="Mennechet, Fj" uniqKey="Mennechet F">FJ Mennechet</name>
</author>
<author>
<name sortKey="Blangy, A" uniqKey="Blangy A">A Blangy</name>
</author>
<author>
<name sortKey="Uze, G" uniqKey="Uze G">G Uze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, Gr" uniqKey="Foster G">GR Foster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilkens, Cm" uniqKey="Hilkens C">CM Hilkens</name>
</author>
<author>
<name sortKey="Schlaak, Jf" uniqKey="Schlaak J">JF Schlaak</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uze, G" uniqKey="Uze G">G Uze</name>
</author>
<author>
<name sortKey="Schreiber, G" uniqKey="Schreiber G">G Schreiber</name>
</author>
<author>
<name sortKey="Piehler, J" uniqKey="Piehler J">J Piehler</name>
</author>
<author>
<name sortKey="Pellegrini, S" uniqKey="Pellegrini S">S Pellegrini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, J" uniqKey="Walker J">J Walker</name>
</author>
<author>
<name sortKey="Tough, Df" uniqKey="Tough D">DF Tough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Rm" uniqKey="Roberts R">RM Roberts</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Alexenko, A" uniqKey="Alexenko A">A Alexenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lafleur, Dw" uniqKey="Lafleur D">DW LaFleur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coccia, Em" uniqKey="Coccia E">EM Coccia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitsui, Y" uniqKey="Mitsui Y">Y Mitsui</name>
</author>
<author>
<name sortKey="Senda, T" uniqKey="Senda T">T Senda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gavutis, M" uniqKey="Gavutis M">M Gavutis</name>
</author>
<author>
<name sortKey="Jaks, E" uniqKey="Jaks E">E Jaks</name>
</author>
<author>
<name sortKey="Lamken, P" uniqKey="Lamken P">P Lamken</name>
</author>
<author>
<name sortKey="Piehler, J" uniqKey="Piehler J">J Piehler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaitin, Da" uniqKey="Jaitin D">DA Jaitin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaks, E" uniqKey="Jaks E">E Jaks</name>
</author>
<author>
<name sortKey="Gavutis, M" uniqKey="Gavutis M">M Gavutis</name>
</author>
<author>
<name sortKey="Uze, G" uniqKey="Uze G">G Uze</name>
</author>
<author>
<name sortKey="Martal, J" uniqKey="Martal J">J Martal</name>
</author>
<author>
<name sortKey="Piehler, J" uniqKey="Piehler J">J Piehler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalie, E" uniqKey="Kalie E">E Kalie</name>
</author>
<author>
<name sortKey="Jaitin, Da" uniqKey="Jaitin D">DA Jaitin</name>
</author>
<author>
<name sortKey="Abramovich, R" uniqKey="Abramovich R">R Abramovich</name>
</author>
<author>
<name sortKey="Schreiber, G" uniqKey="Schreiber G">G Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Severa, M" uniqKey="Severa M">M Severa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frodsham, Aj" uniqKey="Frodsham A">AJ Frodsham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bach, Ea" uniqKey="Bach E">EA Bach</name>
</author>
<author>
<name sortKey="Aguet, M" uniqKey="Aguet M">M Aguet</name>
</author>
<author>
<name sortKey="Schreiber, Rd" uniqKey="Schreiber R">RD Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotenko, Sv" uniqKey="Kotenko S">SV Kotenko</name>
</author>
<author>
<name sortKey="Langer, Ja" uniqKey="Langer J">JA Langer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roesler, J" uniqKey="Roesler J">J Roesler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uze, G" uniqKey="Uze G">G Uze</name>
</author>
<author>
<name sortKey="Monneron, D" uniqKey="Monneron D">D Monneron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zinn, K" uniqKey="Zinn K">K Zinn</name>
</author>
<author>
<name sortKey="Dimaio, D" uniqKey="Dimaio D">D DiMaio</name>
</author>
<author>
<name sortKey="Maniatis, T" uniqKey="Maniatis T">T Maniatis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merlin, G" uniqKey="Merlin G">G Merlin</name>
</author>
<author>
<name sortKey="Chebath, J" uniqKey="Chebath J">J Chebath</name>
</author>
<author>
<name sortKey="Benech, P" uniqKey="Benech P">P Benech</name>
</author>
<author>
<name sortKey="Metz, R" uniqKey="Metz R">R Metz</name>
</author>
<author>
<name sortKey="Revel, M" uniqKey="Revel M">M Revel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedman, Rl" uniqKey="Friedman R">RL Friedman</name>
</author>
<author>
<name sortKey="Manly, Sp" uniqKey="Manly S">SP Manly</name>
</author>
<author>
<name sortKey="Mcmahon, M" uniqKey="Mcmahon M">M McMahon</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedman, Rl" uniqKey="Friedman R">RL Friedman</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Xy" uniqKey="Fu X">XY Fu</name>
</author>
<author>
<name sortKey="Schindler, C" uniqKey="Schindler C">C Schindler</name>
</author>
<author>
<name sortKey="Improta, T" uniqKey="Improta T">T Improta</name>
</author>
<author>
<name sortKey="Aebersold, R" uniqKey="Aebersold R">R Aebersold</name>
</author>
<author>
<name sortKey="Darnell, Je" uniqKey="Darnell J">JE Darnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
<author>
<name sortKey="Williams, Br" uniqKey="Williams B">BR Williams</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
<author>
<name sortKey="Schreiber, Rd" uniqKey="Schreiber R">RD Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindler, C" uniqKey="Schindler C">C Schindler</name>
</author>
<author>
<name sortKey="Levy, De" uniqKey="Levy D">DE Levy</name>
</author>
<author>
<name sortKey="Decker, T" uniqKey="Decker T">T Decker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velazquez, L" uniqKey="Velazquez L">L Velazquez</name>
</author>
<author>
<name sortKey="Fellous, M" uniqKey="Fellous M">M Fellous</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
<author>
<name sortKey="Pellegrini, S" uniqKey="Pellegrini S">S Pellegrini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qing, Y" uniqKey="Qing Y">Y Qing</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boxel Dezaire, Ah" uniqKey="Van Boxel Dezaire A">AH van Boxel-Dezaire</name>
</author>
<author>
<name sortKey="Rani, Mr" uniqKey="Rani M">MR Rani</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boxel Dezaire, Ah" uniqKey="Van Boxel Dezaire A">AH van Boxel-Dezaire</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jouanguy, E" uniqKey="Jouanguy E">E Jouanguy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rani, Mr" uniqKey="Rani M">MR Rani</name>
</author>
<author>
<name sortKey="Hibbert, L" uniqKey="Hibbert L">L Hibbert</name>
</author>
<author>
<name sortKey="Sizemore, N" uniqKey="Sizemore N">N Sizemore</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
<author>
<name sortKey="Ransohoff, Rm" uniqKey="Ransohoff R">RM Ransohoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rani, Mr" uniqKey="Rani M">MR Rani</name>
</author>
<author>
<name sortKey="Ransohoff, Rm" uniqKey="Ransohoff R">RM Ransohoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilkens, Cm" uniqKey="Hilkens C">CM Hilkens</name>
</author>
<author>
<name sortKey="Schlaak, Jf" uniqKey="Schlaak J">JF Schlaak</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Platanias, Lc" uniqKey="Platanias L">LC Platanias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexander, Ws" uniqKey="Alexander W">WS Alexander</name>
</author>
<author>
<name sortKey="Hilton, Dj" uniqKey="Hilton D">DJ Hilton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yi, T" uniqKey="Yi T">T Yi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Hh" uniqKey="Ho H">HH Ho</name>
</author>
<author>
<name sortKey="Ivashkiv, Lb" uniqKey="Ivashkiv L">LB Ivashkiv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirkwood, J" uniqKey="Kirkwood J">J Kirkwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Commane, M" uniqKey="Commane M">M Commane</name>
</author>
<author>
<name sortKey="Flickinger, Tw" uniqKey="Flickinger T">TW Flickinger</name>
</author>
<author>
<name sortKey="Horvath, Cm" uniqKey="Horvath C">CM Horvath</name>
</author>
<author>
<name sortKey="Stark, Gr" uniqKey="Stark G">GR Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Der, Sd" uniqKey="Der S">SD Der</name>
</author>
<author>
<name sortKey="Zhou, A" uniqKey="Zhou A">A Zhou</name>
</author>
<author>
<name sortKey="Williams, Br" uniqKey="Williams B">BR Williams</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Veer, Mj" uniqKey="De Veer M">MJ de Veer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silverman, R H" uniqKey="Silverman R">R. H. Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
<author>
<name sortKey="Brown, Re" uniqKey="Brown R">RE Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, A" uniqKey="Zhou A">A Zhou</name>
</author>
<author>
<name sortKey="Hassel, Ba" uniqKey="Hassel B">BA Hassel</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B Dong</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wreschner, Dh" uniqKey="Wreschner D">DH Wreschner</name>
</author>
<author>
<name sortKey="Mccauley, Jw" uniqKey="Mccauley J">JW McCauley</name>
</author>
<author>
<name sortKey="Skehel, Jj" uniqKey="Skehel J">JJ Skehel</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Floyd Smith, G" uniqKey="Floyd Smith G">G Floyd-Smith</name>
</author>
<author>
<name sortKey="Slattery, E" uniqKey="Slattery E">E Slattery</name>
</author>
<author>
<name sortKey="Lengyel, P" uniqKey="Lengyel P">P Lengyel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, A" uniqKey="Zhou A">A Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castelli, Jc" uniqKey="Castelli J">JC Castelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castelli, Jc" uniqKey="Castelli J">JC Castelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malathi, K" uniqKey="Malathi K">K Malathi</name>
</author>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B Dong</name>
</author>
<author>
<name sortKey="Gale, M" uniqKey="Gale M">M Gale</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thakur, Cs" uniqKey="Thakur C">CS Thakur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Wk" uniqKey="Roberts W">WK Roberts</name>
</author>
<author>
<name sortKey="Hovanessian, A" uniqKey="Hovanessian A">A Hovanessian</name>
</author>
<author>
<name sortKey="Brown, Re" uniqKey="Brown R">RE Brown</name>
</author>
<author>
<name sortKey="Clemens, Mj" uniqKey="Clemens M">MJ Clemens</name>
</author>
<author>
<name sortKey="Kerr, Im" uniqKey="Kerr I">IM Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zilberstein, A" uniqKey="Zilberstein A">A Zilberstein</name>
</author>
<author>
<name sortKey="Kimchi, A" uniqKey="Kimchi A">A Kimchi</name>
</author>
<author>
<name sortKey="Schmidt, A" uniqKey="Schmidt A">A Schmidt</name>
</author>
<author>
<name sortKey="Revel, M" uniqKey="Revel M">M Revel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meurs, E" uniqKey="Meurs E">E Meurs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Br" uniqKey="Williams B">BR Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Br" uniqKey="Williams B">BR Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, Rc" uniqKey="Patel R">RC Patel</name>
</author>
<author>
<name sortKey="Sen, Gc" uniqKey="Sen G">GC Sen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gale, M" uniqKey="Gale M">M Gale</name>
</author>
<author>
<name sortKey="Katze, Mg" uniqKey="Katze M">MG Katze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarkar, Sn" uniqKey="Sarkar S">SN Sarkar</name>
</author>
<author>
<name sortKey="Sen, Gc" uniqKey="Sen G">GC Sen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindenmann, J" uniqKey="Lindenmann J">J Lindenmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horisberger, Ma" uniqKey="Horisberger M">MA Horisberger</name>
</author>
<author>
<name sortKey="Staeheli, P" uniqKey="Staeheli P">P Staeheli</name>
</author>
<author>
<name sortKey="Haller, O" uniqKey="Haller O">O Haller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staeheli, P" uniqKey="Staeheli P">P Staeheli</name>
</author>
<author>
<name sortKey="Haller, O" uniqKey="Haller O">O Haller</name>
</author>
<author>
<name sortKey="Boll, W" uniqKey="Boll W">W Boll</name>
</author>
<author>
<name sortKey="Lindenmann, J" uniqKey="Lindenmann J">J Lindenmann</name>
</author>
<author>
<name sortKey="Weissmann, C" uniqKey="Weissmann C">C Weissmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haller, O" uniqKey="Haller O">O Haller</name>
</author>
<author>
<name sortKey="Staeheli, P" uniqKey="Staeheli P">P Staeheli</name>
</author>
<author>
<name sortKey="Kochs, G" uniqKey="Kochs G">G Kochs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Recht, M" uniqKey="Recht M">M Recht</name>
</author>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
<author>
<name sortKey="Knight, E" uniqKey="Knight E">E Knight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Cunha, J" uniqKey="D Cunha J">J D'Cunha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, Jb" uniqKey="Andersen J">JB Andersen</name>
</author>
<author>
<name sortKey="Hassel, Ba" uniqKey="Hassel B">BA Hassel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A Okumura</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Pitha Rowe, I" uniqKey="Pitha Rowe I">I Pitha-Rowe</name>
</author>
<author>
<name sortKey="Pitha, Pm" uniqKey="Pitha P">PM Pitha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lenschow, Dj" uniqKey="Lenschow D">DJ Lenschow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, Q" uniqKey="Zhou Q">Q Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ben Efraim, I" uniqKey="Ben Efraim I">I Ben-Efraim</name>
</author>
<author>
<name sortKey="Zhou, Q" uniqKey="Zhou Q">Q Zhou</name>
</author>
<author>
<name sortKey="Wiedmer, T" uniqKey="Wiedmer T">T Wiedmer</name>
</author>
<author>
<name sortKey="Gerace, L" uniqKey="Gerace L">L Gerace</name>
</author>
<author>
<name sortKey="Sims, Pj" uniqKey="Sims P">PJ Sims</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kayagaki, N" uniqKey="Kayagaki N">N Kayagaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chawla Sarkar, M" uniqKey="Chawla Sarkar M">M Chawla-Sarkar</name>
</author>
<author>
<name sortKey="Leaman, Dw" uniqKey="Leaman D">DW Leaman</name>
</author>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, Jm" uniqKey="Kelly J">JM Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martensen, Pm" uniqKey="Martensen P">PM Martensen</name>
</author>
<author>
<name sortKey="Justesen, J" uniqKey="Justesen J">J Justesen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tahara, E" uniqKey="Tahara E">E Tahara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martensen, Pm" uniqKey="Martensen P">PM Martensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labrada, L" uniqKey="Labrada L">L Labrada</name>
</author>
<author>
<name sortKey="Liang, Xh" uniqKey="Liang X">XH Liang</name>
</author>
<author>
<name sortKey="Zheng, W" uniqKey="Zheng W">W Zheng</name>
</author>
<author>
<name sortKey="Johnston, C" uniqKey="Johnston C">C Johnston</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Sl" uniqKey="Anderson S">SL Anderson</name>
</author>
<author>
<name sortKey="Carton, Jm" uniqKey="Carton J">JM Carton</name>
</author>
<author>
<name sortKey="Lou, J" uniqKey="Lou J">J Lou</name>
</author>
<author>
<name sortKey="Xing, L" uniqKey="Xing L">L Xing</name>
</author>
<author>
<name sortKey="Rubin, By" uniqKey="Rubin B">BY Rubin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Espert, L" uniqKey="Espert L">L Espert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Regad, T" uniqKey="Regad T">T Regad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="George, Cx" uniqKey="George C">CX George</name>
</author>
<author>
<name sortKey="Patterson, Jb" uniqKey="Patterson J">JB Patterson</name>
</author>
<author>
<name sortKey="Samuel, Ce" uniqKey="Samuel C">CE Samuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chin, Kc" uniqKey="Chin K">KC Chin</name>
</author>
<author>
<name sortKey="Cresswell, P" uniqKey="Cresswell P">P Cresswell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melkova, Z" uniqKey="Melkova Z">Z Melkova</name>
</author>
<author>
<name sortKey="Esteban, M" uniqKey="Esteban M">M Esteban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enninga, J" uniqKey="Enninga J">J Enninga</name>
</author>
<author>
<name sortKey="Levy, De" uniqKey="Levy D">DE Levy</name>
</author>
<author>
<name sortKey="Blobel, G" uniqKey="Blobel G">G Blobel</name>
</author>
<author>
<name sortKey="Fontoura, Bm" uniqKey="Fontoura B">BM Fontoura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samuel, Ce" uniqKey="Samuel C">CE Samuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegal, Fp" uniqKey="Siegal F">FP Siegal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
<author>
<name sortKey="Cha, En" uniqKey="Cha E">EN Cha</name>
</author>
<author>
<name sortKey="Lee, C" uniqKey="Lee C">C Lee</name>
</author>
<author>
<name sortKey="Park, Cy" uniqKey="Park C">CY Park</name>
</author>
<author>
<name sortKey="Schindler, C" uniqKey="Schindler C">C Schindler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cresswell, P" uniqKey="Cresswell P">P Cresswell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drozina, G" uniqKey="Drozina G">G Drozina</name>
</author>
<author>
<name sortKey="Kohoutek, J" uniqKey="Kohoutek J">J Kohoutek</name>
</author>
<author>
<name sortKey="Jabrane Ferrat, N" uniqKey="Jabrane Ferrat N">N Jabrane-Ferrat</name>
</author>
<author>
<name sortKey="Peterlin, Bm" uniqKey="Peterlin B">BM Peterlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fruh, K" uniqKey="Fruh K">K Fruh</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaczynska, M" uniqKey="Gaczynska M">M Gaczynska</name>
</author>
<author>
<name sortKey="Rock, Kl" uniqKey="Rock K">KL Rock</name>
</author>
<author>
<name sortKey="Goldberg, Al" uniqKey="Goldberg A">AL Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groothuis, T" uniqKey="Groothuis T">T Groothuis</name>
</author>
<author>
<name sortKey="Neefjes, J" uniqKey="Neefjes J">J Neefjes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cole, Ke" uniqKey="Cole K">KE Cole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farber, Jm" uniqKey="Farber J">JM Farber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rani, Mr" uniqKey="Rani M">MR Rani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luster, Ad" uniqKey="Luster A">AD Luster</name>
</author>
<author>
<name sortKey="Unkeless, Jc" uniqKey="Unkeless J">JC Unkeless</name>
</author>
<author>
<name sortKey="Ravetch, Jv" uniqKey="Ravetch J">JV Ravetch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, Fd" uniqKey="Shi F">FD Shi</name>
</author>
<author>
<name sortKey="Van, Kl" uniqKey="Van K">KL Van</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontes, Jd" uniqKey="Fontes J">JD Fontes</name>
</author>
<author>
<name sortKey="Kanazawa, S" uniqKey="Kanazawa S">S Kanazawa</name>
</author>
<author>
<name sortKey="Nekrep, N" uniqKey="Nekrep N">N Nekrep</name>
</author>
<author>
<name sortKey="Peterlin, Bm" uniqKey="Peterlin B">BM Peterlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leibundgut Landmann, S" uniqKey="Leibundgut Landmann S">S LeibundGut-Landmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wright, Kl" uniqKey="Wright K">KL Wright</name>
</author>
<author>
<name sortKey="Ting, Jp" uniqKey="Ting J">JP Ting</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denzin, Lk" uniqKey="Denzin L">LK Denzin</name>
</author>
<author>
<name sortKey="Hammond, C" uniqKey="Hammond C">C Hammond</name>
</author>
<author>
<name sortKey="Cresswell, P" uniqKey="Cresswell P">P Cresswell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denzin, Lk" uniqKey="Denzin L">LK Denzin</name>
</author>
<author>
<name sortKey="Robbins, Nf" uniqKey="Robbins N">NF Robbins</name>
</author>
<author>
<name sortKey="Carboy Newcomb, C" uniqKey="Carboy Newcomb C">C Carboy-Newcomb</name>
</author>
<author>
<name sortKey="Cresswell, P" uniqKey="Cresswell P">P Cresswell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gruneberg, U" uniqKey="Gruneberg U">U Gruneberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kropshofer, H" uniqKey="Kropshofer H">H Kropshofer</name>
</author>
<author>
<name sortKey="Arndt, So" uniqKey="Arndt S">SO Arndt</name>
</author>
<author>
<name sortKey="Moldenhauer, G" uniqKey="Moldenhauer G">G Moldenhauer</name>
</author>
<author>
<name sortKey="Hammerling, Gj" uniqKey="Hammerling G">GJ Hammerling</name>
</author>
<author>
<name sortKey="Vogt, Ab" uniqKey="Vogt A">AB Vogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, P" uniqKey="Morris P">P Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vogt, Ab" uniqKey="Vogt A">AB Vogt</name>
</author>
<author>
<name sortKey="Kropshofer, H" uniqKey="Kropshofer H">H Kropshofer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleinschmidt, Wj" uniqKey="Kleinschmidt W">WJ Kleinschmidt</name>
</author>
<author>
<name sortKey="Schultz, Rm" uniqKey="Schultz R">RM Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blumberg, Bs" uniqKey="Blumberg B">BS Blumberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenberg, Hb" uniqKey="Greenberg H">HB Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weimar, W" uniqKey="Weimar W">W Weimar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoofnagle, Jh" uniqKey="Hoofnagle J">JH Hoofnagle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lok, As" uniqKey="Lok A">AS Lok</name>
</author>
<author>
<name sortKey="Mcmahon, Bj" uniqKey="Mcmahon B">BJ McMahon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertoletti, A" uniqKey="Bertoletti A">A Bertoletti</name>
</author>
<author>
<name sortKey="Maini, M" uniqKey="Maini M">M Maini</name>
</author>
<author>
<name sortKey="Williams, R" uniqKey="Williams R">R Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carmen, W" uniqKey="Carmen W">W Carmen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Gk" uniqKey="Lau G">GK Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcellin, P" uniqKey="Marcellin P">P Marcellin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoofnagle, J" uniqKey="Hoofnagle J">J Hoofnagle</name>
</author>
<author>
<name sortKey="Mullen, K" uniqKey="Mullen K">K Mullen</name>
</author>
<author>
<name sortKey="Jones, D" uniqKey="Jones D">D Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choo, Q L" uniqKey="Choo Q">Q-L Choo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heathcote, J" uniqKey="Heathcote J">J Heathcote</name>
</author>
<author>
<name sortKey="Main, J" uniqKey="Main J">J Main</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foster, Gr" uniqKey="Foster G">GR Foster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Koning, Ew" uniqKey="De Koning E">EW de Koning</name>
</author>
<author>
<name sortKey="Van Bijsterveld, Op" uniqKey="Van Bijsterveld O">OP van Bijsterveld</name>
</author>
<author>
<name sortKey="Cantell, K" uniqKey="Cantell K">K Cantell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Br" uniqKey="Jones B">BR Jones</name>
</author>
<author>
<name sortKey="Coster, Dj" uniqKey="Coster D">DJ Coster</name>
</author>
<author>
<name sortKey="Falcon, Mg" uniqKey="Falcon M">MG Falcon</name>
</author>
<author>
<name sortKey="Cantell, K" uniqKey="Cantell K">K Cantell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merigan, Tc" uniqKey="Merigan T">TC Merigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pazin, Gj" uniqKey="Pazin G">GJ Pazin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winston, Dj" uniqKey="Winston D">DJ Winston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lui, Sf" uniqKey="Lui S">SF Lui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haglund, S" uniqKey="Haglund S">S Haglund</name>
</author>
<author>
<name sortKey="Lundquist, Pg" uniqKey="Lundquist P">PG Lundquist</name>
</author>
<author>
<name sortKey="Cantell, K" uniqKey="Cantell K">K Cantell</name>
</author>
<author>
<name sortKey="Strander, H" uniqKey="Strander H">H Strander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pazin, Gj" uniqKey="Pazin G">GJ Pazin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eron, Lj" uniqKey="Eron L">LJ Eron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Healy, Gb" uniqKey="Healy G">GB Healy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weck, Pk" uniqKey="Weck P">PK Weck</name>
</author>
<author>
<name sortKey="Buddin, Da" uniqKey="Buddin D">DA Buddin</name>
</author>
<author>
<name sortKey="Whisnant, Jk" uniqKey="Whisnant J">JK Whisnant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deu As, L" uniqKey="Deu As L">L Deuñas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beutner, Kr" uniqKey="Beutner K">KR Beutner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tyring, Sk" uniqKey="Tyring S">SK Tyring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ra" uniqKey="Moore R">RA Moore</name>
</author>
<author>
<name sortKey="Edwards, Je" uniqKey="Edwards J">JE Edwards</name>
</author>
<author>
<name sortKey="Hopwood, J" uniqKey="Hopwood J">J Hopwood</name>
</author>
<author>
<name sortKey="Hicks, D" uniqKey="Hicks D">D Hicks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lane, Hc" uniqKey="Lane H">HC Lane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krown, Se" uniqKey="Krown S">SE Krown</name>
</author>
<author>
<name sortKey="Aeppli, D" uniqKey="Aeppli D">D Aeppli</name>
</author>
<author>
<name sortKey="Balfour, Hh" uniqKey="Balfour H">HH Balfour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merigan, Tc" uniqKey="Merigan T">TC Merigan</name>
</author>
<author>
<name sortKey="Reed, Se" uniqKey="Reed S">SE Reed</name>
</author>
<author>
<name sortKey="Hall, Ts" uniqKey="Hall T">TS Hall</name>
</author>
<author>
<name sortKey="Tyrrell, Da" uniqKey="Tyrrell D">DA Tyrrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, Gm" uniqKey="Scott G">GM Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Higgins, Pg" uniqKey="Higgins P">PG Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Treanor, Jj" uniqKey="Treanor J">JJ Treanor</name>
</author>
<author>
<name sortKey="Betts, Rf" uniqKey="Betts R">RF Betts</name>
</author>
<author>
<name sortKey="Erb, Sm" uniqKey="Erb S">SM Erb</name>
</author>
<author>
<name sortKey="Roth, Fk" uniqKey="Roth F">FK Roth</name>
</author>
<author>
<name sortKey="Dolin, R" uniqKey="Dolin R">R Dolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
<author>
<name sortKey="Kaiser, Dl" uniqKey="Kaiser D">DL Kaiser</name>
</author>
<author>
<name sortKey="Albrecht, Jk" uniqKey="Albrecht J">JK Albrecht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Douglas, Rm" uniqKey="Douglas R">RM Douglas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farr, Bm" uniqKey="Farr B">BM Farr</name>
</author>
<author>
<name sortKey="Gwaltney, Jm" uniqKey="Gwaltney J">JM Gwaltney</name>
</author>
<author>
<name sortKey="Adams, Kf" uniqKey="Adams K">KF Adams</name>
</author>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loutfy, Mr" uniqKey="Loutfy M">MR Loutfy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobs, L" uniqKey="Jacobs L">L Jacobs</name>
</author>
<author>
<name sortKey="O Malley, J" uniqKey="O Malley J">J O'Malley</name>
</author>
<author>
<name sortKey="Freeman, A" uniqKey="Freeman A">A Freeman</name>
</author>
<author>
<name sortKey="Ekes, R" uniqKey="Ekes R">R Ekes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knobler, Rl" uniqKey="Knobler R">RL Knobler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panitch, Hs" uniqKey="Panitch H">HS Panitch</name>
</author>
<author>
<name sortKey="Hirsch, Rl" uniqKey="Hirsch R">RL Hirsch</name>
</author>
<author>
<name sortKey="Haley, As" uniqKey="Haley A">AS Haley</name>
</author>
<author>
<name sortKey="Johnson, Kp" uniqKey="Johnson K">KP Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panitch, Hs" uniqKey="Panitch H">HS Panitch</name>
</author>
<author>
<name sortKey="Hirsch, Rl" uniqKey="Hirsch R">RL Hirsch</name>
</author>
<author>
<name sortKey="Schindler, J" uniqKey="Schindler J">J Schindler</name>
</author>
<author>
<name sortKey="Johnson, Kp" uniqKey="Johnson K">KP Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paty, Dw" uniqKey="Paty D">DW Paty</name>
</author>
<author>
<name sortKey="Li, Dk" uniqKey="Li D">DK Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bermel, Ra" uniqKey="Bermel R">RA Bermel</name>
</author>
<author>
<name sortKey="Rudick, Ra" uniqKey="Rudick R">RA Rudick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudick, Ra" uniqKey="Rudick R">RA Rudick</name>
</author>
<author>
<name sortKey="Cutter, G" uniqKey="Cutter G">G Cutter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hauser, Sl" uniqKey="Hauser S">SL Hauser</name>
</author>
<author>
<name sortKey="Johnston, Sc" uniqKey="Johnston S">SC Johnston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ascherio, A" uniqKey="Ascherio A">A Ascherio</name>
</author>
<author>
<name sortKey="Munger, Kl" uniqKey="Munger K">KL Munger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ascherio, A" uniqKey="Ascherio A">A Ascherio</name>
</author>
<author>
<name sortKey="Munger, Kl" uniqKey="Munger K">KL Munger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lincoln, Mr" uniqKey="Lincoln M">MR Lincoln</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peltonen, L" uniqKey="Peltonen L">L Peltonen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calabresi, Pa" uniqKey="Calabresi P">PA Calabresi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frank, Ja" uniqKey="Frank J">JA Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stone, La" uniqKey="Stone L">LA Stone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shiow, Lr" uniqKey="Shiow L">LR Shiow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuve, O" uniqKey="Stuve O">O Stuve</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leppert, D" uniqKey="Leppert D">D Leppert</name>
</author>
<author>
<name sortKey="Waubant, E" uniqKey="Waubant E">E Waubant</name>
</author>
<author>
<name sortKey="Burk, Mr" uniqKey="Burk M">MR Burk</name>
</author>
<author>
<name sortKey="Oksenberg, Jr" uniqKey="Oksenberg J">JR Oksenberg</name>
</author>
<author>
<name sortKey="Hauser, Sl" uniqKey="Hauser S">SL Hauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernald, Gh" uniqKey="Fernald G">GH Fernald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rudick, Ra" uniqKey="Rudick R">RA Rudick</name>
</author>
<author>
<name sortKey="Lee, Jc" uniqKey="Lee J">JC Lee</name>
</author>
<author>
<name sortKey="Simon, J" uniqKey="Simon J">J Simon</name>
</author>
<author>
<name sortKey="Ransohoff, Rm" uniqKey="Ransohoff R">RM Ransohoff</name>
</author>
<author>
<name sortKey="Fisher, E" uniqKey="Fisher E">E Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutterman, Ju" uniqKey="Gutterman J">JU Gutterman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurzrock, R" uniqKey="Kurzrock R">R Kurzrock</name>
</author>
<author>
<name sortKey="Talpaz, M" uniqKey="Talpaz M">M Talpaz</name>
</author>
<author>
<name sortKey="Gutterman, Ju" uniqKey="Gutterman J">JU Gutterman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Talpaz, M" uniqKey="Talpaz M">M Talpaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonifazi, F" uniqKey="Bonifazi F">F Bonifazi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rohatiner, Az" uniqKey="Rohatiner A">AZ Rohatiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gresser, I" uniqKey="Gresser I">I Gresser</name>
</author>
<author>
<name sortKey="Maury, C" uniqKey="Maury C">C Maury</name>
</author>
<author>
<name sortKey="Belardelli, F" uniqKey="Belardelli F">F Belardelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Cr" uniqKey="Muller C">CR Müller</name>
</author>
<author>
<name sortKey="Smeland, S" uniqKey="Smeland S">S Smeland</name>
</author>
<author>
<name sortKey="Bauer, Hc" uniqKey="Bauer H">HC Bauer</name>
</author>
<author>
<name sortKey="Saeter, G" uniqKey="Saeter G">G Saeter</name>
</author>
<author>
<name sortKey="Strander, H" uniqKey="Strander H">H Strander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirkwood, Jm" uniqKey="Kirkwood J">JM Kirkwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wheatley, K" uniqKey="Wheatley K">K Wheatley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eggermont, Amm" uniqKey="Eggermont A">AMM Eggermont</name>
</author>
<author>
<name sortKey="Gore, M" uniqKey="Gore M">M Gore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, K" uniqKey="Weiss K">K Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirkwood, Jm" uniqKey="Kirkwood J">JM Kirkwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz, Mo" uniqKey="Diaz M">MO Diaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fountain, Jw" uniqKey="Fountain J">JW Fountain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olopade, Oi" uniqKey="Olopade O">OI Olopade</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deyoung, Kl" uniqKey="Deyoung K">KL DeYoung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y Ding</name>
</author>
<author>
<name sortKey="Lee, Jf" uniqKey="Lee J">JF Lee</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H Lu</name>
</author>
<author>
<name sortKey="Lee, Mh" uniqKey="Lee M">MH Lee</name>
</author>
<author>
<name sortKey="Yan, Dh" uniqKey="Yan D">DH Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnsen, A" uniqKey="Johnsen A">A Johnsen</name>
</author>
<author>
<name sortKey="France, J" uniqKey="France J">J France</name>
</author>
<author>
<name sortKey="Sy, Ms" uniqKey="Sy M">MS Sy</name>
</author>
<author>
<name sortKey="Harding, Cv" uniqKey="Harding C">CV Harding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shou, J" uniqKey="Shou J">J Shou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seliger, B" uniqKey="Seliger B">B Seliger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoek, K" uniqKey="Hoek K">K Hoek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitha Rowe, I" uniqKey="Pitha Rowe I">I Pitha-Rowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ito, N" uniqKey="Ito N">N Ito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casey, G" uniqKey="Casey G">G Casey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakaii, M" uniqKey="Nakaii M">M Nakaii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
<author>
<name sortKey="Sidky, Ya" uniqKey="Sidky Y">YA Sidky</name>
</author>
<author>
<name sortKey="Erturk, E" uniqKey="Erturk E">E Ertürk</name>
</author>
<author>
<name sortKey="Wierenga, W" uniqKey="Wierenga W">W Wierenga</name>
</author>
<author>
<name sortKey="Bryan, Gt" uniqKey="Bryan G">GT Bryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulik, Lm" uniqKey="Kulik L">LM Kulik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chawla Sarkar, M" uniqKey="Chawla Sarkar M">M Chawla-Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ballestrero, A" uniqKey="Ballestrero A">A Ballestrero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K Sato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaperot, L" uniqKey="Chaperot L">L Chaperot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buechner, Sa" uniqKey="Buechner S">SA Buechner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ugurel, S" uniqKey="Ugurel S">S Ugurel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartzberg, Ls" uniqKey="Schwartzberg L">LS Schwartzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leaman, Dw" uniqKey="Leaman D">DW Leaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Mg" uniqKey="Lee M">MG Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pizzoferrato, E" uniqKey="Pizzoferrato E">E Pizzoferrato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfeffer, Lm" uniqKey="Pfeffer L">LM Pfeffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tannenbaum, Cs" uniqKey="Tannenbaum C">CS Tannenbaum</name>
</author>
<author>
<name sortKey="Hamilton, Ta" uniqKey="Hamilton T">TA Hamilton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glimcher, Lh" uniqKey="Glimcher L">LH Glimcher</name>
</author>
<author>
<name sortKey="Townsend, Mj" uniqKey="Townsend M">MJ Townsend</name>
</author>
<author>
<name sortKey="Sullivan, Bm" uniqKey="Sullivan B">BM Sullivan</name>
</author>
<author>
<name sortKey="Lord, Gm" uniqKey="Lord G">GM Lord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikhak, Z" uniqKey="Mikhak Z">Z Mikhak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dunn, Gp" uniqKey="Dunn G">GP Dunn</name>
</author>
<author>
<name sortKey="Koebel, Cm" uniqKey="Koebel C">CM Koebel</name>
</author>
<author>
<name sortKey="Schreiber, Rd" uniqKey="Schreiber R">RD Schreiber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swann, Jb" uniqKey="Swann J">JB Swann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strehl, B" uniqKey="Strehl B">B Strehl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greiner, Jw" uniqKey="Greiner J">JW Greiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Folkman, J" uniqKey="Folkman J">J Folkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brouty Boye, D" uniqKey="Brouty Boye D">D Brouty-Boye</name>
</author>
<author>
<name sortKey="Zetter, Br" uniqKey="Zetter B">BR Zetter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dvorak, Hf" uniqKey="Dvorak H">HF Dvorak</name>
</author>
<author>
<name sortKey="Gresser, I" uniqKey="Gresser I">I Gresser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidky, Ya" uniqKey="Sidky Y">YA Sidky</name>
</author>
<author>
<name sortKey="Borden, Ec" uniqKey="Borden E">EC Borden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinney, Cp" uniqKey="Dinney C">CP Dinney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarty, Mf" uniqKey="Mccarty M">MF McCarty</name>
</author>
<author>
<name sortKey="Bielenberg, D" uniqKey="Bielenberg D">D Bielenberg</name>
</author>
<author>
<name sortKey="Donawho, C" uniqKey="Donawho C">C Donawho</name>
</author>
<author>
<name sortKey="Bucana, Cd" uniqKey="Bucana C">CD Bucana</name>
</author>
<author>
<name sortKey="Fidler, Ij" uniqKey="Fidler I">IJ Fidler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Marschall, Z" uniqKey="Von Marschall Z">Z von Marschall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reznikov, Ll" uniqKey="Reznikov L">LL Reznikov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Richmond, A" uniqKey="Richmond A">A Richmond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldman, Ed" uniqKey="Feldman E">ED Feldman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guenzi, E" uniqKey="Guenzi E">E Guenzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindner, Dj" uniqKey="Lindner D">DJ Lindner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faria, Am" uniqKey="Faria A">AM Faria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, Jq" uniqKey="Han J">JQ Han</name>
</author>
<author>
<name sortKey="Barton, Dj" uniqKey="Barton D">DJ Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gale, Mj" uniqKey="Gale M">MJ Gale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpten, J" uniqKey="Carpten J">J Carpten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urisman, A" uniqKey="Urisman A">A Urisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedersen, Im" uniqKey="Pedersen I">IM Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brideau Andersen, Ad" uniqKey="Brideau Andersen A">AD Brideau-Andersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walsh, Rj" uniqKey="Walsh R">RJ Walsh</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Rev Drug Discov</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Rev Drug Discov</journal-id>
<journal-title-group>
<journal-title>Nature Reviews. Drug Discovery</journal-title>
</journal-title-group>
<issn pub-type="ppub">1474-1776</issn>
<issn pub-type="epub">1474-1784</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18049472</article-id>
<article-id pub-id-type="pmc">7097588</article-id>
<article-id pub-id-type="publisher-id">BFnrd2422</article-id>
<article-id pub-id-type="doi">10.1038/nrd2422</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Interferons at age 50: past, current and future impact on biomedicine</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Borden</surname>
<given-names>Ernest C.</given-names>
</name>
<address>
<email>bordene@ccf.org</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par1">Ernest C. Borden obtained his undergraduate degree from Harvard College, Cambridge, Massachusetts, USA, and his medical degree from Duke University, Durham, North Carolina. After appointments at the University of Wisconsin Comprehensive Cancer Center and then as Director of the Cancer Centers of the Medical College of Wisconsin and the University of Maryland, he joined Cleveland Clinic, Ohio, in 1998 to direct the Center for Cancer Drug Discovery and Development. In 2005, he was named Director of Center for Hematology and Oncology Molecular Therapeutics (CHOMT). He is also a staff member in the Departments of Solid Tumor Oncology and Cancer Biology and is a Professor of Molecular Medicine in Cleveland Clinic Lerner College of Medicine, Case Western Reserve University. In the 1980s, he was amongst the first doing clinical trials of interferons for cancer. In addition to developing improved approaches to clinically assess interferons and their inducers, Dr Borden's laboratory has focused on the function and action of genes that are stimulated by interferons and on the anti-tumour effects of other protein therapeutics. He has published over 200 articles and book chapters on interferons. Borden also has an international reputation for research and treatment of melanomas and sarcomas. He received the Milstein Award from the International Society of Interferon and Cytokine Research (ISICR) in 2004, and an American Cancer Society Distinguished Service Award in 1984. He also serves on the Scientific Advisory Boards of Cleveland BioLabs and Alios Bio Pharma.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sen</surname>
<given-names>Ganes C.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par2">Ganes C. Sen received his Ph.D. in biochemistry from McMaster University, Canada. During his postdoctoral training with Peter Lengyel at Yale University, USA, he began investigating the interferon (IFN) system. He has continued and expanded his activities in this area of research in his own laboratory, first at the Memorial Sloan-Kettering Cancer Center, USA, and then at the Lerner Research Institute of The Cleveland Clinic, USA, where he nucleated the formation of a strong cytokine research group. He is currently the Interim Chair and professor of molecular genetics at The Cleveland Clinic and Vice-Chair of the Lerner Research Institute. Sen has published extensively on the mechanism of actions of IFN-induced proteins and the mode of induction and actions of double-stranded RNA-stimulated genes. For his contributions to IFN research, he received the Milstein Award in 2002. In another line of research, Sen studies the physiological roles of angiotensin-converting enzyme in blood pressure regulation, male fertility and kidney functions. Sen is a consultant for the National Institutes of Health (NIH) and the American Foundation for AIDS Research. Currently, he is a Senior Editor of the
<italic>Journal of Virology</italic>
and Editor-in-Chief of the
<italic>Journal of Interferon and Cytokine Research</italic>
.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Uze</surname>
<given-names>Gilles</given-names>
</name>
<address>
<email>uze@univ-montp2.fr</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<bio>
<p id="Par3">Gilles Uzé (uze@univ-montp2.fr) was trained in the laboratory of Ion Gresser (Villejuif, France) and received his Ph.D. in 1986 from the University of Paris VII. In 1993, he moved to Montpellier (France) where he is currently Research Director at the Centre National de la Recherche Scientifique (CNRS). He has a long-term experience in the study of structure–function relationship of IFN and receptor components, and he has contributed to the understanding of the biological significance of the multiple type I IFN subtypes.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Silverman</surname>
<given-names>Robert H.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par4">Robert H. Silverman holds the Mal and Lea Bank Chair in the Department of Cancer Biology at the Lerner Research Institute at the Cleveland Clinic. He is professor of biochemistry and molecular biology and microbiology at Case Western Reserve University, Ohio, USA, and professor of chemistry at Cleveland State University, Ohio. Silverman received his B.Sc. from Michigan State University, USA, and his Ph.D. in molecular, cellular and developmental biology from Iowa State University, USA. His postdoctoral training was at the Roche Institute for Molecular Biology, New Jersey, USA, and at the National Institute for Medical Research and Imperial Cancer Research Fund Laboratories, London, UK. He was professor in the Department of Pathology at the Uniformed Services University of the Health Sciences in Bethesda, USA, prior to joining the Cleveland Clinic in 1991. Among his honours and awards are the Milstein Award (1993), Harold L. Stewart Lecture in Experimental Oncology (2006), Sam and Maria Miller Scientific Achievement Award in Basic Research (2006), and the Standing Tall Tribute from the American Cancer Society (2007). He has published 180 papers, which are principally focused on the molecular mechanisms of IFN action against viruses and cancer cells.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ransohoff</surname>
<given-names>Richard M.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par5">Richard M. Ransohoff is Director of the Neuroinflammation Research Center in the Department of Neurosciences of the Lerner Research Institute, professor of molecular medicine at The Cleveland Clinic Lerner College of Medicine, and Staff Neurologist in the Mellen Center for Multiple Sclerosis Treatment and Research, both at the Cleveland Clinic Foundation. Ransohoff received several honours and awards, including The Cleveland Clinic Lerner Research Institute's Award for Excellence in Science in 2006. He has been cited from 1996 through to 2007 in the “Best Doctors in America” for his expertise in the clinical care of patients with multiple sclerosis. Ransohoff was elected to the American Association of Physicians in 2006. For the past decade, Ransohoff's research has focused on the functions of chemokines and chemokine receptors in the development and pathology of the nervous system. He also has a long-standing and continuing interest in the mechanisms of action of IFN-β. Ransohoff has received research support from the NIH and the National Multiple Sclerosis Society. He has published more than 150 scientific reports, more than 50 reviews and book chapters, and three edited books.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Foster</surname>
<given-names>Graham R.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
<bio>
<p id="Par6">Graham R. Foster is the Professor of Hepatology at Queen Mary's School of Medicine, London, UK, and a consultant hepatologist at Barts and The London NHS Trust in East London. He trained in Medicine at Oxford and London Universities in the 1980s and completed a Ph.D. in molecular biology in 1992. Foster has a long-standing interest in the management of chronic viral hepatitis and runs a clinical research programme studying the natural history of viral hepatitis, its effect on patients and their communities, and novel therapies for this disease. He supervises a laboratory research programme investigating the mode of action of the different type I interferons. He is the sub-editor of
<italic>The Journal of Viral Hepatitis</italic>
and has published widely in the field of viral liver disease. He is a member of a number of patient advocacy groups and is a member of the UK Department of Health Advisory Group on Hepatitis.</p>
</bio>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stark</surname>
<given-names>George R.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<bio>
<p id="Par7">George R. Stark received his Ph.D. degree in chemistry from Columbia University in 1959. After a postdoctoral fellowship with William Stein and Stanford Moore at the Rockefeller University, USA, he joined the Department of Biochemistry at Stanford University, USA, in 1963, becoming professor in 1971. In 1983, he moved to the Imperial Cancer Research Fund in London, UK, as Associate Director of Research. In July 1992, he became the Chair of the Lerner Research Institute of The Cleveland Clinic Foundation, a position he held until August 2002. He is currently the distinguished scientist of The Cleveland Clinic Foundation, with a laboratory in the Department of Molecular Genetics, and a professor of genetics at Case Western Reserve University, USA. Stark was elected to the National Academy of Sciences in 1986, to the Fellowship of the Royal Society in 1990 and to the Institute of Medicine in 2002. He has also received the Sober, Milstein and Coley Awards. Stark's work with IFN, together with that of James Darnell, led to the discovery of the family of JAK–STAT (Janus kinase–signal transducers and activators of transcription) signalling pathways.</p>
</bio>
</contrib>
<aff id="Aff1">
<label>1</label>
Taussig Cancer Center, Case Comprehensive Cancer Center, Mellen Center for Multiple Sclerosis, and Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, 44195 Ohio USA</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.464150.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0383 9805</institution-id>
<institution>CNRS UMR 5235, Place Eugene Bataillon,</institution>
</institution-wrap>
Montpellier, Cedex 5 FR34095 France</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.4868.2</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 2171 1133</institution-id>
<institution>Institute of Cell and Molecular Science, Queen Mary's School of Medicine,</institution>
</institution-wrap>
4 Newark Street, London, E1 4AT UK</aff>
</contrib-group>
<pub-date pub-type="ppub">
<year>2007</year>
</pub-date>
<volume>6</volume>
<issue>12</issue>
<fpage>975</fpage>
<lpage>990</lpage>
<permissions>
<copyright-statement>© Nature Publishing Group 2007</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1" abstract-type="KeyPoints">
<title>Key Points</title>
<p id="Par8">
<list list-type="bullet">
<list-item>
<p id="Par9">On the 50th anniversary of the discovery of interferon (IFN), we offer a perspective from more than 100,000 published papers, highlighting initial pivotal discoveries and more recent findings of conceptual importance. This covers the mechanisms of IFN induction, the cellular actions of IFN and IFN-stimulated genes (ISGs), and human therapeutic applications.</p>
</list-item>
<list-item>
<p id="Par10">The synthesis of IFNs requires stimulation by viruses or microbial products binding to Toll-like receptors, or chemical inducers. The development of small-molecule modulators is still in its infancy, but the delineation of the responsible signalling pathways has identified many target proteins.</p>
</list-item>
<list-item>
<p id="Par11">IFNs constitute a large protein family that can be subdivided into three types, binding to different receptors. These receptors initiate signalling by activating a complex signalling cascade regulated at many levels, resulting in a diverse pattern of ISG induction.</p>
</list-item>
<list-item>
<p id="Par12">ISGs are a diverse group of more than 300 genes, which can have direct antiviral and antitumour functions. These are attractive targets for high-throughput screening for the identification of new modulators of the IFN system.</p>
</list-item>
<list-item>
<p id="Par13">IFNs were initially investigated for their potential as antivirals, and are now commonly used in anti-HBV (hepatitis B virus) and anti-HCV (hepatitis C virus) therapy. They might also have prophylactic or therapeutic effectiveness in SARS (severe acute respiratory syndrome), influenza or another virus pandemic.</p>
</list-item>
<list-item>
<p id="Par14">The first FDA approval of an IFN was, however, not for virus infection but for cancer. The mechanisms of antitumour action are incompletely understood. Aberrations of the IFN system are also emerging as important contributors to cancer development.</p>
</list-item>
<list-item>
<p id="Par15">IFNs also proved effectiveness in relapsing, remitting multiple sclerosis. It is now common practice to initiate IFN-β treatment at the time of diagnosis.</p>
</list-item>
<list-item>
<p id="Par16">Because of the effectiveness of IFNs in limiting virus replication, reducing tumour cell mass, controlling disease symptoms and prolonging survival, market sales of IFNs approach US$4 billion. As all the effects of IFNs are mediated through ISGs, understanding of the function of these genes might lead to more efficacious antiviral and anti-cancer drugs.</p>
</list-item>
</list>
</p>
</abstract>
<abstract id="Abs2" abstract-type="web-summary">
<p id="Par17">Interferons (IFNs) provide fundamental cellular defence mechanisms against viral infections and cancer. On the 50th anniversary of the discovery of IFNs, the authors provide a comprehensive overview of IFN biology, human therapeutic applications and potential drug targets within the IFN system.</p>
</abstract>
<abstract id="Abs3">
<p id="Par18">The family of interferon (IFN) proteins has now more than reached the potential envisioned by early discovering virologists: IFNs are not only antivirals with a spectrum of clinical effectiveness against both RNA and DNA viruses, but are also the prototypic biological response modifiers for oncology, and show effectiveness in suppressing manifestations of multiple sclerosis. Studies of IFNs have resulted in fundamental insights into cellular signalling mechanisms, gene transcription and innate and acquired immunity. Further elucidation of the multitude of IFN-induced genes, as well as drug development strategies targeting IFN production via the activation of the Toll-like receptors (TLRs), will almost certainly lead to newer and more efficacious therapeutics. Our goal is to offer a molecular and clinical perspective that will enable IFNs or their TLR agonist inducers to reach their full clinical potential.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Nature Limited 2007</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Main</title>
<p id="Par19">The discovery and molecular understanding of the cellular mechanisms and clinical use of interferons (IFNs) have been a major advance in biomedicine over the past 50 years. This family of secreted autocrine and paracrine proteins stimulates intracellular and intercellular networks that regulate resistance to viral infections, enhance innate and acquired immune responses, and modulate normal and tumour cell survival and death. After their discovery in 1957 (Ref.
<xref ref-type="bibr" rid="CR1">1</xref>
), it was soon appreciated that IFNs were critically important to the health of animals and humans and that the IFN system had potential as therapies for infections for both RNA and DNA viruses (
<ext-link ext-link-type="uri" xlink:href="https://www.nature.com/nrd/journal/v6/n12/fig_tab/nrd2422_I1.html">Timeline</ext-link>
).</p>
<p id="Par20">However, advances in molecular biology a decade later and into the 1970s were required before the promise could be realized. The 1980s saw their introduction into the clinic as the first pharmaceutical products of the budding biotechnology industry,and, importantly, as a demonstration of the effectiveness of IFNs not only for viral diseases and cancer but also for
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=126200">multiple sclerosis</ext-link>
(MS). The 1990s were marked by an expansion in their clinical applications with regulatory approvals worldwide and a further understanding of molecular events influencing biological actions. Current studies have led to new insights into IFNs as a fundamental component of the innate immune system. Additionally, studies have revealed how IFN production is induced through Toll-like receptors (TLRs), the actions of IFN-stimulated genes (ISGs), the identification of viral mechanisms that resist actions of this potent protein, and how mutation and suppression of gene products of the IFN system in and by malignant cells may affect the initiation and progression of cancer.</p>
<p id="Par21">After binding to high-affinity receptors, IFNs initiate a signalling cascade through signalling proteins that can also be activated by other cytokines, which were first identified through studies of IFNs. Cellular actions are mediated through specific ISGs, which underlie the antiviral effects, as well as immunoregulatory and antitumour effects. Future drugs that could act as molecular activators for ISGs, many of which exist in a latent state or as agonists for TLRs, might be expected to have potent antiviral, antitumour and/or immunomodulatory effects.</p>
<p id="Par22">From more than 100,000 published papers, we offer a perspective with a focus on human IFNs to stimulate the future investigation of important questions. Although IFNs function as an integrated system, conceptually it helps to consider their production, which is mediated through TLR activation, and their action, which is mediated through JAK/STAT (Janus kinase/Signal Transducers and Activators of Transcription) and other signalling pathways. The production of IFNs is important for understanding the role of IFNs in innate immunity, while their effects relate to dissecting underlying and future mechanisms of action and application. Highlighting initial pivotal discoveries and more recent findings of conceptual importance, we review how IFNs are induced, the cellular actions of IFNs and ISGs, human therapeutic applications, and summarize important questions for biomedicine and drug and clinical development initiatives.
<fig position="anchor" id="Figa">
<caption>
<p>Major milestones and discoveries in 50 years of interferon research</p>
</caption>
<graphic position="anchor" xlink:href="41573_2007_Article_BFnrd2422_Figa_HTML" id="d29e310"></graphic>
</fig>
</p>
<p id="Par23">
<bold>How synthesis is induced</bold>
</p>
<p id="Par24">Production of IFNs, both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
, is transient and requires stimulation by viruses, microbial products or chemical inducers. In the course of the discovery of IFNs, either live or heat-inactivated influenza viruses were initially identified as inducers
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. Subsequently other microbial products, including those of bacteria, protozoa, and RNA and DNA viruses, were also recognized to induce IFN
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
. It was also shown that microbial nucleic acids, lipids, polysaccharides or proteins trigger induction of IFNs through activation of TLRs (
<xref rid="Fig1" ref-type="fig">Fig. 1</xref>
). An early pivotal discovery identified double-stranded (ds) RNAs, both natural and synthetic, as potent inducers
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
, leading to the simplistic paradigm that viruses induce IFNs by producing dsRNA; in reality, it is only one of the viral gene products responsible for induction. Nonetheless, dissection of cellular responses that lead to induction were spearheaded by the analysis of dsRNA-mediated signalling pathways.
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<title>Mammalian Toll-like receptors (TLRs) and their ligands.</title>
<p>TLR1, TLR2, TLR4, TLR5 and TLR6 are located on the cell surface. Their extracellular domains (depicted as rods) bind specific microbial products that act as ligands and the intracellular domains (depicted as spheres) signal via specific cytoplasmic signalling proteins. TLRs function as homodimers or heterodimers.The ligands specific for several such dimers are listed at the top of the figure. Several other TLRs, such as TLR3, TLR7/8 and TLR9, recognize specific nucleic acids that are often produced by viruses. They span the endosomal membrane with the ligand-binding domains inside the lumen and the signalling domains in the cytoplasm. They also function as dimers and recognize double-stranded (ds) RNA, single-stranded (ss) RNA or dsDNA containing CpG sequences. GPI, glycosylphosphatidylinisotol; LPS, lipopolysaccharide.</p>
</caption>
<graphic xlink:href="41573_2007_Article_BFnrd2422_Fig1_HTML" id="d29e350"></graphic>
</fig>
</p>
<p id="Par25">dsRNA is recognized by TLR3, which is present mostly in endosomal membranes
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
, and also by two cytoplasmic RNA helicases, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated protein 5 (MDA5)
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
(
<xref rid="Fig2" ref-type="fig">Fig. 2</xref>
). The cytoplasmic proteins can also recognize single-stranded (ss) RNAs but only if they have 5′-triphosphates. Mice in which the
<italic>TLR3</italic>
(Ref.
<xref ref-type="bibr" rid="CR6">6</xref>
), the
<italic>RIG- I</italic>
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
or the
<italic>MDA5</italic>
(Ref.
<xref ref-type="bibr" rid="CR8">8</xref>
) gene has been disrupted are more susceptible to virus infection; however the relative importance of the three proteins for inhibitory activity varies for the immune defence against different viruses. Surprisingly, the presence of TLR3 can enhance pathogenesis in mice infected with influenza A virus
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
or West Nile virus
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
. An adaptor protein for TLR3 signalling is TLR adapter molecule 1 (TRIF), whereas the mitochondrial protein IFN-β-promoter stimulator 1 (IPS1; also known as VISA) is an adaptor for RIG-I and MDA5; both TRIF and IPS1 recruit inhibitor of nuclear factor-κB (NFκB) kinase (IKK) and TANK-binding kinase (TBK1), the common activator kinases
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. Other nucleic acids such as ssRNA, acting through TLR7 and TLR8, and bacterial oligodeoxyribonucleotides, acting through TLR9, are also potent inducers
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. Bacterial lipopolysaccharides induce IFNs through TLR4 and also recruit TRIF; viral glycoproteins bind and activate different TLRs. An additional cytoplasmic receptor exists for recognizing viral DNA
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<title>Different interferon (IFN) signalling pathways activated by dsRNA and viruses.</title>
<p>Extracellular double-stranded (ds) RNA or intracellular dsRNA produced during viral replication can activate different signalling pathways triggered by either membrane-bound Toll-like receptor 3 (TLR3) or cytoplasmic retinoic acid-inducible gene I (RIG-I; also known as DDX58) or melanoma differentiation associated protein 5 (MDA5; also known as IFIH1).
<bold>a</bold>
| TLR3 recognizes dsRNA in the lumen of the endosome, which causes phosphorylation of specific tyrosine residues in TLR3 by an unidentified protein tyrosine kinase (PTK). TLR3 dimerizes, binds to CD14 and activates the signalling complex assembled by TLR adaptor molecule 1 (TRIF). Two major pathways bifurcate from TRIF. One, composed of tumour necrosis factor (TNF) receptor-associated factor 3 (TRAF3) and TANK-binding kinase (TBK1/IKKE), leads to phosphorylation of the transcription factor IFN regulatory factor 3 (IRF3). IRF3 requires further phosphorylation by the phosphatidylinositol 3-kinase (P13K)/AKT pathway for its full activation, which is initiated by binding PI3K to phosphorylated TLR3. The other branch acts through TRAF6 and transforming growth factor-β-activated kinase 1 (TAK1; also known as MAP3K7) leading to the activation of nuclear factor-κB (NFκB), JUN and activating transcription factor 2 (ATF2) transcription factors. The activated transcription factors translocate from the cytoplasm to the nucleus, bind to the cognate sites in the promoters of the target genes and singly or in combinations induce their transcription.
<bold>b</bold>
| The cytoplasmic RNA helicases RIG-I and MDA5 recognize dsRNA or 5′ triphosphorylated single-stranded (ss) RNA and use the mitochondrial membrane-bound protein IFN-β-promoter stimulator 1 (IPS1; also known as VISA) as the specific adaptor. IPS1 functions like TRIF and activates the same transcription factors leading to the induction of similar genes. In addition, they cause apoptosis by activating caspases 8 and 10 through the interaction of FADD with IPS1. Solid arrows denote steps that have been fully delineated, stippled arrows show steps that contain as yet unknown intermediaries. AIP3, atrophin-1 interacting protein 3; CCL5, chemokine (C-C motif) ligand 5; CXCL10, chemokine (C-X-C motif) ligand 10; IFIT1/2, interferon-induced protein with tetratricopeptide repeats 1/2; IKK, inhibitor of NFκB kinase; SELE, selectin E (endothelial adhesion molecule 1).</p>
</caption>
<graphic xlink:href="41573_2007_Article_BFnrd2422_Fig2_HTML" id="d29e420"></graphic>
</fig>
</p>
<p id="Par26">IFN genes, which are normally transcriptionally silent, are induced by the binding of TLR-activated transcription factors to their promoters. Transcriptional induction of IFN-β has been a model experimental system for defining interactions of transcription factors as an enhanceosome multiprotein complex with DNA
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. The most important transcription factors for induction are proteins of the IFN regulatory factor (IRF), specifically IRF3 and IRF7, and NFκB families
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
. IRFs are activated by the kinases TBK1 or IKKɛ; activated IRFs then dimerize and translocate to the nucleus
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
. The IKK protein kinase complex phosphorylates IκB and releases it from NFκB; NFκB is then further activated by phosphorylation by other kinases
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
.</p>
<p id="Par27">To evade the IFN system, viruses have evolved many mechanisms to block IFN synthesis and actions — acting at almost every step of the signalling pathway
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. For example, a
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=609532">hepatitis C virus</ext-link>
(HCV)-encoded protease can cleave IPS1 off the mitochondrial membrane and block RIG-I/MDA5-mediated signalling
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
.
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610424">Hepatitis B virus</ext-link>
(HBV) ORF-C and terminal proteins can also block induction. Influenza virus, Ebola virus, papilloma viruses and the human herpes
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=148000">Kaposi's sarcoma</ext-link>
-associated virus (KSHV) encode proteins that interfere with IRF activation or induction and actions of IFNs
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. For example, KSHV can downregulate one of the receptor chains for IFN-γ, and the NS1 protein of influenza viruses prevents establishment of an antiviral state through the interaction with RIG-I
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
. Conversely, patients with defects in the production of type I IFNs, due to mutation of the
<italic>UNC93B</italic>
gene, are highly susceptible to
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610551">herpes simplex virus</ext-link>
1 (HSV-1) encephalitis
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
.</p>
<p id="Par28">Development of small-molecule activators of induction are only beginning; however, delineation of the responsible signalling pathway has identified many target proteins.
<xref rid="Glos1" ref-type="list">CpG oligonucleotides</xref>
are activators of TLR9 (Ref.
<xref ref-type="bibr" rid="CR25">25</xref>
); the quinolinamine imiquimod
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
and its analogues activate TLR7 (Refs
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
); and
<xref rid="Glos2" ref-type="list">DMXAA</xref>
induces IFN synthesis through a TLR-independent pathway
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. Development of chemical modulators that selectively activate IFN synthesis or block the synthesis of inflammatory cytokines could have a broad therapeutic potential
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
.</p>
<p id="Par29">
<bold>IFN proteins and their receptors</bold>
</p>
<p id="Par30">The realization that IFNs constitute a protein family arose initially from the definition of antigenic differences between human fibroblast (IFN-β) and leukocyte IFNs (IFN-α)
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
. Although protein purification studies suggested the potential multigenic nature of IFN-α, this was only firmly established by the cloning of IFN-α1, IFN-α2 and IFN-β
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
, which, when accomplished, helped solidify the financial future of the nascent biotechnology industry. The number of functional genes identified that encode type I IFNs has grown subsequently: 17 non-allelic genes have now been described in humans. All lack introns and cluster on chromosome 9 (Refs
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
). Of the type I IFNs, there are 13 IFN-αs (plus an additional synthetic concensus sequence and also additional minor allelic variants), whereas there is only one type of IFN-β, IFN-ω, IFN-ɛ or IFN-κ (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
). Among mammals, the number of type I IFN genes is variable; some have unique types (for example, IFN-δ occurs only in pigs and IFN-τ only in ruminants) and others are devoid of a particular type (for example, IFN-ω in mice). Consistent with the universal biological definition of IFNs (that is, proteins inducing relatively species-specific antiviral effects), all type I IFNs, which are mostly non-glycosylated proteins of 165–200-plus amino acids, share homologies that range from 30–85% within a species. Essentially all have relatively high specific potencies (1 × 10
<sup>7</sup>
to 1 × 10
<sup>9</sup>
<xref rid="Glos3" ref-type="list">antiviral units</xref>
per mg protein).
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<title>Receptor activation or ligand–receptor complex assembled by type I, type II or type III interferons.</title>
<p>Type I interferons (IFNs) (α, β ω, κ, ɛ, δ (pigs), τ (ruminants)) interact with IFN (α, β and ω) receptor 1 (IFNAR1) and IFNAR2; type II IFN-γ with IFN-γ receptor 1 (IFNGR1) and IFNGR2; and type III IFN-λs with IFN-λ receptor 1 (IFNLR1; also known as IL28RA) and interleukin 10 receptor 2 (IL10R2; also known as IL10RB). Type II IFN-γ is an antiparallel homodimer exhibiting a two-fold axis of symmetry. It binds two IFNGR1 receptor chains, assembling a complex that is stabilized by two IFNGR2 chains. These receptors are associated with two kinases from the JAK family: JAK1 and TYK2 for type I and III IFNs; JAK1 and JAK2 for type II IFN. All IFN receptor chains belong to the class 2 helical cytokine receptor family, which is defined by the structure of the extracellular domains of their members: approximately 200 amino acids structured in two subdomains of 100 amino acids (fibronectin type III modules), themselves structured by seven β-strands arranged in a β-sandwich. The 200 amino-acids domain usually contain the ligand binding site. IFNAR2, IFNLR1, IL10R2, IFNGR1 and IFNGR2 are classical representatives of this family, while IFNAR1 is atypical as its extracellular domain is duplicated. GAS, IFN-γ-activated site; IRF9, IFN regulatory factor 9; ISGF3, IFN-stimulated gene factor 3, refers to the STAT1–STAT2–IRF9 complex; ISRE, IFN-stimulated response element; P, phosphate; STAT1/2, signal transducers and activators of transcription 1/2.</p>
</caption>
<graphic xlink:href="41573_2007_Article_BFnrd2422_Fig3_HTML" id="d29e578"></graphic>
</fig>
</p>
<p id="Par31">Although type I IFNs have qualitative and quantitative differences in their antiviral and other actions
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
, the reason for origin and maintenance through evolution of these related proteins is unknown. All mammalian species have retained, however, at least one IFN-α and one IFN-β
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
. In humans, expression of IFN-κ and IFN-ɛ seems tissue specific
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
, but all cells are able to produce other IFNs. In monocyte-derived dendritic cells, in which viral infection induces expression of the 15 IFN-α/IFN-β/IFN-ω subtypes, stimulation of TLR3 or TLR4 induces mostly IFN-β and IFN-α1, which emphasizes the differences in the promoter sequences for the
<italic>IFN</italic>
-αs,
<italic>IFN</italic>
-ω, and
<italic>IFN</italic>
-β genes that govern the response to different inducers
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
.</p>
<p id="Par32">Type I IFNs belong to the helical cytokine family with secondary structures of a five α-helix bundle held in position by two disulphide bonds
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
. They act through a cell-surface receptor composed of two ubiquitously expressed transmembrane proteins, IFN (α, β and ω) receptor 1 (IFNAR1) and IFNAR2 (the genes for which are clustered on chromosome 21), and are associated with two cytoplasmic tyrosine kinases, TYK2 and JAK1 (Ref.
<xref ref-type="bibr" rid="CR39">39</xref>
) (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
). Formation of the IFN–receptor complex involves one side of the IFN protein interacting with IFNAR2 in a region forming the hinge between the two fibronectin type III (FnIII) domains (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
); binding affinity is in the nanomolar range
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. IFNAR1 binds IFNs with an affinity 1,000-fold weaker than that of IFNAR2, with a binding site located opposite to the IFNAR2 binding site. Binding studies are consistent with the ternary complex between IFNAR1, IFN and IFNAR2 having a 1:1:1 stoichiometry, and a similar if not identical architecture for all type I IFNs. Ternary complex assembly is a two-step process; the ligand binds first to one IFNAR and then recruits the second with no identified interaction between the two IFNARs
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
.</p>
<p id="Par33">As affinities for IFNAR2 are generally much higher than for IFNAR1, a binding pathway in which IFNs bind first to IFNAR2 and then IFNAR1 should have a higher probability. However, with IFN-α1 having a low affinity for IFNAR2, the relevance of the reverse-binding pathway, which could lead to differing cellular effects, has been confirmed
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. If differences in the structures of the IFN–receptor complexes cannot account for the differential activities of type I IFNs, then a body of argument — which includes studies on the activities of engineered IFNs — suggests that differential affinities for IFNARs and thus, ternary complex stability, govern differential biological activities
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
. The cell-surface concentration of IFNARs and their lateral organization into microdomains could also be important cellular parameters that shape responsiveness to individual IFNs
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
. Similar or other changes in receptor organization may also account for the increased susceptibility to HBV infection that occurs with polymorphisms in class II cytokine receptor genes
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
.</p>
<p id="Par34">IFN-γ is a single glycosylated protein of 140 amino acids that is designated as a type II IFN because of its distant amino-acid sequence homology with type I IFNs, and its production by natural killer (NK) or activated T cells. Like type I IFNs, it binds to two class II cytokine receptor proteins; when ligand bound it forms a complex of two of each of the receptor proteins linked to an antiparallel homodimer of IFN-γ
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
(
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
). IFN-γ receptor 1 (IFNGR1) maps to chromosome 6 and has a JAK1 binding domain and a STAT1 docking site. IFNGR2 contains a JAK2 binding domain and maps to chromosome 21q22.1 in a cluster that also contains IFNAR1, IFNAR2 and interleukin 10 receptor 2 (IL10R2; also known as IL10RB)
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
. Although IFNGR1 is constitutively present on all cells, IFNGR2 is tightly regulated and less widely expressed. Promoter polymorphisms and/or mutations within both chains have been associated with increased susceptibility to malaria and mycobacteria — in a few patients these defects have been reconstituted by marrow transplantation
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
. The type III IFN family with three subtypes of IFN-λ, which are co-produced with IFN-β, activate the same main signalling pathway as type I IFNs but have evolved a completely different receptor structure
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
(
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
).</p>
<p id="Par35">
<bold>How cells respond to IFNs</bold>
</p>
<p id="Par36">Initial studies identified several genes that were induced by type I IFNs and analysis of their promoters identified conserved DNA elements
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
. Proteins bound to these elements after treatment with type I IFNs were purified and identified as STAT1, STAT2 and IRF9 (Refs
<xref ref-type="bibr" rid="CR59">59–62</xref>
). To identify other components of IFN-dependent signalling cascades, the promoter element of the 6–16 gene was used to drive IFN-dependent expression of guanine phosphoribosyl transferase; cells that did not respond to IFNs were then selected with 6-thioguanine. Following chemical mutagenesis, several mutant cell lines were obtained, each lacking a protein essential for signalling. For example, mutant
<italic>U1A</italic>
was shown by complementation to lack the tyrosine kinase TYK2 (Refs
<xref ref-type="bibr" rid="CR60">60</xref>
,
<xref ref-type="bibr" rid="CR62">62</xref>
). Subsequently seven STAT and four JAK family members were identified; these transcription factors and tyrosine kinases have been shown to be essential for responses not only to IFNs but also to other cytokines and growth factors as well
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
.</p>
<p id="Par37">Minimum requirements for a response to type I IFNs are the heterodimeric IFN receptor; the tyrosine kinases TYK2 and JAK1, which reciprocally transphosphorylate the receptor chains when activated; STAT1 and STAT2, which are phosphorylated in response to signalling; and the unphosphorylated IRF9 (
<xref rid="Fig3" ref-type="fig">Fig. 3</xref>
). Transcription in response to IFN-dependent signalling is initiated by high-affinity binding to specific palindromic promoter sequences of the trimeric complex of STAT1, STAT2 and IRF9. The response to IFN-γ requires only the two receptor proteins, the kinases JAK1 and JAK2, and STAT1. STAT1 and STAT3 bind competitively to the same phosphotyrosine residue of IFNGR1, with the binding of STAT1 greatly favoured
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
. Although initial work was carried out primarily in human fibroblasts, recent studies have identified additional complexity that allows individual cell types to respond by activating different STATs in response to the same IFN (reviewed in Refs
<xref ref-type="bibr" rid="CR64">64</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
). Analysis of defects in the IFN system has identified germline mutations in humans that result in deficiencies of STAT1 or TYK2, with enhanced susceptibility to infection by viruses
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
. Although the mouse has been a useful model, the human defects are not always identical to the effects that result from the targeted deletions of these genes in mice
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
.</p>
<p id="Par38">Upon activation of receptors, the JAKs undergo autophosphorylation and transphosphorylation to increase their activity, and then phosphorylate the IFN receptors and finally STATs. However, the kinase activities of the JAKs are not sufficient to explain all nuances of signalling. Tissue-specific differences in activating additional protein kinases probably contribute to the differential responses of various cells to a single type of IFN. In at least some cell types, the p85 subunit of phosphatidylinositol 3-kinase (PI3K) is associated with IFNAR1. The activation of p85 by IFN leads to AKT phosphorylation and expression of the chemokine (C-X-C motif) ligand 11 (
<italic>CXCL11</italic>
) gene, encoding an important chemokine
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
. Type I IFNs also activate p38, and inactivation of p38 blocks induction by IFN-β of
<italic>CXCL11</italic>
and
<italic>TNFSF10</italic>
(encoding tumour necrosis factor-related apoptosis-inducing ligand, APO2L/TRAIL)
<sup>
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
and of
<italic>CXCL10</italic>
(encoding the chemokine IP-10; also known as IFN-γ-induced peptide, 10 kDa) in primary leukocytes
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
</sup>
.</p>
<p id="Par39">An important function of the activation of protein serine kinases such as p38 and protein kinase C (PKC) in response to IFN-dependent signalling is phosphorylation, directly or indirectly, of transcription factors
<sup>
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
. Serine 727 of STAT1 is phosphorylated in response to IFN-γ by the kinase cascade PI3K—AKT—PKC—MKK4—p38 (MKK4, mitogen-activated protein kinase kinase 4; also known as MAP2K4), with some variation in the activation of different PKC or MKK proteins in different cells
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
. IFN-dependent activation of PI3K, extracellular response kinases (ERKs) and p38 stimulates the phosphorylation of NFκB (but not IκB), AP-1 and possibly PU.1, respectively. These activated transcription factors may then either drive gene expression independently of activated STATs or cooperate with activated STATs on certain promoters (
<xref rid="Fig4" ref-type="fig">Fig. 4</xref>
). Conversely, transcription initiated by phosphorylated STATs does not proceed indefinitely; homeostasis and balance result from the actions of phosphatases such as SHP1 and SHP2 and a family of ISGs, the suppressor of cytokine signalling (SOCS) proteins
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
,
<xref ref-type="bibr" rid="CR72">72</xref>
</sup>
. SOCS inhibit receptor signalling both by directly inhibiting JAKs and by targeting the receptor complex for proteasomal degradation
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<title>Complexity of the signalling response.</title>
<p>Different types of cells respond differentially to a single type of interferon (IFN) by varying the activation of specific signal transducers and activators of transcription (STATs), additional transcription factors (TFs) and kinases in addition to the Janus kinases (JAKs). Priming of cells by pre-treatment with another cytokine modulates the response further by increasing the amounts of negative regulators and by modulating other processes. Most genes require STATs, with or without additional TFs, and several genes respond only to activated TFs and not to STATs. The STATs bind to IFN-γ-activated site (GAS) elements or, together with IFN regulatory factor (IRF) proteins, to IFN-stimulated response elements (ISREs), and the TFs bind to specific binding elements (TFBE). CIS, cytokine inducible SH2-containing protein; PTP, protein tyrosine phosphatase; SOCS1, suppressor of cytokine signalling 1.</p>
</caption>
<graphic xlink:href="41573_2007_Article_BFnrd2422_Fig4_HTML" id="d29e834"></graphic>
</fig>
</p>
<p id="Par40">Prior exposure to other cytokines conditions how a cell will respond and, conversely, IFNs condition responses to other cytokines
<sup>
<xref ref-type="bibr" rid="CR64">64</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR73">73</xref>
</sup>
. An excellent example of such an effect is prior exposure of human macrophages to IFN-γ, which changes the response to IL10 from activation of STAT3 to activation of STAT1 (Ref.
<xref ref-type="bibr" rid="CR74">74</xref>
). Although, as reductionist scientists, we tend to study the responses of cells in culture to treatment with IFNs alone, the situation
<italic>in vivo</italic>
is obviously much more complex.</p>
<p id="Par41">Both STAT1 and STAT3 have activities in addition to their roles as cytokine-activated transcription factors.
<italic>STAT1</italic>
is activated in response to both type I and type II IFNs and
<italic>STAT3</italic>
is activated in response to gp130 cytokines such as IL6. As STAT1 and STAT3 drive essentially opposite biological responses, large signal-dependent changes in their concentrations will affect their relative activation by a further signal. Indeed, an increase in the ratio of STAT1–STAT3 after IFN-α2 treatment of patients with melanoma correlated with survival
<sup>
<xref ref-type="bibr" rid="CR75">75</xref>
</sup>
. Another consequence of cytokine-dependent increases in STAT expression is that unphosphorylated STAT1 and STAT3 have important functions that are quite distinct from those of the phosphorylated proteins
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
,
<xref ref-type="bibr" rid="CR77">77</xref>
</sup>
. For example, unphosphorylated STAT3 activates a subset of κB-dependent genes by forming a complex with NFκB
<sup>
<xref ref-type="bibr" rid="CR78">78</xref>
</sup>
. Thus the role of STATs in signalling after receptor binding has expanded from kinase-activated transcription factors to proteins that, even in the absence of ligand activation, activate transcription and participate in cell-type specificity, resulting in diverse patterns of ISG induction in different cell types in response to a single IFN.</p>
<p id="Par42">
<bold>ISGs: molecular mechanisms of antiviral action</bold>
</p>
<p id="Par43">ISGs are a diverse group of more than 300 genes (which and how many are a function of cell-type signalling variations as discussed above) that mediate the biological and therapeutic effects of IFN stimulation
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
(
<xref rid="Tab1" ref-type="table">Table 1</xref>
). Studies of their mode of action have resulted in fundamental discoveries concerning translational control, regulation of RNA stability and editing, and protein transport and turnover
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
. Furthermore, proteins that are induced upon IFN stimulation, especially those that can be activated or inhibited
<italic>in vivo</italic>
, are targets for high-throughput screening for identification of new modulators of the IFN system.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>ISGs in the antiviral and anticancer effects of IFNs</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Gene</th>
<th>Protein function</th>
<th>Mechanism of action</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>OAS, RNASEL</italic>
</td>
<td>RNA cleavage</td>
<td>Degrades viral and cellular RNA, induces IFN-α/β</td>
<td>
<xref ref-type="bibr" rid="CR81">81–91</xref>
</td>
</tr>
<tr>
<td>
<italic>PKR</italic>
</td>
<td>EIF2α phosphorylation</td>
<td>Blocks protein synthesis, transcriptional signalling</td>
<td>
<xref ref-type="bibr" rid="CR94">94–98</xref>
</td>
</tr>
<tr>
<td>
<italic>p56</italic>
</td>
<td>Binds EIF3</td>
<td>Blocks protein synthesis</td>
<td>
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
</td>
</tr>
<tr>
<td>
<italic>Mx1</italic>
</td>
<td>Wraps around viral nucleocapsids</td>
<td>Interferes with intracellular trafficking</td>
<td>
<xref ref-type="bibr" rid="CR101">101–104</xref>
</td>
</tr>
<tr>
<td>
<italic>ISG15</italic>
</td>
<td>ISGylation</td>
<td>Cytokine-like, protein modification</td>
<td>
<xref ref-type="bibr" rid="CR105">105–107</xref>
</td>
</tr>
<tr>
<td>
<italic>PLSCR1</italic>
</td>
<td>Phospholipid migration, DNA binding</td>
<td>Enhances expression of some ISGs</td>
<td>
<xref ref-type="bibr" rid="CR110">110–112</xref>
</td>
</tr>
<tr>
<td>
<italic>TRAIL/APO2L</italic>
</td>
<td>Ligand of death receptor</td>
<td>Apoptosis</td>
<td>
<xref ref-type="bibr" rid="CR113">113–115</xref>
</td>
</tr>
<tr>
<td>
<italic>XAF1</italic>
</td>
<td>Blocks inhibitor of apoptosis (XIAP)</td>
<td>Apoptosis</td>
<td>
<xref ref-type="bibr" rid="CR247">247</xref>
</td>
</tr>
<tr>
<td>
<italic>G1P3</italic>
(6–16)</td>
<td>Inhibits caspase 3</td>
<td>Anti-apoptotic</td>
<td>
<xref ref-type="bibr" rid="CR116">116</xref>
,
<xref ref-type="bibr" rid="CR117">117</xref>
</td>
</tr>
<tr>
<td>
<italic>ISG12</italic>
</td>
<td>Not known</td>
<td>Antiviral</td>
<td>
<xref ref-type="bibr" rid="CR119">119</xref>
,
<xref ref-type="bibr" rid="CR120">120</xref>
</td>
</tr>
<tr>
<td>
<italic>GBP1</italic>
</td>
<td>GTPase</td>
<td>Antiviral, angiogenesis inhibitor</td>
<td>
<xref ref-type="bibr" rid="CR121">121</xref>
,
<xref ref-type="bibr" rid="CR268">268</xref>
</td>
</tr>
<tr>
<td>
<italic>ISG20</italic>
</td>
<td>3′-exonuclease for RNA and DNA</td>
<td>Antiviral</td>
<td>
<xref ref-type="bibr" rid="CR122">122</xref>
</td>
</tr>
<tr>
<td>
<italic>PML</italic>
</td>
<td>Not known</td>
<td>Antiviral, antitumor</td>
<td>
<xref ref-type="bibr" rid="CR123">123</xref>
</td>
</tr>
<tr>
<td>
<italic>ADAR1</italic>
</td>
<td>Adenosine deaminase for dsRNA</td>
<td>RNA editing, altered translation</td>
<td>
<xref ref-type="bibr" rid="CR124">124</xref>
</td>
</tr>
<tr>
<td>
<italic>Viperin</italic>
(cig5)</td>
<td>Not known</td>
<td>Antiviral</td>
<td>
<xref ref-type="bibr" rid="CR125">125</xref>
</td>
</tr>
<tr>
<td>
<italic>iNOS</italic>
</td>
<td>Nitric oxide synthase</td>
<td>Antiviral</td>
<td>
<xref ref-type="bibr" rid="CR126">126</xref>
</td>
</tr>
<tr>
<td>
<italic>Nup98/Nup96</italic>
</td>
<td>Nucleoporin, RNA and protein transporters</td>
<td>Antiviral</td>
<td>
<xref ref-type="bibr" rid="CR127">127</xref>
,
<xref ref-type="bibr" rid="CR270">270</xref>
</td>
</tr>
<tr>
<td>
<italic>IRF7, RIG-I, MDA5, STAT1</italic>
</td>
<td>Signalling to IFN-α/β genes or to ISGs</td>
<td>Induction of type I IFNs</td>
<td>
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
</td>
</tr>
<tr>
<td align="center" colspan="4">
<italic>ADAR1</italic>
, adenosine deaminase, RNA-specific; dsRNA, double-stranded RNA; EIF2α/3, eukaryotic initiation factor 2α/3;
<italic>G1P3</italic>
, interferon, α-inducible protein;
<italic>GPB1</italic>
, guanylate binding protein 1, interferon-inducible, 67kDa;
<italic>iNOS</italic>
, inducible nitric oxide synthase;
<italic>IRF7</italic>
, interferon regulatory factor 7; ISGs, interferon-stimulated genes;
<italic>MDA5</italic>
, melanoma differentiation associated protein 5 (also known as
<italic>IFIH1</italic>
);
<italic>Mx1</italic>
, myxovirus (influenza virus) resistance 1, interferon-inducible protein p78;
<italic>Nup98/Nup96</italic>
, nucleoporin 98/96 kDa;
<italic>OAS</italic>
, 2′-5′-oligoadenylate synthetase;
<italic>PKR</italic>
, protein kinase R;
<italic>PLSCR1</italic>
, phospholipid scramblase 1;
<italic>PML</italic>
, promyelocytic leukaemia;
<italic>RIG-I</italic>
, retinoic acid-inducible gene I (also known as
<italic>DDX58</italic>
);
<italic>RNASEL</italic>
, ribonuclease L;
<italic>STAT1</italic>
, signal transducer and activator of transcription 1, 91 kDa;
<italic>TRAIL/APO2L</italic>
, tumour necrosis factor-related apoptosis-inducing ligand (also known as
<italic>TNFSF10</italic>
);
<italic>Viperin</italic>
(cig5), also known as
<italic>RSAD2</italic>
;
<italic>XAF1</italic>
, X-linked inhibitor of apoptosis-associated factor 1; XIAP, X-linked inhibitor of apoptosis protein (also known as
<italic>BIRC4</italic>
).</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par44">Examples for this are 2′,5′-oligoadenylate synthetases (OASs) and ribonuclease L (RNASEL), which inhibit a broad range of RNA viruses
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
. Viral dsRNA can directly activate one of several human OAS proteins to produce a unique 2′-to-5′ linked oligoadenylate of 3–6 bases (2–5A) from ATP
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
</sup>
. The only well-established function of 2–5A is activation of the ubiquitous, latent enzyme, RNASEL
<sup>
<xref ref-type="bibr" rid="CR83">83</xref>
</sup>
. 2–5A binding to RNASEL induces monomeric, inactive RNASEL to dimerize into a potent endoribonuclease that cleaves single-stranded regions of RNA on the 3′ side of UpUp and UpAp dinucleotides
<sup>
<xref ref-type="bibr" rid="CR84">84</xref>
,
<xref ref-type="bibr" rid="CR85">85</xref>
,
<xref ref-type="bibr" rid="CR86">86</xref>
</sup>
. The OAS–RNASEL pathway can inhibit the replication of encephalomyocarditis virus, Coxsackie virus B4, West Nile virus, some retroviruses and HCV
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
. Furthermore, degradation of cellular mRNA and rRNA by RNASEL damages the host cell machinery that is required for viral replication and can result in apoptosis, contributing to both antiviral and antitumour actions
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
,
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
</sup>
. RNASEL also cleaves self-RNA into small degradation products that activate the recognition receptors, RIG-I and MDA5, to induce IFN-β, similar to that of non-self viral RNA
<sup>
<xref ref-type="bibr" rid="CR90">90</xref>
</sup>
, thus perpetuating and amplifying the production of IFN-β. A high-throughput screen has resulted in the identification of small molecules that can activate RNASEL and produce broad-spectrum antiviral effects
<sup>
<xref ref-type="bibr" rid="CR91">91</xref>
</sup>
.</p>
<p id="Par45">The dsRNA-activated protein kinase (PKR) and OAS were the first enzymes identified that uniquely respond to IFNs
<sup>
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
</sup>
. PKR is a serine/threonine kinase that mediates translational and transcriptional control in response to dsRNA and other signals
<sup>
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
,
<xref ref-type="bibr" rid="CR96">96</xref>
</sup>
. In addition, the cellular protein PACT (also known as PRKRA) activates PKR in the absence of dsRNA
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
</sup>
. PKR mediates translational control by phosphorylating the protein synthesis initiation factor EIF2α, resulting in an inactive complex between EIF2–GDP and the recycling factor, EIF2B. These events produce global inhibition of protein synthesis that blocks further viral replication and full amplification of the viral-induced cellular stress response. Many viruses, however, evade PKR through a range of strategies such as binding and sequestering dsRNA, thus depriving PKR of its activator or inhibition of its kinase activity
<sup>
<xref ref-type="bibr" rid="CR98">98</xref>
</sup>
.</p>
<p id="Par46">Another ISG family that influences translation is the strongly induced p56-related proteins (
<italic>IFIT</italic>
gene products). Two of these, p56 and p54, inhibit protein synthesis by blocking the action of the translation initiation factor EIF3 (Ref.
<xref ref-type="bibr" rid="CR99">99</xref>
). p56 and p54 bind to different subunits of EIF3 and block some of its diverse functions. HCV mRNA translation is inhibited more strongly by p56 than by cellular mRNAs, because its initiation is internal ribosome entry site (IRES)-mediated, and not CAP-mediated; thus it selectively inhibits viral protein synthesis
<sup>
<xref ref-type="bibr" rid="CR100">100</xref>
</sup>
.</p>
<p id="Par47">The ISG-encoded antiviral protein Mx was identified because of the resistance of mouse strain A2G to influenza A viruses (
<italic>Mx1</italic>
, orthomyxovirus resistance gene 1)
<sup>
<xref ref-type="bibr" rid="CR101">101</xref>
,
<xref ref-type="bibr" rid="CR102">102</xref>
,
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
. Mx proteins are large (∼80 kDa) GTPases in the dynamin superfamily that self-assemble and bind viral nucleocapsids. This interferes with intracellular trafficking and activity of viral polymerases, thus inhibiting replication of many RNA viruses including influenza and measles viruses
<sup>
<xref ref-type="bibr" rid="CR104">104</xref>
</sup>
. The human homologue, MXA, is a cytoplasmic protein that associates with intracellular membranes.</p>
<p id="Par48">ISG15 encodes a ubiquitin-like, 15 kDa protein that modifies more than 100 proteins through a process known as ISGylation
<sup>
<xref ref-type="bibr" rid="CR105">105</xref>
,
<xref ref-type="bibr" rid="CR106">106</xref>
,
<xref ref-type="bibr" rid="CR107">107</xref>
</sup>
. ISG15 inhibits HIV-1 release from cells, mimicking the effect of IFN
<sup>
<xref ref-type="bibr" rid="CR108">108</xref>
</sup>
and infections by influenza, herpes and Sindbis viruses
<sup>
<xref ref-type="bibr" rid="CR109">109</xref>
</sup>
. The antiviral mechanism of ISG15
<italic>in vivo</italic>
is unknown but could relate to its cytokine-like properties or to its ability to conjugate and modify the function of cellular or viral proteins.
<italic>ISG15</italic>
is also a target gene for dysregulation of the p53 and ISG pathways that occurs in many types of cancer, suggesting an additional role in tumorigenesis
<sup>
<xref ref-type="bibr" rid="CR107">107</xref>
</sup>
.</p>
<p id="Par49">Phospholipid scramblase 1 (PLSCR1), a protein implicated in Ca
<sup>2+</sup>
-dependent reorganization of plasma membrane phospholipids
<sup>
<xref ref-type="bibr" rid="CR110">110</xref>
</sup>
, either inserts into the plasma membrane or binds DNA in the nucleus depending on its palmyitoylation
<sup>
<xref ref-type="bibr" rid="CR111">111</xref>
</sup>
. PLSCR1 has antiviral activity that possibly results from the enhanced transcription of a subset of ISGs
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
</sup>
. TRAIL/APO2L is an ISG that contributes to apoptosis and therefore probably to both the antiviral and antitumour effects of IFNs
<sup>
<xref ref-type="bibr" rid="CR113">113</xref>
,
<xref ref-type="bibr" rid="CR114">114</xref>
,
<xref ref-type="bibr" rid="CR115">115</xref>
</sup>
. Although many ISGs promote apoptosis, some promote cell survival. For example, the ISG
<italic>G1P3</italic>
(or 6–16)
<sup>
<xref ref-type="bibr" rid="CR116">116</xref>
,
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
localizes to mitochondria and has anti-apoptotic actions, including inhibition of
<xref rid="Glos4" ref-type="list">caspase</xref>
-3 (Ref.
<xref ref-type="bibr" rid="CR118">118</xref>
). A related ISG, encoded by
<italic>IFI27</italic>
(
<italic>ISG12</italic>
)
<sup>
<xref ref-type="bibr" rid="CR119">119</xref>
</sup>
, promotes an age-dependent resistance to alphavirus encephalitis in mice without affecting either levels of apoptosis or viral yields
<sup>
<xref ref-type="bibr" rid="CR120">120</xref>
</sup>
. Additional ISGs with probable or confirmed antiviral activities include the guanylate-binding protein 1 (GBP1); a 3′,5′-exonuclease encoded by
<italic>ISG20</italic>
; the promyelocytic leukaemia protein (PML); adenosine deaminase (ADAR1); the endoplasmic reticulum-associated protein Viperin (cig5) that can inhibit human cytomegalovirus;
<xref rid="Glos5" ref-type="list">inducible nitric oxide synthase</xref>
(iNOS); and the
<xref rid="Glos6" ref-type="list">nucleoporins</xref>
Nup98 and Nup96 (Refs
<xref ref-type="bibr" rid="CR121">121–128</xref>
).</p>
<p id="Par50">Finally, many IFN-pathway signalling proteins are themselves ISGs, thus providing an autocrine loop that amplifies IFN responses; examples are IRF7, RIG-I, MDA5 and STAT1. As ISGs with high levels of transcriptional induction are still poorly characterized functionally
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
,
<xref ref-type="bibr" rid="CR128">128</xref>
</sup>
, some could prove to be critical mediators of antiviral and other actions. Because all biological effects of IFNs are mediated through the action of ISGs (
<xref rid="Tab1" ref-type="table">Table 1</xref>
), further research into understanding the functions of the protein products of these may lead to more efficacious antiviral and other therapeutics.</p>
<p id="Par51">
<bold>Innate and adaptive immunity</bold>
</p>
<p id="Par52">In addition to direct inhibition of viral replication by ISGs, a second level of IFN action augments adaptive and acquired immune responses. Early warning of pathogen presence is delivered by tissue-associated and circulating dendritic cells, one type of which, the plasmacytoid dendritic cell, is the circulating type I IFN-producing cell
<sup>
<xref ref-type="bibr" rid="CR129">129</xref>
</sup>
. In addition to TLR activation on cells at the sites of pathogen invasion or replication, this response culminates with dendritic cell-mediated presentation to CD4
<sup>+</sup>
T cells of pathogen-derived peptide fragments that are bound to surface major histocompatibility complex (MHC) class II molecules. MHC class II proteins are selectively upregulated by IFN-γ, whereas type I IFNs fail to do so owing to the STAT2-dependent induction of SOCS1 (Ref.
<xref ref-type="bibr" rid="CR130">130</xref>
). Infected cells that display peptide fragments associated with MHC class I molecules on the surface are recognized and subsequently eliminated by CD8
<sup>+</sup>
T cells, thereby clearing the virus. Either type I IFNs or IFN-γ can markedly upregulate MHC class I-dependent antigen presentation. In addition to MHC molecules, other ISGs involved in antigen processing include the lysosomal membrane permeabilization (LMP) components of proteasomes and transporters for antigen processing (TAPs), which shuttle peptides into the endoplasmic reticulum for loading onto nascent MHC class I proteins
<sup>
<xref ref-type="bibr" rid="CR131">131</xref>
,
<xref ref-type="bibr" rid="CR132">132</xref>
,
<xref ref-type="bibr" rid="CR133">133</xref>
,
<xref ref-type="bibr" rid="CR134">134</xref>
,
<xref ref-type="bibr" rid="CR135">135</xref>
</sup>
.</p>
<p id="Par53">IFNs also promote accumulation of leukocytes at sites of pathogen invasion; specifically, IFNs (along with cytokines such as TNFα and IL1β), strongly promote the expression of vascular adhesion molecules including intracellular adhesion molecule 1 (ICAM1). Furthermore, IFNs induce the production of chemotactic cytokines (chemokines), which participate in leukocyte recruitment. As examples, three closely related chemokines involved in accumulation of activated T cells and macrophages are the ISGs CXCL9 (also known as MIG, monokine induced by IFN-γ); CXCL10 (also known as IP-10, IFN-γ 10 kD inducible protein); and CXCL11 (also known as I-TAC, interferon-inducible T-cell α-chemoattractant)
<sup>
<xref ref-type="bibr" rid="CR136">136</xref>
,
<xref ref-type="bibr" rid="CR137">137</xref>
,
<xref ref-type="bibr" rid="CR138">138</xref>
,
<xref ref-type="bibr" rid="CR139">139</xref>
</sup>
. True to their names, these chemokines are not expressed in the absence of IFN signalling.</p>
<p id="Par54">In the development of an adaptive immune response, IFN-γ is produced by an early warning NK cell, or by activated T cells
<sup>
<xref ref-type="bibr" rid="CR140">140</xref>
</sup>
. IFN-γ governs expression of class II transactivator (CIITA), a master regulator of transcription of the MHC class II molecules themselves, as well as the associated invariant chain, which helps stabilize MHC class II heterodimers. HLA-DM catalyses the displacement of the invariant chain from the MHC class II peptide binding site as the mature MHC class II-peptide conjugate is finalized for insertion into the plasma membrane
<sup>
<xref ref-type="bibr" rid="CR141">141</xref>
,
<xref ref-type="bibr" rid="CR142">142</xref>
,
<xref ref-type="bibr" rid="CR143">143</xref>
,
<xref ref-type="bibr" rid="CR144">144</xref>
,
<xref ref-type="bibr" rid="CR145">145</xref>
,
<xref ref-type="bibr" rid="CR146">146</xref>
,
<xref ref-type="bibr" rid="CR147">147</xref>
,
<xref ref-type="bibr" rid="CR148">148</xref>
,
<xref ref-type="bibr" rid="CR149">149</xref>
</sup>
. Finally, of substantial importance in the host response to the virus is the IFN-mediated activation of cytotoxic effector function among cells of innate and adaptive immunity including NK cells, dendritic cells, macrophages and T cells. Indeed, the property of stimulating macrophages contributed substantially to the recognition of IFN-γ as a biologically important lymphokine and as a 'different' IFN
<sup>
<xref ref-type="bibr" rid="CR150">150</xref>
</sup>
.</p>
<p id="Par55">
<bold>Human therapeutic applications</bold>
</p>
<p id="Par56">Based on preclinical studies of broad spectrum inhibition of virus replication, IFNs were initially investigated as antivirals with activity against RNA and DNA viruses. Clinical effectiveness for both has now been established. But development of relatively specific, low molecular mass antivirals has largely supplanted broad application except for HBV and HCV chronic infections. The first US Food and Drug Administration (FDA) approval for IFN-α2, however, was not for virus infection but for cancer, which was driven by interest created by publicity resulting from its effectiveness in American Cancer Society trials. Subsequently, placebo-controlled randomized trials established the effectiveness of IFN-β for relapsing, remitting MS — an apparent paradox in terms of the mechanistic understanding of IFN actions, as IFNs, as discussed above, are generally immune augmenting rather than immunosuppressive. Presently, a number of drugs are being or have been designed to target different components of the IFN system for different therapeutic indications (
<xref rid="Fig5" ref-type="fig">Fig. 5</xref>
).
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<title>Potential drug targets in the interferon (IFN) system.</title>
<p>Examples of potential or developmental drugs targeted at different steps in the pathways are presented. IPS1, IFN-β promoter stimulator 1 (also known as VISA); ISG, IFN-stimulated gene; JAK, Janus kinase; RNASEL, ribonulcease L; SOCS1, suppressor of cytokine signalling 1; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand (also known as APO2L); TRIF, TLR adapter molecule 1.</p>
</caption>
<graphic xlink:href="41573_2007_Article_BFnrd2422_Fig5_HTML" id="d29e1689"></graphic>
</fig>
</p>
<p id="Par57">
<bold>
<italic>Viruses</italic>
</bold>
. The recognition that HBV often caused a chronic infection leading to cirrhosis and hepatocellular carcinoma suggested that infected patients might benefit from IFNs
<sup>
<xref ref-type="bibr" rid="CR151">151</xref>
</sup>
. Initial clinical trials of impure IFN-α
<sup>
<xref ref-type="bibr" rid="CR152">152</xref>
</sup>
suggested benefit but studies with impure IFN-β were less promising
<sup>
<xref ref-type="bibr" rid="CR153">153</xref>
</sup>
. These low-dose studies were followed, however, by higher doses of recombinant IFNs, when they became available, which then confirmed beneficial effects
<sup>
<xref ref-type="bibr" rid="CR154">154</xref>
</sup>
.</p>
<p id="Par58">HBV chronic infection evolves with hepatitis e antigen (HBeAg)-positive quiescent viruses escaping inhibition during conversion of an immunotolerant to an immunoactive phase, with enhanced immune elimination of infected hepatocytes
<sup>
<xref ref-type="bibr" rid="CR155">155</xref>
,
<xref ref-type="bibr" rid="CR156">156</xref>
</sup>
. In many, this immune response causes suppression of viral replication and HBeAg loss. A quiescent phase or 'healthy carriage' may ensue but disease reactivation is common (HBeAg-negative disease
<sup>
<xref ref-type="bibr" rid="CR157">157</xref>
</sup>
). In HBeAg-positive early HBV infection, IFNs have not been particularly effective. However, in the immunoactive chronic phase, HBV is sensitive to IFN-α2 and the ongoing immune response is augmented, leading to quiescent HBeAg-negative disease in up to 40% of patients. IFN-α2 (Roferon-A, Hoffmann-LaRoche; Intron-A, Schering–Plough), now usually in the form of a long-acting pegylated version, has been widely used to treat HBeAg-positive HBV infections
<sup>
<xref ref-type="bibr" rid="CR158">158</xref>
</sup>
.</p>
<p id="Par59">IFN-α2 has also been used in the HBeAg-negative disease that develops when viral mutations permit viral reactivation following HBeAg loss. IFNs reduce viraemia (usually by over 90%) and induce host responses, but drug withdrawal often leads to disease recurrence; however, a proportion of patients (approximately 10–15%) have a prolonged period of viral suppression
<sup>
<xref ref-type="bibr" rid="CR159">159</xref>
</sup>
. Therapy for chronic HBV infection illustrates the two complementary activities of IFNs: in HBeAg-positive disease IFN increases an immune response, whereas in HBeAg-negative disease IFNs act as direct antivirals.</p>
<p id="Par60">In the late 1980s 'non-A, non-B hepatitis' or 'post-transfusion hepatitis' was effectively treated with IFNs
<sup>
<xref ref-type="bibr" rid="CR160">160</xref>
</sup>
. Subsequent studies identified the causative agent as HCV
<sup>
<xref ref-type="bibr" rid="CR161">161</xref>
</sup>
. Initial clinical studies of IFN-α2 resulted in sustained and curative virological responses in up to 20% of patients
<sup>
<xref ref-type="bibr" rid="CR162">162</xref>
</sup>
. Response rates to monotherapy with IFN-α2 for chronic HCV infection were transformed in the mid-1990s by combined use with the weak antiviral ribavirin — over 40% of patients responded
<sup>
<xref ref-type="bibr" rid="CR163">163</xref>
</sup>
. These results mimic studies for HSV keratitis in which therapy with a combination of IFNs and a weak antiviral agent (acyclovir) were synergistic
<sup>
<xref ref-type="bibr" rid="CR164">164</xref>
</sup>
. Therapy for chronic HCV infection has now evolved and current regimes commonly use a long-acting pegylated IFN-α2 plus ribavirin with cure of up to 60% of patients. Possibly as a result of selection against RNASEL cleavage sites in its genome, or inhibition of PKR, effectiveness is much less for genotype 1 than for genotypes 2 and 3 of HCV
<sup>
<xref ref-type="bibr" rid="CR162">162</xref>
,
<xref ref-type="bibr" rid="CR271">271</xref>
,
<xref ref-type="bibr" rid="CR272">272</xref>
</sup>
.</p>
<p id="Par61">In addition to HBV and HCV infections, other chronic viral infections have been effectively treated. Both systemic and topical IFN-αs and IFN-β have reduced virus titres and decreased clinical manifestations of herpes zoster, HSV and cytomegalovirus infections
<sup>
<xref ref-type="bibr" rid="CR165">165</xref>
,
<xref ref-type="bibr" rid="CR166">166</xref>
,
<xref ref-type="bibr" rid="CR167">167</xref>
,
<xref ref-type="bibr" rid="CR168">168</xref>
,
<xref ref-type="bibr" rid="CR169">169</xref>
</sup>
. Almost simultaneous introduction of acyclovir and its analogues, however, which proved to have greater clinical efficacy and reduced side effects, ended clinical development of IFNs for these indications. Papilloma virus infections of skin, larynx and genitals were found to respond with regression of warts upon either intralesional or systemic administration of IFN-αs and IFN-β
<sup>
<xref ref-type="bibr" rid="CR170">170</xref>
,
<xref ref-type="bibr" rid="CR171">171</xref>
,
<xref ref-type="bibr" rid="CR172">172</xref>
,
<xref ref-type="bibr" rid="CR173">173</xref>
,
<xref ref-type="bibr" rid="CR174">174</xref>
,
<xref ref-type="bibr" rid="CR175">175</xref>
</sup>
. When compared with placebo, useful therapeutic effects resulted for patients with extensive or refractory disease, but permanent eradication was infrequent. These studies did, however, establish a basis for the use of the TLR7 IFN-inducing agonist imiquimod topically for genital warts with decreases in HPV DNA and with complete response frequencies of approximately 50% compared with 5% in placebo controls
<sup>
<xref ref-type="bibr" rid="CR176">176</xref>
,
<xref ref-type="bibr" rid="CR177">177</xref>
,
<xref ref-type="bibr" rid="CR178">178</xref>
</sup>
. In studies of HIV, virus recovery and clinical manifestations of both early and late stages were reduced
<sup>
<xref ref-type="bibr" rid="CR179">179</xref>
</sup>
. However, effectiveness of azidothymidine or protease inhibitors was not enhanced when IFNs were used in combination
<sup>
<xref ref-type="bibr" rid="CR180">180</xref>
</sup>
.</p>
<p id="Par62">Once adequate quantities of human IFNs became available through recombinant DNA production, prophylaxis and treatment of acute respiratory virus infections were assessed. Reduction in virus yield, infection frequency and symptom scores resulted from administration of intranasal IFNs in experimental challenge infections with rhinoviruses, influenza viruses and coronaviruses
<sup>
<xref ref-type="bibr" rid="CR181">181</xref>
,
<xref ref-type="bibr" rid="CR182">182</xref>
,
<xref ref-type="bibr" rid="CR183">183</xref>
,
<xref ref-type="bibr" rid="CR184">184</xref>
</sup>
. Prophylactic efficacy for natural rhinovirus colds in family and work settings was also identified
<sup>
<xref ref-type="bibr" rid="CR185">185</xref>
,
<xref ref-type="bibr" rid="CR186">186</xref>
,
<xref ref-type="bibr" rid="CR187">187</xref>
</sup>
. However, as a result of the nasal erosions and bleeding resulting from mucosal irritation by IFN-α2 and IFN-β, symptom scores under field conditions were significantly higher in treated patients when compared with placebo. Case-based use in the setting of the severe acute respiratory syndrome (SARS) epidemic suggested clinical effectiveness of the consensus sequence type I IFN against the coronavirus aetiological agent
<sup>
<xref ref-type="bibr" rid="CR188">188</xref>
</sup>
. These findings and the preclinical and clinical antiviral effectiveness with topical and/or high-dose administration suggest that IFNs might have prophylactic or therapeutic effectiveness in SARS or in an influenza or other virus pandemic.</p>
<p id="Par63">
<bold>
<italic>Multiple sclerosis (MS)</italic>
</bold>
. In about 85% of patients with MS, an inflammatory demyelinating disorder of the central nervous system, disease begins with approximately annual episodes of transient neurological dysfunction (relapsing–remitting MS or RR-MS). Initial studies of IFNs in the 1970s followed tissue-culture studies suggesting that cells from MS patients secreted less IFN-like activity following viral induction than did controls. These findings, combined with a notion that a slow or chronic viral infection might be causative, resulted in the evaluation of using an intrathecal, impure IFN-β as therapy that identified a reduction in relapses
<sup>
<xref ref-type="bibr" rid="CR189">189</xref>
</sup>
; however, subsequent clinical trials were either inconclusive (IFN-a2) or detrimental (IFN-γ)
<sup>
<xref ref-type="bibr" rid="CR190">190</xref>
,
<xref ref-type="bibr" rid="CR191">191</xref>
,
<xref ref-type="bibr" rid="CR192">192</xref>
</sup>
. But in 1993, recombinant IFN-β given subcutaneously in a randomized placebo-controlled trial for RR-MS reduced relapses by about a third and resulted in marked reductions in subclinical disease, as assessed by magnetic resonance imaging (MRI)
<sup>
<xref ref-type="bibr" rid="CR193">193</xref>
,
<xref ref-type="bibr" rid="CR194">194</xref>
</sup>
. This report ushered in the modern age of MS therapeutics: by showing that the natural history of MS could be modified; by documenting that IFN-β was clinically beneficial; and by the demonstration of
<xref rid="Glos7" ref-type="list">MRI lesions</xref>
as a useful surrogate of clinical effectiveness, now widely used in MS drug development. It is now common clinical practice to initiate IFN-β (Betaferon/Betaserom, Bayer Schering/Chiron; Avonex, Biogen Idec; Rebif, Merck Serono (or medications of comparable efficacy)) at the time of diagnosis
<sup>
<xref ref-type="bibr" rid="CR195">195</xref>
</sup>
. Attacks decrease by about 30%, numbers of new and active MRI lesions (which reflect inflammation) are often reduced as soon as 1-month after initiation, and long-term clinical benefits are now considered plausible
<sup>
<xref ref-type="bibr" rid="CR196">196</xref>
</sup>
. Although it has unequivocally represented a breakthrough, improvements on IFN-β are needed as it is only partially effective and is expensive for the life-long, non-curative use
<sup>
<xref ref-type="bibr" rid="CR195">195</xref>
,
<xref ref-type="bibr" rid="CR197">197</xref>
</sup>
.</p>
<p id="Par64">Pathogenesis of MS remains unknown but evidence implicates genetic–environmental interactions with critical timing of exposures to initiating factors. Epidemiological studies highlight Epstein–Barr virus and low plasma levels of vitamin D, and genetic studies implicate several polymorphic variants of immune-response genes
<sup>
<xref ref-type="bibr" rid="CR198">198</xref>
,
<xref ref-type="bibr" rid="CR199">199</xref>
,
<xref ref-type="bibr" rid="CR200">200</xref>
,
<xref ref-type="bibr" rid="CR201">201</xref>
</sup>
. The most obvious clinical outcome from IFN-β is a reduction in MRI lesions
<sup>
<xref ref-type="bibr" rid="CR202">202</xref>
,
<xref ref-type="bibr" rid="CR203">203</xref>
,
<xref ref-type="bibr" rid="CR204">204</xref>
</sup>
, and protein products of ISGs probably mediate these effects.</p>
<p id="Par65">As one example, an IFN-β ISG product, CD69, forms an inhibitory association with a sphingosine 1-phosphate receptor (S1PR). The consequence
<italic>in vivo</italic>
is suppressed lymphocyte exit from lymph nodes and restriction in numbers of circulating lymphocytes available to cross the blood–brain barrier
<sup>
<xref ref-type="bibr" rid="CR205">205</xref>
</sup>
. Reduction in expression of matrix metalloproteinase 9 (
<italic>MMP9</italic>
) in activated lymphocytes and increased soluble vascular cell adhesion molecule (sVCAM) levels in plasma have also been identified and assigned putative roles in the beneficial effects of IFN-β for patients with MS
<sup>
<xref ref-type="bibr" rid="CR202">202</xref>
,
<xref ref-type="bibr" rid="CR206">206</xref>
,
<xref ref-type="bibr" rid="CR207">207</xref>
</sup>
. Expression-array studies and candidate gene evaluations have been applied, without success, in attempts to identify molecular biomarkers of the therapeutic effect of IFN-β in MS
<sup>
<xref ref-type="bibr" rid="CR208">208</xref>
</sup>
. Development of validated outcome measures for treatment success (and failure) will aid in this process
<sup>
<xref ref-type="bibr" rid="CR209">209</xref>
</sup>
.</p>
<p id="Par66">
<bold>
<italic>Cancer</italic>
</bold>
. Based on the reduction in disease morbidities
<sup>
<xref ref-type="bibr" rid="CR210">210</xref>
,
<xref ref-type="bibr" rid="CR211">211</xref>
</sup>
, initial regulatory approvals for the marketing of IFN-α2 for a chronic B (hairy) cell leukaemia occurred within 5 years from clinical introduction as a result of close collaboration between academic institutions, government and industry. In hairy cell leukaemia and
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=608232">chronic myelogenous leukemia</ext-link>
(CML), IFN-α2 decreased marrow infiltration with malignant cells and normalized peripheral haematological parameters
<sup>
<xref ref-type="bibr" rid="CR210">210</xref>
,
<xref ref-type="bibr" rid="CR212">212</xref>
,
<xref ref-type="bibr" rid="CR213">213</xref>
,
<xref ref-type="bibr" rid="CR214">214</xref>
</sup>
. In CML, in addition to reductions in leukaemic cell mass, a decrease resulted in cells with the abnormal, activated BCR–ABL kinase
<sup>
<xref ref-type="bibr" rid="CR212">212</xref>
,
<xref ref-type="bibr" rid="CR213">213</xref>
,
<xref ref-type="bibr" rid="CR214">214</xref>
</sup>
. Over 90% of patients with CML with complete cytogenetic response were in remission at 10 years
<sup>
<xref ref-type="bibr" rid="CR213">213</xref>
</sup>
. However, the survival advantage for IFN-α2, when compared with chemotherapy for CML, has now been exceeded by the even greater effectiveness of the targeted inhibitor of the activated BCR–ABL kinase, such as imatinib (Gleevec; Novartis) and now other newer tyrosine kinase inhibitors.</p>
<p id="Par67">In addition to hairy cell leukaemia and CML, therapeutic effectiveness of IFN-α2 in causing at least partial disease regression has been identified in more than a dozen other malignancies including myeloma, lymphomas, melanoma, renal cell and bladder carcinoma, and Kaposi's sarcoma
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
</sup>
. For example, in lymphomas of various histologies and of both B-cell and T-cell phenotypes, IFN-α2 has been effective in inducing tumour regressions in almost half of the patients involved in the study, and even in patients previously treated with chemotherapy
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
,
<xref ref-type="bibr" rid="CR216">216</xref>
</sup>
. Prolonged disease-free and overall survival in intermediate prognosis lymphomas has resulted from IFN-α2 in combination with chemotherapy, even given for limited periods, in randomized multicenter trials
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
,
<xref ref-type="bibr" rid="CR216">216</xref>
</sup>
. International Phase III trials have been conducted with survival impact confirmed in metastatic renal carcinoma, but like in CML, the orally active, targeted tyrosine kinase inhibitors have changed the natural history of renal carcinoma, extending survival in metastatic disease more than the injectable IFN-α2.</p>
<p id="Par68">Cure of metastatic malignancies can result when micrometastases are eliminated in patients at highest risk for recurrence after surgical removal of a primary tumour. Effectiveness as a surgical adjuvant for murine tumours provided the rationale leading to pioneering clinical studies that suggested benefit of impure IFN-α when given after surgery for osteosarcoma
<sup>
<xref ref-type="bibr" rid="CR217">217</xref>
,
<xref ref-type="bibr" rid="CR218">218</xref>
</sup>
. This surgical adjuvant approach was the basis for evaluation of IFN-α2 in patients at high risk for recurrence of melanoma. Initial beneficial effects of significant prolongation of disease-free survival have now largely been validated by combined analyses of multi-institutional trials, by subsequent studies that have included evaluation of pegylated IFN-α2 and by meta-analyses
<sup>
<xref ref-type="bibr" rid="CR219">219</xref>
,
<xref ref-type="bibr" rid="CR220">220</xref>
,
<xref ref-type="bibr" rid="CR221">221</xref>
</sup>
.</p>
<p id="Par69">Like other potent physiological mediators such as
<xref rid="Glos8" ref-type="list">glucocorticoids</xref>
, IFNs have toxicities when administered with pharmacological intent
<sup>
<xref ref-type="bibr" rid="CR222">222</xref>
,
<xref ref-type="bibr" rid="CR223">223</xref>
</sup>
. These have been dose related and particularly difficult at the high dose used for melanoma. With the initial dose, malaise, fever and chills, which last for a few hours, dominate but tachyphylaxis occurs with subsequent injections. Fatigue and anorexia, the aetiology of which is not understood, are often dose-limiting with chronic administration for cancer or MS; at higher doses weight loss occurs and may be significant (>10%). Reversible elevation of hepatic transaminases may occur, as may haematological effects, most markedly granulocytopaenia.</p>
<p id="Par70">Like in MS, failure to fully understand the mechanism(s) of antitumour action has slowed further development. Suppression, mutation and polymorphisms of IFNs and their signalling mechanisms in and by malignant cells are emerging as important contributors to cancer development
<sup>
<xref ref-type="bibr" rid="CR224">224</xref>
,
<xref ref-type="bibr" rid="CR225">225</xref>
,
<xref ref-type="bibr" rid="CR226">226</xref>
,
<xref ref-type="bibr" rid="CR227">227</xref>
,
<xref ref-type="bibr" rid="CR228">228</xref>
,
<xref ref-type="bibr" rid="CR229">229</xref>
,
<xref ref-type="bibr" rid="CR230">230</xref>
,
<xref ref-type="bibr" rid="CR231">231</xref>
,
<xref ref-type="bibr" rid="CR232">232</xref>
,
<xref ref-type="bibr" rid="CR233">233</xref>
,
<xref ref-type="bibr" rid="CR234">234</xref>
</sup>
. Mutations in
<italic>RNASEL</italic>
have been associated with prostate carcinoma and with presence of the retrovirus XMRV
<sup>
<xref ref-type="bibr" rid="CR235">235</xref>
,
<xref ref-type="bibr" rid="CR273">273</xref>
,
<xref ref-type="bibr" rid="CR274">274</xref>
,
<xref ref-type="bibr" rid="CR275">275</xref>
</sup>
. Epigenetic and genetic silencing of IFN-signalling or ISG expression may also influence tumour development
<sup>
<xref ref-type="bibr" rid="CR236">236</xref>
</sup>
. Reversal of these effects are likely to be the basis for effectiveness of IFNs and/or inducers in murine carcinogen-induced tumours, and may contribute to effectiveness in advanced disease, and provides a rational for developing TLR agonists for chemoprevention
<sup>
<xref ref-type="bibr" rid="CR237">237</xref>
,
<xref ref-type="bibr" rid="CR238">238</xref>
,
<xref ref-type="bibr" rid="CR239">239</xref>
</sup>
. Indeed, TLR agonists appear to be effective and are already establishing a role in treatment of malignancy with the proven effectiveness of the TLR7 agonist imiquimod used topically for basal cell carcinomas as an example. Furthermore, relative clinical safety has been established for phosphorthioate oligoribonucelotide agonists for TLR9.</p>
<p id="Par71">Induction of apoptosis by the ISG products APO2L/TRAIL and Fas has been identified in many malignant cell types, as has induction of APO2L/TRAIL on immune effector cell surfaces, thus sensitizing tumour cells to T-cell, NK cell and macrophage-mediated cytotoxicity
<sup>
<xref ref-type="bibr" rid="CR240">240</xref>
,
<xref ref-type="bibr" rid="CR241">241</xref>
,
<xref ref-type="bibr" rid="CR242">242</xref>
,
<xref ref-type="bibr" rid="CR243">243</xref>
</sup>
(
<xref rid="Tab1" ref-type="table">Table 1</xref>
). Intralesional administration of IFN-α into basal cell carcinomas increased
<italic>Fas</italic>
expression and correlated with regression
<sup>
<xref ref-type="bibr" rid="CR244">244</xref>
</sup>
. IFN-γ has increased susceptibility to apoptosis by Fas activators and cytotoxic chemotherapies in many cell types including melanoma and colorectal carcinoma
<sup>
<xref ref-type="bibr" rid="CR245">245</xref>
,
<xref ref-type="bibr" rid="CR246">246</xref>
</sup>
. Through interactions with p53 and the inhibitor of apoptosis, XIAP, the ISG product XAF1 may allow APO2L/TRAIL to fully activate downstream caspases
<sup>
<xref ref-type="bibr" rid="CR247">247</xref>
,
<xref ref-type="bibr" rid="CR248">248</xref>
</sup>
. In addition, the ISG product IRF1 can suppress another anti-apoptotic protein, Survivin
<sup>
<xref ref-type="bibr" rid="CR249">249</xref>
</sup>
.</p>
<p id="Par72">Antitumour activity
<italic>in vivo</italic>
may also be mediated by augmented lytic activity of immune effector cells and by enhanced immunogenicity of tumour cells. Both T-cell and NK-cell trafficking, expansion and lytic activity can be promoted by IFNs and ISGs; furthermore, IFN-γ is secreted from these activated cells into the tumour microenvironment
<sup>
<xref ref-type="bibr" rid="CR250">250</xref>
,
<xref ref-type="bibr" rid="CR251">251</xref>
,
<xref ref-type="bibr" rid="CR252">252</xref>
,
<xref ref-type="bibr" rid="CR253">253</xref>
,
<xref ref-type="bibr" rid="CR254">254</xref>
,
<xref ref-type="bibr" rid="CR255">255</xref>
</sup>
. In addition to stimulating immune effector cells, IFNs have critical roles in antigen processing and presentation, as discussed above, both by T cells and dendritic cells
<sup>
<xref ref-type="bibr" rid="CR256">256</xref>
</sup>
. In addition, IFN-γ can upregulate the tumour-associated antigens, carcinoembryonic antigen and TAG72, both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
<sup>
<xref ref-type="bibr" rid="CR257">257</xref>
</sup>
.</p>
<p id="Par73">IFNs can also inhibit angiogenesis by altering the stimuli from tumour cells and by directly inhibiting endothelial cells — indeed, they were the first angiogenic inhibitor identified
<sup>
<xref ref-type="bibr" rid="CR258">258</xref>
</sup>
. Endothelial cells are inhibited in motility
<sup>
<xref ref-type="bibr" rid="CR259">259</xref>
</sup>
, undergo coagulation necrosis
<italic>in vitro</italic>
and inhibition of angiogenesis occurs
<italic>in vivo</italic>
within 24 hours of tumour cell inoculation
<sup>
<xref ref-type="bibr" rid="CR260">260</xref>
,
<xref ref-type="bibr" rid="CR261">261</xref>
</sup>
. Suppression of basic fibroblast growth factor (bFGF; also known as FGF2) correlated with reduced vascularization and tumour growth
<sup>
<xref ref-type="bibr" rid="CR262">262</xref>
,
<xref ref-type="bibr" rid="CR263">263</xref>
</sup>
. IFNs also inhibit vascular endothelial growth factor (VEGF) mRNA and protein expression by regulating its promoter
<sup>
<xref ref-type="bibr" rid="CR264">264</xref>
</sup>
. IL8, a mediator of angiogenesis, was inhibited
<italic>in vitro</italic>
and
<italic>in vivo</italic>
by IFN-α2b and IFN-β; other angiogenesis inhibitory members of the chemokine family, CXCL9, CXCL10 and CXCL11, are ISGs
<sup>
<xref ref-type="bibr" rid="CR265">265</xref>
,
<xref ref-type="bibr" rid="CR266">266</xref>
,
<xref ref-type="bibr" rid="CR267">267</xref>
</sup>
. In endothelial cells, the ISG product guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1), functioned as an inflammatory response factor inhibiting endothelial cell proliferation and angiogenesis in part through MMPs
<sup>
<xref ref-type="bibr" rid="CR268">268</xref>
</sup>
. Clinically, IFN-α2 has proved effective in the treatment of infantile haemangiomas, haemangioblastomas, giant cell tumour of the mandible and Kaposi's sarcoma
<sup>
<xref ref-type="bibr" rid="CR215">215</xref>
,
<xref ref-type="bibr" rid="CR269">269</xref>
</sup>
. Thus, induction of ISGs that function as angiostatic inhibitors, coupled with secondary downregulation of angiogenic factors, may contribute to antitumour effects
<sup>
<xref ref-type="bibr" rid="CR269">269</xref>
</sup>
.</p>
<p id="Par74">
<bold>Perspective</bold>
</p>
<p id="Par75">IFNs provide fundamental cellular defence mechanisms against viral infections and cancer and are thus critically important to the health of animals and humans. Because of their clinical effectiveness in limiting virus replication, reducing tumour cell mass, controlling disease symptoms and prolonging survival, IFNs are now licensed worldwide for the treatment of various viral, malignant and immune disorders; market sales approach US$4 billion. As part of the innate immune response, IFNs are not only a principal cytokine that blocks viral replication through the action of specific ISGs, but also (particularly IFN-g) mediate critical elements of the cellular immune response for recurring bacterial infections in chronic granulomatous disease and for mycobacteria. Because all biological effects of IFNs are mediated through the action of ISGs, understanding the functions of these genes may lead to more efficacious anticancer and antiviral therapeutics. For example, certain IFN-regulated proteins, such as OAS, RNASEL and PKR, exist in either latent inactive or active states, which could be targeted for potent antitumour and/or antiviral effects (
<xref rid="Fig5" ref-type="fig">Fig. 5</xref>
).</p>
<p id="Par76">IFNs have therefore more than reached the effectiveness anticipated by early virologists: they are not only an antiviral with a spectrum of clinical effectiveness against both RNA and DNA viruses, but have been the prototypical biological response modifiers for oncology, and have proved to have effectiveness in suppressing manifestations of MS. The study of IFNs has resulted in fundamental insights into cellular signalling mechanisms and innate and acquired immunity. In addition, their therapeutic use has improved the quality and quantity of life for millions of patients worldwide. However, to fully realize their potential, many questions remain unanswered (
<xref rid="Sec2" ref-type="sec">Box 1</xref>
). As exemplified by recent publications
<sup>
<xref ref-type="bibr" rid="CR276">276</xref>
,
<xref ref-type="bibr" rid="CR277">277</xref>
,
<xref ref-type="bibr" rid="CR278">278</xref>
</sup>
, further investigations will only enable IFNs to have even greater impacts in biomedicine.</p>
<sec id="Sec2">
<boxed-text>
<label>Box 1 | Important research questions for the future</label>
<p id="Par77">
<list list-type="bullet">
<list-item>
<p id="Par78">What specific roles do the multiple isoforms of interferons (IFNs) play in host defences?</p>
</list-item>
<list-item>
<p id="Par79">What new roles will be identified for the IFN system and their protein products in the crosstalk between innate and cellular immunity?</p>
</list-item>
<list-item>
<p id="Par80">How do cellular gene products avoid activating Toll-like receptor (TLR) pathways while microbial gene products activate them very efficiently?</p>
</list-item>
<list-item>
<p id="Par81">What are cell type differences in other alternative signalling pathways interacting with JAK/STAT?</p>
</list-item>
<list-item>
<p id="Par82">What are cell and tissue specific differences in molecular responses?</p>
</list-item>
<list-item>
<p id="Par83">How do responses differ in cells of different maturities (for example, stem cells, senescent cells)?</p>
</list-item>
<list-item>
<p id="Par84">What are the functions of the still many uncharacterized IFN-stimulated genes (ISGs)?</p>
</list-item>
<list-item>
<p id="Par85">Which of the ISGs are most important for the specific cellular and clinical effects?</p>
</list-item>
<list-item>
<p id="Par86">Will ways of activating the IFN system prove therapeutically useful for the newly human papilloma virus (HPV)-associated squamous neoplasms of upper airways?</p>
</list-item>
<list-item>
<p id="Par87">What mechanisms cause the difficult spectrum of clinical side effects of fatigue and anorexia?</p>
</list-item>
<list-item>
<p id="Par88">Do IFNs play a bystander or pathogenic role in lupus erythematosis, rheumatoid arthritis or aplastic anaemia?</p>
</list-item>
<list-item>
<p id="Par89">Do low or high-affinity antibodies to IFNs or their protein products influence innate immunity?</p>
</list-item>
<list-item>
<p id="Par90">What are the molecular causes of resistance to IFNs in viral diseases? Multiple sclerosis? Cancer?</p>
</list-item>
<list-item>
<p id="Par91">Will helicases or proteases augment activity of IFNs for hepatitis B virus infections?</p>
</list-item>
<list-item>
<p id="Par92">Will anti-angiogenic or promoter methylation inhibitors increase antitumour activity?</p>
</list-item>
<list-item>
<p id="Par93">Can novel receptor agonists and antagonists be engineered for specific functions?</p>
</list-item>
<list-item>
<p id="Par94">Can a physicochemical rather than biological standard be developed for scientific and regulatory comparison?</p>
</list-item>
<list-item>
<p id="Par95">Will small-molecule activators of IFN-inducible proteins have antiviral and/or antitumour effects?</p>
</list-item>
<list-item>
<p id="Par96">How effective will components of the IFN system prove as immunological adjuvants?</p>
</list-item>
<list-item>
<p id="Par97">Can effective oral systemic inducers be identified?</p>
</list-item>
</list>
</p>
</boxed-text>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec3">
<title>Related links</title>
<sec id="Sec4">
<title>DATABASES</title>
<sec id="Sec5">
<title>OMIM</title>
<p id="Par99">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=608232">Chronic myelogenous leukaemia</ext-link>
</p>
<p id="Par100">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610424">hepatitis B virus</ext-link>
</p>
<p id="Par101">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=609532">hepatitis C virus</ext-link>
</p>
<p id="Par102">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610551">herpes simplex virus</ext-link>
</p>
<p id="Par103">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=148000">Kaposi's sarcoma</ext-link>
</p>
<p id="Par104">
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=126200">multiple sclerosis</ext-link>
</p>
</sec>
</sec>
</sec>
</app>
</app-group>
<ack>
<title>Acknowledgements</title>
<p>The authors are indebted to Sandya Rani and Kristin Kraus for careful reading of parts of the manuscript. This work was supported in part by grants to the authors from NIH R01 CA90914, CA115,494, CA044059, CA103943, CA089132, CA62220, CA68782, M01 RR018390, NS32151, NS38667, ARC 3158.</p>
</ack>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par98">The authors declare that they have no competing interests that constitute a conflict of interest for content and interpretations contained herein with the following exceptions: E.C.B. is a member of the Scientific Advisory Boards of Cleveland BioLabs and Alios BioPharma and in the past 3 years that of Coley Pharma together with honoaria for scientfic or educational presentations underwritten by Schering Plough, Maxygen, and Novartis; R.H.S. is a member of the Scientific Advisory Board of Alios BioPharma, Inc.; G.R.F. has lectured and consulted for Roche, Maxygen, Novartis, and Human Genome Sciences. Within the past 5 years, R.M.R. has received occasional honouraria for scientific presentations from (in alphabetical order) Berlex, Biogen and Serono. These presentations did not serve marketing interests.</p>
</notes>
<glossary>
<title>Glossary</title>
<def-list>
<def-item id="Glos1">
<term>CpG oligonucleotides</term>
<def>
<p>Bacterial DNA oligodeoxynucleotide sequences that include a cytosine–guanosine sequence and certain flanking nucleotides that have been found to induce innate immune responses through interaction with Toll-like receptor 9.</p>
</def>
</def-item>
<def-item id="Glos2">
<term>DMXAA</term>
<def>
<p>5,6-dimethylxanthenone-4-acetic acid. An experimental anticancer drug currently in clinical trials for lung and prostate cancer. It is classified as a vascular disruption agent, causing apoptosis (death) of vessel endothelial cells and the release of vasoactive molecules, which inhibit the formation of new tumour blood vessels.</p>
</def>
</def-item>
<def-item id="Glos3">
<term>Antiviral unit</term>
<def>
<p>An antiviral unit is the concentration of an interferon required to inhibit virus replication
<italic>in vitro</italic>
by 50%; an international WHO standard provides a reference base for each major interferon type.</p>
</def>
</def-item>
<def-item id="Glos4">
<term>Caspase</term>
<def>
<p>A group of enzymes that have a role in promoting apoptosis (that is, programmed cell death). Inhibition of such enzymes might be useful for combating cell and tissue damage in conditions such as myocardial infarction, stroke, inflammatory diseases and neurodegenerative diseases. Augmentation of such enzymes, through the production of pro-apoptotic proteins, might be useful for combating proliferative conditions, such as cancer.</p>
</def>
</def-item>
<def-item id="Glos5">
<term>Inducible nitric oxide synthase</term>
<def>
<p>(iNOS). An inducible haem-containing enzyme that produces nitric oxide in response to inflammatory signals.</p>
</def>
</def-item>
<def-item id="Glos6">
<term>Nucleoporins</term>
<def>
<p>Proteins that function in the nuclear transport of protein and RNA.</p>
</def>
</def-item>
<def-item id="Glos7">
<term>MRI lesions</term>
<def>
<p>Regions of abnormal signals in the brain or spinal cord, detected by magnetic resonance imaging (MRI), and indicative of tissue changes related to the multiple sclerosis pathogenic process. Depending on the imaging technique, these MRI changes can reflect inflammation, demyelination, axonal destruction or scarring.</p>
</def>
</def-item>
<def-item id="Glos8">
<term>Glucocorticoids</term>
<def>
<p>A group of compounds that belongs to the corticosteroid family. These compounds can either be naturally produced (hormones) or synthetic. They affect metabolism and have anti-inflammatory and immunosuppressive effects. Many synthetic glucocorticoids (for example, dexamethasone) are used in clinical medicine as anti-inflammatory drugs.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isaacs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lindenmann</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Virus interference. I. The interferon</article-title>
<source>Proc. R. Soc. Lond., B, Biol. Sci.</source>
<year>1957</year>
<volume>147</volume>
<fpage>258</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">13465720</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Takeuchi</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Pathogen recognition and innate immunity</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>783</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="pmid">16497588</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Field</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Tytell</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Lampson</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Hilleman</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1967</year>
<volume>58</volume>
<fpage>1004</fpage>
<lpage>1010</lpage>
<pub-id pub-id-type="pmid">5233831</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sen</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>Transcriptional signaling by double-stranded RNA: role of TLR3</article-title>
<source>Cytokine Growth Factor Rev.</source>
<year>2005</year>
<volume>16</volume>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">15733829</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoneyama</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses</article-title>
<source>Nature Immunol.</source>
<year>2004</year>
<volume>5</volume>
<fpage>730</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="pmid">15208624</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tabeta</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>3516</fpage>
<lpage>3521</lpage>
<pub-id pub-id-type="pmid">14993594</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kato</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses</article-title>
<source>Nature</source>
<year>2006</year>
<volume>441</volume>
<fpage>101</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">16625202</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gitlin</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>8459</fpage>
<lpage>8464</lpage>
<pub-id pub-id-type="pmid">16714379</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Goffic</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia</article-title>
<source>PLoS Pathog.</source>
<year>2006</year>
<volume>2</volume>
<fpage>e53</fpage>
<pub-id pub-id-type="pmid">16789835</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis</article-title>
<source>Nature Med.</source>
<year>2004</year>
<volume>10</volume>
<fpage>1366</fpage>
<lpage>1373</lpage>
<pub-id pub-id-type="pmid">15558055</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meylan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Tschopp</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses</article-title>
<source>Mol. Cell</source>
<year>2006</year>
<volume>22</volume>
<fpage>561</fpage>
<lpage>569</lpage>
<pub-id pub-id-type="pmid">16762830</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Antiviral signaling through pattern recognition receptors</article-title>
<source>J. Biochem.</source>
<year>2007</year>
<volume>141</volume>
<fpage>137</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">17190786</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoneyama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Cytoplasmic double-stranded DNA sensor</article-title>
<source>Nature Immunol.</source>
<year>2007</year>
<volume>8</volume>
<fpage>907</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="pmid">17712341</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panne</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Maniatis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>An atomic model of the interferon-β enhanceosome</article-title>
<source>Cell</source>
<year>2007</year>
<volume>129</volume>
<fpage>1111</fpage>
<lpage>1123</lpage>
<pub-id pub-id-type="pmid">17574024</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Takaoka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Type I interferon gene induction by the interferon regulatory factor family of transcription factors</article-title>
<source>Immunity</source>
<year>2006</year>
<volume>25</volume>
<fpage>349</fpage>
<lpage>360</lpage>
<pub-id pub-id-type="pmid">16979567</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tenoever</surname>
<given-names>BR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multiple functions of the IKK-related kinase IKKɛ in interferon-mediated antiviral immunity</article-title>
<source>Science</source>
<year>2007</year>
<volume>315</volume>
<fpage>1274</fpage>
<lpage>1278</lpage>
<pub-id pub-id-type="pmid">17332413</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fitzgerald</surname>
<given-names>KA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IKKɛ and TBK1 are essential components of the IRF3 signaling pathway</article-title>
<source>Nature Immunol.</source>
<year>2003</year>
<volume>4</volume>
<fpage>491</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="pmid">12692549</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Biron</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>GC</given-names>
</name>
<etal></etal>
</person-group>
<source>Fields Virology</source>
<year>2006</year>
<fpage>249</fpage>
<lpage>278</lpage>
</element-citation>
</ref>
<ref id="CR19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiscott</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>T-LA</given-names>
</name>
<name>
<surname>Arguello</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakhaei</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Paz</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses</article-title>
<source>Oncogene</source>
<year>2006</year>
<volume>25</volume>
<fpage>6844</fpage>
<lpage>6867</lpage>
<pub-id pub-id-type="pmid">17072332</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foy</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>2986</fpage>
<lpage>2991</lpage>
<pub-id pub-id-type="pmid">15710892</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Sastre</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Biron</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Type 1 interferons and the virus–host relationship: a lesson in detente</article-title>
<source>Science</source>
<year>2006</year>
<volume>312</volume>
<fpage>879</fpage>
<lpage>882</lpage>
<pub-id pub-id-type="pmid">16690858</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finlay</surname>
<given-names>BB</given-names>
</name>
<name>
<surname>McFadden</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Anti-immunology: evasion of the host immune system by bacterial and viral pathogens</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>767</fpage>
<lpage>782</lpage>
<pub-id pub-id-type="pmid">16497587</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pichlmair</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RIG-I mediated antiviral responses to single-stranded RNA bearing 5′ phosphates</article-title>
<source>Science</source>
<year>2006</year>
<volume>314</volume>
<fpage>997</fpage>
<lpage>1001</lpage>
<pub-id pub-id-type="pmid">17038589</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casrouge</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Herpes simplex virus encephalitis in human UNC-93B deficiency</article-title>
<source>Science</source>
<year>2006</year>
<volume>314</volume>
<fpage>308</fpage>
<lpage>312</lpage>
<pub-id pub-id-type="pmid">16973841</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmi</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Toll-like receptor recognizes bacterial DNA</article-title>
<source>Nature</source>
<year>2000</year>
<volume>408</volume>
<fpage>740</fpage>
<lpage>745</lpage>
<pub-id pub-id-type="pmid">11130078</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemmi</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway</article-title>
<source>Nature Immunol.</source>
<year>2002</year>
<volume>3</volume>
<fpage>196</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">11812998</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>ZJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis</article-title>
<source>J. Exp. Med.</source>
<year>2007</year>
<volume>204</volume>
<fpage>1559</fpage>
<lpage>1569</lpage>
<pub-id pub-id-type="pmid">17562815</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Neill</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Targeting signal transduction as a strategy to treat inflammatory diseases</article-title>
<source>Nature Rev. Drug Discov.</source>
<year>2006</year>
<volume>5</volume>
<fpage>549</fpage>
<lpage>563</lpage>
<pub-id pub-id-type="pmid">16773072</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krieg</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Therapeutic potential of Toll-like receptor 9 activation</article-title>
<source>Nature Rev. Drug Discov.</source>
<year>2006</year>
<volume>5</volume>
<fpage>471</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="pmid">16763660</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Havell</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Two antigenically distinct species of human interferon</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1975</year>
<volume>72</volume>
<fpage>2185</fpage>
<lpage>2187</lpage>
<pub-id pub-id-type="pmid">49055</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Streuli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nagata</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Weissmann</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>At least three human type α-interferons: structure of α 2</article-title>
<source>Science</source>
<year>1980</year>
<volume>209</volume>
<fpage>1343</fpage>
<lpage>1347</lpage>
<pub-id pub-id-type="pmid">6158094</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human leukocyte and fibroblast interferons are structurally related</article-title>
<source>Nature</source>
<year>1980</year>
<volume>285</volume>
<fpage>547</fpage>
<lpage>549</lpage>
<pub-id pub-id-type="pmid">6157095</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goeddel</surname>
<given-names>DV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structure of eight distinct cloned human leukocyte interferon cDNAs</article-title>
<source>Nature</source>
<year>1981</year>
<volume>290</volume>
<fpage>20</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">6163083</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pestka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krause</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Interferons, interferon-like cytokines, and their receptors</article-title>
<source>Immunol. Rev.</source>
<year>1998</year>
<volume>202</volume>
<fpage>8</fpage>
<lpage>32</lpage>
</element-citation>
</ref>
<ref id="CR35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hardy</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Owczarek</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Jermiin</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Ejdeback</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hertzog</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Characterization of the type I interferon locus and identification of novel genes</article-title>
<source>Genomics</source>
<year>2004</year>
<volume>84</volume>
<fpage>331</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="pmid">15233997</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coelho</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>de Freitas Almeida</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Mennechet</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Blangy</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Uze</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Interferon-α and -β differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2005</year>
<volume>102</volume>
<fpage>11917</fpage>
<lpage>11922</lpage>
<pub-id pub-id-type="pmid">16081539</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>GR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFN-α subtypes differentially affect human T cell motility</article-title>
<source>J. Immunol.</source>
<year>2004</year>
<volume>173</volume>
<fpage>1663</fpage>
<lpage>1670</lpage>
<pub-id pub-id-type="pmid">15265895</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilkens</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schlaak</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Differential responses to IFN-α subtypes in human T cells and dendritic cells</article-title>
<source>J. Immunol.</source>
<year>2003</year>
<volume>171</volume>
<fpage>5255</fpage>
<lpage>5263</lpage>
<pub-id pub-id-type="pmid">14607926</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uze</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Piehler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pellegrini</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The receptor of the type I interferon family</article-title>
<source>Cur. Topics Microbiol. Immunol.</source>
<year>2007</year>
<volume>316</volume>
<fpage>71</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="CR40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walker</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tough</surname>
<given-names>DF</given-names>
</name>
</person-group>
<article-title>Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists</article-title>
<source>Eur. J. Immunol.</source>
<year>2006</year>
<volume>36</volume>
<fpage>1827</fpage>
<lpage>1836</lpage>
<pub-id pub-id-type="pmid">16783851</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Alexenko</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>New and atypical families of type I interferons in mammals: comparative functions, structures, and evolutionary relationships</article-title>
<source>Prog. Nucleic Acid Res. Mol. Biol.</source>
<year>1997</year>
<volume>56</volume>
<fpage>287</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="pmid">9187057</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>LaFleur</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-κ, a novel type I interferon expressed in human keratinocytes</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>39765</fpage>
<lpage>39771</lpage>
<pub-id pub-id-type="pmid">11514542</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coccia</surname>
<given-names>EM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells</article-title>
<source>Eur. J. Immunol.</source>
<year>2004</year>
<volume>34</volume>
<fpage>796</fpage>
<lpage>805</lpage>
<pub-id pub-id-type="pmid">14991609</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitsui</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Senda</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Elucidation of the basic three-dimensional structure of type I interferons and its functional and evolutionary implications</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>1997</year>
<volume>17</volume>
<fpage>319</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="pmid">9197998</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gavutis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jaks</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lamken</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Piehler</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Determination of the two-dimensional interaction rate constants of a cytokine receptor complex</article-title>
<source>Biophys. J.</source>
<year>2006</year>
<volume>90</volume>
<fpage>3345</fpage>
<lpage>3355</lpage>
<pub-id pub-id-type="pmid">16473899</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaitin</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inquiring into the differential action of interferons (IFNs): an IFN-α2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-β</article-title>
<source>Mol. Cell Biol.</source>
<year>2006</year>
<volume>26</volume>
<fpage>1888</fpage>
<lpage>1897</lpage>
<pub-id pub-id-type="pmid">16479007</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaks</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gavutis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Uze</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Martal</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Piehler</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Differential receptor subunit affinities of type I interferons govern differential signal activation</article-title>
<source>J. Mol. Biol.</source>
<year>2007</year>
<volume>366</volume>
<fpage>525</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">17174979</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalie</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jaitin</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Abramovich</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>An interferon α2 mutant optimized by phage display for IFNAR1 binding confers specifically enhanced antitumor activities</article-title>
<source>J. Biol. Chem.</source>
<year>2007</year>
<volume>282</volume>
<fpage>11602</fpage>
<lpage>11611</lpage>
<pub-id pub-id-type="pmid">17310065</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Severa</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential responsiveness to IFN-α and IFN-β of human mature DC through modulation of IFNAR expression</article-title>
<source>J. Leukoc. Biol.</source>
<year>2006</year>
<volume>79</volume>
<fpage>1286</fpage>
<lpage>1294</lpage>
<pub-id pub-id-type="pmid">16624932</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frodsham</surname>
<given-names>AJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>9148</fpage>
<lpage>9153</lpage>
<pub-id pub-id-type="pmid">16757563</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bach</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Aguet</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>The IFN γ receptor: a paradigm for cytokine receptor signaling</article-title>
<source>Annu. Rev. Immunol.</source>
<year>1997</year>
<volume>15</volume>
<fpage>563</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="pmid">9143700</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotenko</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Langer</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Full house: 12 receptors for 27 cytokines</article-title>
<source>Int. Immunopharmacol.</source>
<year>2004</year>
<volume>4</volume>
<fpage>593</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="pmid">15120645</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roesler</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-γ-receptor (IFN-γR1) deficiency: mutational analysis and evaluation of therapeutic options</article-title>
<source>Exp. Hematol.</source>
<year>1999</year>
<volume>27</volume>
<fpage>1368</fpage>
<lpage>1374</lpage>
<pub-id pub-id-type="pmid">10480427</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uze</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Monneron</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>IL-28 and IL-29: newcomers to the interferon family</article-title>
<source>Biochimie</source>
<year>2007</year>
<volume>89</volume>
<fpage>729</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="pmid">17367910</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zinn</surname>
<given-names>K</given-names>
</name>
<name>
<surname>DiMaio</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Maniatis</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Identification of two distinct regulatory regions adjacent to the human β-interferon gene</article-title>
<source>Cell</source>
<year>1983</year>
<volume>34</volume>
<fpage>865</fpage>
<lpage>879</lpage>
<pub-id pub-id-type="pmid">6313211</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merlin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chebath</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Benech</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Revel</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Molecular cloning and sequence of partial cDNA for interferon-induced (2′-5′)oligo(A) synthetase mRNA from human cells</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1983</year>
<volume>80</volume>
<fpage>4904</fpage>
<lpage>4908</lpage>
<pub-id pub-id-type="pmid">6348777</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedman</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Manly</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells</article-title>
<source>Cell</source>
<year>1984</year>
<volume>38</volume>
<fpage>745</fpage>
<lpage>755</lpage>
<pub-id pub-id-type="pmid">6548414</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedman</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>α-Interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences</article-title>
<source>Nature</source>
<year>1985</year>
<volume>314</volume>
<fpage>637</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="pmid">3990797</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>XY</given-names>
</name>
<name>
<surname>Schindler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Improta</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Aebersold</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Darnell</surname>
<given-names>JE</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>The proteins of ISGF-3, the interferon α-induced transcriptional activator, define a gene family involved in signal transduction</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1992</year>
<volume>89</volume>
<fpage>7840</fpage>
<lpage>7843</lpage>
<pub-id pub-id-type="pmid">1502204</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>How cells respond to interferons</article-title>
<source>Annu. Rev. Biochem.</source>
<year>1998</year>
<volume>67</volume>
<fpage>227</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">9759489</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schindler</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Decker</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>JAK–STAT signaling: from interferons to cytokines</article-title>
<source>J. Biol. Chem.</source>
<year>2007</year>
<volume>282</volume>
<fpage>20059</fpage>
<lpage>20063</lpage>
<pub-id pub-id-type="pmid">17502367</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velazquez</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fellous</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Pellegrini</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A protein tyrosine kinase in the interferon α/β signaling pathway</article-title>
<source>Cell</source>
<year>1992</year>
<volume>70</volume>
<fpage>313</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="pmid">1386289</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qing</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Alternative activation of STAT1 and STAT3 in response to interferon-γ</article-title>
<source>J. Biol. Chem.</source>
<year>2004</year>
<volume>279</volume>
<fpage>41679</fpage>
<lpage>41685</lpage>
<pub-id pub-id-type="pmid">15284232</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Boxel-Dezaire</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Rani</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Complex modulation of cell type-specific signaling in response to type I interferons</article-title>
<source>Immunity</source>
<year>2006</year>
<volume>25</volume>
<fpage>361</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="pmid">16979568</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Boxel-Dezaire</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Cell type-specific signaling in response to interferon-γ</article-title>
<source>Curr. Top. Microbiol. Immunol.</source>
<year>2007</year>
<volume>316</volume>
<fpage>119</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="pmid">17969446</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jouanguy</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human primary immunodeficiencies of type I interferons</article-title>
<source>Biochimie</source>
<year>2007</year>
<volume>89</volume>
<fpage>878</fpage>
<lpage>883</lpage>
<pub-id pub-id-type="pmid">17561326</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rani</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Hibbert</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sizemore</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Ransohoff</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Requirement of phosphoinositide 3-kinase and Akt for interferon-β-mediated induction of the β-R1 (
<italic>SCYB11</italic>
) gene</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>38456</fpage>
<lpage>38461</lpage>
<pub-id pub-id-type="pmid">12169689</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rani</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Ransohoff</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Alternative and accessory pathways in the regulation of IFN-β-mediated gene expression</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>2005</year>
<volume>25</volume>
<fpage>788</fpage>
<lpage>798</lpage>
<pub-id pub-id-type="pmid">16375607</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilkens</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schlaak</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Differential responses to IFN-α subtypes in human T cells and dendritic cells</article-title>
<source>J. Immunol.</source>
<year>2003</year>
<volume>171</volume>
<fpage>5255</fpage>
<lpage>5263</lpage>
<pub-id pub-id-type="pmid">14607926</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Platanias</surname>
<given-names>LC</given-names>
</name>
</person-group>
<article-title>Mechanisms of type-I- and type-II- interferon-mediated signaling</article-title>
<source>Nature Rev. Immunol.</source>
<year>2005</year>
<volume>5</volume>
<fpage>375</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">15864272</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexander</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Hilton</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response</article-title>
<source>Annu. Rev. Immunol.</source>
<year>2004</year>
<volume>22</volume>
<fpage>503</fpage>
<lpage>529</lpage>
<pub-id pub-id-type="pmid">15032587</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yi</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anticancer activity of sodium stibogluconate in synergy with IFNs</article-title>
<source>J. Immunol.</source>
<year>2002</year>
<volume>169</volume>
<fpage>5978</fpage>
<lpage>5985</lpage>
<pub-id pub-id-type="pmid">12421984</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ho</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Ivashkiv</surname>
<given-names>LB</given-names>
</name>
</person-group>
<article-title>Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>14111</fpage>
<lpage>14118</lpage>
<pub-id pub-id-type="pmid">16571725</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sensitization of IFN-γ Jak–STAT signaling during macrophage activation</article-title>
<source>Nature Immunol.</source>
<year>2002</year>
<volume>3</volume>
<fpage>859</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="pmid">12172544</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirkwood</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of STAT1 and STAT3 signaling in melanoma by high-dose IFN-α2b</article-title>
<source>Clin. Cancer Res.</source>
<year>2007</year>
<volume>13</volume>
<fpage>1523</fpage>
<lpage>1531</lpage>
<pub-id pub-id-type="pmid">17332298</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Commane</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Flickinger</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases</article-title>
<source>Science</source>
<year>1997</year>
<volume>278</volume>
<fpage>1630</fpage>
<lpage>1632</lpage>
<pub-id pub-id-type="pmid">9374464</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation</article-title>
<source>Cancer Res.</source>
<year>2005</year>
<volume>65</volume>
<fpage>939</fpage>
<lpage>947</lpage>
<pub-id pub-id-type="pmid">15705894</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB</article-title>
<source>Genes Dev.</source>
<year>2007</year>
<volume>21</volume>
<fpage>1396</fpage>
<lpage>1408</lpage>
<pub-id pub-id-type="pmid">17510282</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Der</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>15623</fpage>
<lpage>15628</lpage>
<pub-id pub-id-type="pmid">9861020</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Veer</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Functional classification of interferon-stimulated genes identified using microarrays</article-title>
<source>J. Leukoc. Biol.</source>
<year>2001</year>
<volume>69</volume>
<fpage>912</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="pmid">11404376</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silverman</surname>
<given-names>R. H.</given-names>
</name>
</person-group>
<article-title>Viral Encounters with 2',5'-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response</article-title>
<source>Journal of Virology</source>
<year>2007</year>
<volume>81</volume>
<issue>23</issue>
<fpage>12720</fpage>
<lpage>12729</lpage>
<pub-id pub-id-type="pmid">17804500</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RE</given-names>
</name>
</person-group>
<article-title>pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1978</year>
<volume>75</volume>
<fpage>256</fpage>
<lpage>260</lpage>
<pub-id pub-id-type="pmid">272640</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hassel</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Expression cloning of 2–5A-dependent RNAase: a uniquely regulated mediator of interferon action</article-title>
<source>Cell</source>
<year>1993</year>
<volume>72</volume>
<fpage>753</fpage>
<lpage>765</lpage>
<pub-id pub-id-type="pmid">7680958</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>2–5A-dependent RNase molecules dimerize during activation by 2-5A</article-title>
<source>J. Biol. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>4133</fpage>
<lpage>4137</lpage>
<pub-id pub-id-type="pmid">7876164</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wreschner</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>McCauley</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Skehel</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Interferon action — sequence specificity of the ppp(A2′p)nA-dependent ribonuclease</article-title>
<source>Nature</source>
<year>1981</year>
<volume>289</volume>
<fpage>414</fpage>
<lpage>417</lpage>
<pub-id pub-id-type="pmid">6162102</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Floyd-Smith</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Slattery</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lengyel</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate-dependent endonuclease</article-title>
<source>Science</source>
<year>1981</year>
<volume>212</volume>
<fpage>1030</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="pmid">6165080</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon action and apoptosis are defective in mice devoid of 2′, 5′-oligoadenylate-dependent RNase, L</article-title>
<source>EMBO J.</source>
<year>1997</year>
<volume>16</volume>
<fpage>6355</fpage>
<lpage>6363</lpage>
<pub-id pub-id-type="pmid">9351818</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castelli</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosis</article-title>
<source>Cell Death Differ.</source>
<year>1998</year>
<volume>5</volume>
<fpage>313</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="pmid">10200477</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castelli</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A study of the interferon antiviral mechanism: apoptosis activation by the 2–5A system</article-title>
<source>J. Exp. Med.</source>
<year>1997</year>
<volume>186</volume>
<fpage>967</fpage>
<lpage>972</lpage>
<pub-id pub-id-type="pmid">9294150</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malathi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>M</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Small self RNA generates by RNase L amplifies antiviral innate immunity</article-title>
<source>Nature</source>
<year>2007</year>
<volume>448</volume>
<fpage>816</fpage>
<lpage>819</lpage>
<pub-id pub-id-type="pmid">17653195</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thakur</surname>
<given-names>CS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small-molecule activators of RNase L with broad-spectrum antiviral activity</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>9585</fpage>
<lpage>9590</lpage>
<pub-id pub-id-type="pmid">17535916</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Hovanessian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Clemens</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis</article-title>
<source>Nature</source>
<year>1976</year>
<volume>264</volume>
<fpage>477</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">1004583</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zilberstein</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kimchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Revel</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Isolation of two interferon-induced translational inhibitors: a protein kinase and an oligo-isoadenylate synthetase</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1978</year>
<volume>75</volume>
<fpage>4734</fpage>
<lpage>4738</lpage>
<pub-id pub-id-type="pmid">283387</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meurs</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon</article-title>
<source>Cell</source>
<year>1990</year>
<volume>62</volume>
<fpage>379</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="pmid">1695551</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Signal integration via PKR</article-title>
<source>Sci STKE</source>
<year>2001</year>
<volume>89</volume>
<fpage>RE2</fpage>
</element-citation>
</ref>
<ref id="CR96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>PKR; a sentinel kinase for cellular stress</article-title>
<source>Oncogene</source>
<year>1999</year>
<volume>18</volume>
<fpage>6112</fpage>
<lpage>6120</lpage>
<pub-id pub-id-type="pmid">10557102</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>PACT, a protein activator of the interferon-induced protein kinase, PKR</article-title>
<source>EMBO J.</source>
<year>1998</year>
<volume>17</volume>
<fpage>4379</fpage>
<lpage>4390</lpage>
<pub-id pub-id-type="pmid">9687506</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gale</surname>
<given-names>M</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Katze</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase</article-title>
<source>Pharmacol. Ther.</source>
<year>1998</year>
<volume>78</volume>
<fpage>29</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">9593328</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarkar</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Novel functions of proteins encoded by viral stress-inducible genes</article-title>
<source>Pharmacol. Ther.</source>
<year>2004</year>
<volume>103</volume>
<fpage>245</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="pmid">15464592</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>α Interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication</article-title>
<source>J. Virol.</source>
<year>2003</year>
<volume>77</volume>
<fpage>3898</fpage>
<lpage>3912</lpage>
<pub-id pub-id-type="pmid">12634350</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindenmann</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Inheritance of resistance to influenza virus in mice</article-title>
<source>Proc. Soc. Exp. Biol. Med.</source>
<year>1964</year>
<volume>116</volume>
<fpage>506</fpage>
<lpage>509</lpage>
<pub-id pub-id-type="pmid">14193387</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horisberger</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Staeheli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Haller</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1983</year>
<volume>80</volume>
<fpage>1910</fpage>
<lpage>1914</lpage>
<pub-id pub-id-type="pmid">6188159</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staeheli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Haller</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Boll</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lindenmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Weissmann</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus</article-title>
<source>Cell</source>
<year>1986</year>
<volume>44</volume>
<fpage>147</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">3000619</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haller</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Staeheli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kochs</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Interferon-induced Mx proteins in antiviral host defense</article-title>
<source>Biochimie</source>
<year>2007</year>
<volume>89</volume>
<fpage>812</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="pmid">17570575</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Recht</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>E</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>A human 15-kDa IFN-induced protein induces the secretion of IFN-γ</article-title>
<source>J. Immunol.</source>
<year>1991</year>
<volume>147</volume>
<fpage>2617</fpage>
<lpage>2623</lpage>
<pub-id pub-id-type="pmid">1717569</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D'Cunha</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
secretion of human ISG15, an IFN-induced immunomodulatory cytokine</article-title>
<source>J. Immunol.</source>
<year>1996</year>
<volume>157</volume>
<fpage>4100</fpage>
<lpage>4108</lpage>
<pub-id pub-id-type="pmid">8892645</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersen</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Hassel</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>The interferon regulated ubiquitin-like protein, ISG15, in tumorigenesis: friend or foe?</article-title>
<source>Cytokine Growth Factor Rev.</source>
<year>2006</year>
<volume>17</volume>
<fpage>411</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="pmid">17097911</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okumura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pitha-Rowe</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Pitha</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>1440</fpage>
<lpage>1445</lpage>
<pub-id pub-id-type="pmid">16434471</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lenschow</surname>
<given-names>DJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>1371</fpage>
<lpage>1376</lpage>
<pub-id pub-id-type="pmid">17227866</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids</article-title>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>18240</fpage>
<lpage>18244</lpage>
<pub-id pub-id-type="pmid">9218461</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ben-Efraim</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wiedmer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gerace</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sims</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Phospholipid scramblase 1 is imported into the nucleus by a receptor-mediated pathway and interacts with DNA</article-title>
<source>Biochemistry</source>
<year>2004</year>
<volume>43</volume>
<fpage>3518</fpage>
<lpage>3526</lpage>
<pub-id pub-id-type="pmid">15035622</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phospholipid scramblase 1 potentiates the antiviral activity of interferon</article-title>
<source>J. Virol.</source>
<year>2004</year>
<volume>78</volume>
<fpage>8983</fpage>
<lpage>8993</lpage>
<pub-id pub-id-type="pmid">15308695</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kayagaki</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs</article-title>
<source>J. Exp. Med.</source>
<year>1999</year>
<volume>189</volume>
<fpage>1451</fpage>
<lpage>1460</lpage>
<pub-id pub-id-type="pmid">10224285</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chawla-Sarkar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leaman</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Preferential induction of apoptosis by interferon (IFN)-β compared with IFN-α2: correlation with TRAIL/Apo2L induction in melanoma cell lines</article-title>
<source>Clin. Cancer. Res.</source>
<year>2001</year>
<volume>7</volume>
<fpage>1821</fpage>
<lpage>1831</lpage>
<pub-id pub-id-type="pmid">11410525</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma</article-title>
<source>Blood</source>
<year>2001</year>
<volume>98</volume>
<fpage>2183</fpage>
<lpage>2192</lpage>
<pub-id pub-id-type="pmid">11568006</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kelly</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of a human gene inducible by α- and β-interferons and its expression in mouse cells</article-title>
<source>EMBO J.</source>
<year>1986</year>
<volume>5</volume>
<fpage>1601</fpage>
<lpage>1606</lpage>
<pub-id pub-id-type="pmid">3017706</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martensen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Justesen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Small ISGs coming forward</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>2004</year>
<volume>24</volume>
<fpage>1</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="pmid">14980080</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tahara</surname>
<given-names>E</given-names>
<suffix>Jr.</suffix>
</name>
<etal></etal>
</person-group>
<article-title>G1P3, an interferon inducible gene 6–16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell</article-title>
<source>Cancer Immunol. Immunother.</source>
<year>2005</year>
<volume>54</volume>
<fpage>729</fpage>
<lpage>740</lpage>
<pub-id pub-id-type="pmid">15685448</pub-id>
</element-citation>
</ref>
<ref id="CR119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martensen</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The interferon α induced protein ISG12 is localized to the nuclear membrane</article-title>
<source>Eur. J. Biochem.</source>
<year>2001</year>
<volume>268</volume>
<fpage>5947</fpage>
<lpage>5954</lpage>
<pub-id pub-id-type="pmid">11722583</pub-id>
</element-citation>
</ref>
<ref id="CR120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Labrada</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12</article-title>
<source>J. Virol.</source>
<year>2002</year>
<volume>76</volume>
<fpage>11688</fpage>
<lpage>11703</lpage>
<pub-id pub-id-type="pmid">12388728</pub-id>
</element-citation>
</ref>
<ref id="CR121">
<label>121</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Carton</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>BY</given-names>
</name>
</person-group>
<article-title>Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus</article-title>
<source>Virology</source>
<year>1999</year>
<volume>256</volume>
<fpage>8</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">10087221</pub-id>
</element-citation>
</ref>
<ref id="CR122">
<label>122</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Espert</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses</article-title>
<source>J. Biol. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>16151</fpage>
<lpage>16158</lpage>
<pub-id pub-id-type="pmid">12594219</pub-id>
</element-citation>
</ref>
<ref id="CR123">
<label>123</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Regad</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator</article-title>
<source>EMBO J.</source>
<year>2001</year>
<volume>20</volume>
<fpage>3495</fpage>
<lpage>3505</lpage>
<pub-id pub-id-type="pmid">11432836</pub-id>
</element-citation>
</ref>
<ref id="CR124">
<label>124</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>George</surname>
<given-names>CX</given-names>
</name>
<name>
<surname>Patterson</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Samuel</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase</article-title>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>4419</fpage>
<lpage>4428</lpage>
<pub-id pub-id-type="pmid">9020165</pub-id>
</element-citation>
</ref>
<ref id="CR125">
<label>125</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chin</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Cresswell</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>15125</fpage>
<lpage>15130</lpage>
<pub-id pub-id-type="pmid">11752458</pub-id>
</element-citation>
</ref>
<ref id="CR126">
<label>126</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melkova</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Esteban</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Inhibition of vaccinia virus DNA replication by inducible expression of nitric oxide synthase</article-title>
<source>J. Immunol.</source>
<year>1995</year>
<volume>155</volume>
<fpage>5711</fpage>
<lpage>5718</lpage>
<pub-id pub-id-type="pmid">7499858</pub-id>
</element-citation>
</ref>
<ref id="CR127">
<label>127</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enninga</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Blobel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fontoura</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Role of nucleoporin induction in releasing an mRNA nuclear export block</article-title>
<source>Science</source>
<year>2002</year>
<volume>295</volume>
<fpage>1523</fpage>
<lpage>1525</lpage>
<pub-id pub-id-type="pmid">11809937</pub-id>
</element-citation>
</ref>
<ref id="CR128">
<label>128</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samuel</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Antiviral actions of interferons</article-title>
<source>Clin. Microbiol. Rev.</source>
<year>2001</year>
<volume>14</volume>
<fpage>778</fpage>
<lpage>809</lpage>
<pub-id pub-id-type="pmid">11585785</pub-id>
</element-citation>
</ref>
<ref id="CR129">
<label>129</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siegal</surname>
<given-names>FP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The nature of the principal type 1 interferon-producing cells in human blood</article-title>
<source>Science</source>
<year>1999</year>
<volume>284</volume>
<fpage>1835</fpage>
<lpage>1837</lpage>
<pub-id pub-id-type="pmid">10364556</pub-id>
</element-citation>
</ref>
<ref id="CR130">
<label>130</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cha</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Schindler</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Stat2-dependent regulation of MHC class II expression</article-title>
<source>J. Immunol.</source>
<year>2007</year>
<volume>179</volume>
<fpage>463</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="pmid">17579067</pub-id>
</element-citation>
</ref>
<ref id="CR131">
<label>131</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cresswell</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Intracellular surveillance: controlling the assembly of MHC class I-peptide complexes</article-title>
<source>Traffic</source>
<year>2000</year>
<volume>1</volume>
<fpage>301</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="pmid">11208114</pub-id>
</element-citation>
</ref>
<ref id="CR132">
<label>132</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drozina</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kohoutek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jabrane-Ferrat</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Peterlin</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>Expression of MHC II genes</article-title>
<source>Curr. Top. Microbiol. Immunol.</source>
<year>2005</year>
<volume>290</volume>
<fpage>147</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="pmid">16480042</pub-id>
</element-citation>
</ref>
<ref id="CR133">
<label>133</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fruh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Antigen presentation by MHC class I and its regulation by interferon γ</article-title>
<source>Curr. Opin. Immunol.</source>
<year>1999</year>
<volume>11</volume>
<fpage>76</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">10047537</pub-id>
</element-citation>
</ref>
<ref id="CR134">
<label>134</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaczynska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rock</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes</article-title>
<source>Nature</source>
<year>1993</year>
<volume>365</volume>
<fpage>264</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">8396732</pub-id>
</element-citation>
</ref>
<ref id="CR135">
<label>135</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Groothuis</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Neefjes</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The ins and outs of intracellular peptides and antigen presentation by MHC class I molecules</article-title>
<source>Curr. Top. Microbiol. Immunol.</source>
<year>2005</year>
<volume>300</volume>
<fpage>127</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="pmid">16573239</pub-id>
</element-citation>
</ref>
<ref id="CR136">
<label>136</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cole</surname>
<given-names>KE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3</article-title>
<source>J. Exp. Med.</source>
<year>1998</year>
<volume>187</volume>
<fpage>2009</fpage>
<lpage>2021</lpage>
<pub-id pub-id-type="pmid">9625760</pub-id>
</element-citation>
</ref>
<ref id="CR137">
<label>137</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farber</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>A macrophage mRNA selectively induced by γ-interferon encodes a member of the platelet factor 4 family of cytokines</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1990</year>
<volume>87</volume>
<fpage>5238</fpage>
<lpage>5242</lpage>
<pub-id pub-id-type="pmid">2115167</pub-id>
</element-citation>
</ref>
<ref id="CR138">
<label>138</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rani</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of β-R1, a gene that is selectively induced by interferon β (IFN-β) compared with IFN-α</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>22878</fpage>
<lpage>22884</lpage>
<pub-id pub-id-type="pmid">8798467</pub-id>
</element-citation>
</ref>
<ref id="CR139">
<label>139</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luster</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Unkeless</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Ravetch</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>γ-Interferon transcriptionally regulates an early-response gene containing homology to platelet proteins</article-title>
<source>Nature</source>
<year>1985</year>
<volume>315</volume>
<fpage>672</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="pmid">3925348</pub-id>
</element-citation>
</ref>
<ref id="CR140">
<label>140</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Reciprocal regulation between natural killer cells and autoreactive T cells</article-title>
<source>Nature Rev. Immunol.</source>
<year>2006</year>
<volume>6</volume>
<fpage>751</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="pmid">16998508</pub-id>
</element-citation>
</ref>
<ref id="CR141">
<label>141</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fontes</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Kanazawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nekrep</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Peterlin</surname>
<given-names>BM</given-names>
</name>
</person-group>
<article-title>The class II transactivator CIITA is a transcriptional integrator</article-title>
<source>Microbes Infect.</source>
<year>1999</year>
<volume>1</volume>
<fpage>863</fpage>
<lpage>869</lpage>
<pub-id pub-id-type="pmid">10614003</pub-id>
</element-citation>
</ref>
<ref id="CR142">
<label>142</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>LeibundGut-Landmann</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Specificity and expression of
<italic>CIITA</italic>
, the master regulator of MHC class II genes</article-title>
<source>Eur. J. Immunol.</source>
<year>2004</year>
<volume>34</volume>
<fpage>1513</fpage>
<lpage>1525</lpage>
<pub-id pub-id-type="pmid">15162420</pub-id>
</element-citation>
</ref>
<ref id="CR143">
<label>143</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wright</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Ting</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Epigenetic regulation of MHC-II and CIITA genes</article-title>
<source>Trends Immunol.</source>
<year>2006</year>
<volume>27</volume>
<fpage>405</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="pmid">16870508</pub-id>
</element-citation>
</ref>
<ref id="CR144">
<label>144</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denzin</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Hammond</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cresswell</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>HLA-DM interactions with intermediates in HLA-DR maturation and a role for HLA-DM in stabilizing empty HLA-DR molecules</article-title>
<source>J. Exp. Med.</source>
<year>1996</year>
<volume>184</volume>
<fpage>2153</fpage>
<lpage>2165</lpage>
<pub-id pub-id-type="pmid">8976171</pub-id>
</element-citation>
</ref>
<ref id="CR145">
<label>145</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Denzin</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Robbins</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Carboy-Newcomb</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cresswell</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells</article-title>
<source>Immunity</source>
<year>1994</year>
<volume>1</volume>
<fpage>595</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="pmid">7600288</pub-id>
</element-citation>
</ref>
<ref id="CR146">
<label>146</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gruneberg</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structure and function of the novel MHC class II molecule, HLA-DM</article-title>
<source>Biochem.</source>
<year>1997</year>
<volume>25</volume>
<fpage>208S</fpage>
</element-citation>
</ref>
<ref id="CR147">
<label>147</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kropshofer</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Arndt</surname>
<given-names>SO</given-names>
</name>
<name>
<surname>Moldenhauer</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hammerling</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH</article-title>
<source>Immunity</source>
<year>1997</year>
<volume>6</volume>
<fpage>293</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="pmid">9075930</pub-id>
</element-citation>
</ref>
<ref id="CR148">
<label>148</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules</article-title>
<source>Nature</source>
<year>1994</year>
<volume>368</volume>
<fpage>551</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">8139689</pub-id>
</element-citation>
</ref>
<ref id="CR149">
<label>149</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vogt</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Kropshofer</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>HLA-DM — an endosomal and lysosomal chaperone for the immune system</article-title>
<source>Trends Biochem. Sci.</source>
<year>1999</year>
<volume>24</volume>
<fpage>150</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="pmid">10322421</pub-id>
</element-citation>
</ref>
<ref id="CR150">
<label>150</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleinschmidt</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Similarities of murine γ interferon and the lymphokine that renders macrophages cytotoxic</article-title>
<source>J. Interferon Res.</source>
<year>1982</year>
<volume>2</volume>
<fpage>291</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="pmid">6811671</pub-id>
</element-citation>
</ref>
<ref id="CR151">
<label>151</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blumberg</surname>
<given-names>BS</given-names>
</name>
</person-group>
<article-title>Australia antigen and the biology of hepatitis B</article-title>
<source>Science</source>
<year>1977</year>
<volume>197</volume>
<fpage>17</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">325649</pub-id>
</element-citation>
</ref>
<ref id="CR152">
<label>152</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenberg</surname>
<given-names>HB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis</article-title>
<source>N. Engl. J. Med.</source>
<year>1976</year>
<volume>295</volume>
<fpage>517</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="pmid">950957</pub-id>
</element-citation>
</ref>
<ref id="CR153">
<label>153</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weimar</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fibroblast interferon in HBsAg-positive chronic active hepatitis</article-title>
<source>Lancet</source>
<year>1977</year>
<volume>310</volume>
<fpage>1282</fpage>
</element-citation>
</ref>
<ref id="CR154">
<label>154</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoofnagle</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Randomized, controlled trial of recombinant human α-interferon in patients with chronic hepatitis B</article-title>
<source>Gastroenterology</source>
<year>1988</year>
<volume>95</volume>
<fpage>1318</fpage>
<lpage>1325</lpage>
<pub-id pub-id-type="pmid">3049216</pub-id>
</element-citation>
</ref>
<ref id="CR155">
<label>155</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lok</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>Chronic hepatitis B</article-title>
<source>Hepatology</source>
<year>2007</year>
<volume>45</volume>
<fpage>507</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">17256718</pub-id>
</element-citation>
</ref>
<ref id="CR156">
<label>156</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bertoletti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Role of hepatitis B virus specific cytotoxic T cells in liver damage and viral control</article-title>
<source>Antiviral Res.</source>
<year>2003</year>
<volume>60</volume>
<fpage>61</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">14638399</pub-id>
</element-citation>
</ref>
<ref id="CR157">
<label>157</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmen</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutation preventing formation of hepatitis B e antigen in patients with chronic HBV infection</article-title>
<source>Lancet</source>
<year>1989</year>
<volume>2</volume>
<fpage>588</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="pmid">2570285</pub-id>
</element-citation>
</ref>
<ref id="CR158">
<label>158</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>GK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>352</volume>
<fpage>2682</fpage>
<lpage>2695</lpage>
<pub-id pub-id-type="pmid">15987917</pub-id>
</element-citation>
</ref>
<ref id="CR159">
<label>159</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marcellin</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B</article-title>
<source>N. Engl. J. Med.</source>
<year>2004</year>
<volume>351</volume>
<fpage>1206</fpage>
<lpage>1217</lpage>
<pub-id pub-id-type="pmid">15371578</pub-id>
</element-citation>
</ref>
<ref id="CR160">
<label>160</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoofnagle</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mullen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Treatment of chronic nonA nonB hepatitis with recombinant human α interferon: a preliminary report</article-title>
<source>N. Engl. J. Med.</source>
<year>1986</year>
<volume>328</volume>
<fpage>465</fpage>
<lpage>470</lpage>
</element-citation>
</ref>
<ref id="CR161">
<label>161</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choo</surname>
<given-names>Q-L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation of a cDNA clone derived from a blood borne non-A, non-B viral hepatitis clone</article-title>
<source>Science</source>
<year>1989</year>
<volume>244</volume>
<fpage>359</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="pmid">2523562</pub-id>
</element-citation>
</ref>
<ref id="CR162">
<label>162</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heathcote</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Main</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Treatment of hepatitis C</article-title>
<source>J. Viral Hepat.</source>
<year>2005</year>
<volume>12</volume>
<fpage>223</fpage>
<lpage>235</lpage>
<pub-id pub-id-type="pmid">15850462</pub-id>
</element-citation>
</ref>
<ref id="CR163">
<label>163</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foster</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Past, present, and future hepatitis C treatments</article-title>
<source>Semin. Liver Dis.</source>
<year>2004</year>
<volume>24</volume>
<issue>Suppl. 2</issue>
<fpage>97</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">15346252</pub-id>
</element-citation>
</ref>
<ref id="CR164">
<label>164</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Koning</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>van Bijsterveld</surname>
<given-names>OP</given-names>
</name>
<name>
<surname>Cantell</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Combination therapy for dendritic keratitis with acyclovir and α-interferon</article-title>
<source>Arch. Ophthalmol.</source>
<year>1983</year>
<volume>101</volume>
<fpage>1866</fpage>
<lpage>1868</lpage>
<pub-id pub-id-type="pmid">6360110</pub-id>
</element-citation>
</ref>
<ref id="CR165">
<label>165</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Coster</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Falcon</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Cantell</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Topical therapy of ulcerative herpetic keratitis with human interferon</article-title>
<source>Lancet</source>
<year>1976</year>
<volume>17</volume>
<fpage>128</fpage>
</element-citation>
</ref>
<ref id="CR166">
<label>166</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merigan</surname>
<given-names>TC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human leukocyte interferon for the treatment of herpes zoster in patients with cancer</article-title>
<source>N. Engl. J. Med.</source>
<year>1978</year>
<volume>298</volume>
<fpage>981</fpage>
<lpage>987</lpage>
<pub-id pub-id-type="pmid">347294</pub-id>
</element-citation>
</ref>
<ref id="CR167">
<label>167</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pazin</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prevention of reactivated herpes simplex infection by human leukocyte interferon after operation on the trigeminal root</article-title>
<source>N. Engl. J. Med.</source>
<year>1979</year>
<volume>301</volume>
<fpage>225</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="pmid">221812</pub-id>
</element-citation>
</ref>
<ref id="CR168">
<label>168</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winston</surname>
<given-names>DJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant interferon α-2a for treatment of herpes zoster in immunosuppressed patients with cancer</article-title>
<source>Am. J. Med.</source>
<year>1988</year>
<volume>85</volume>
<fpage>147</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="pmid">3041829</pub-id>
</element-citation>
</ref>
<ref id="CR169">
<label>169</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lui</surname>
<given-names>SF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Double-blind, placebo-controlled trial of human lymphoblastoid interferon prophylaxis of cytomegalovirus infection in renal transplant recipients</article-title>
<source>Nephrol. Dial. Transplant.</source>
<year>1992</year>
<volume>7</volume>
<fpage>1230</fpage>
<lpage>1237</lpage>
<pub-id pub-id-type="pmid">1337164</pub-id>
</element-citation>
</ref>
<ref id="CR170">
<label>170</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haglund</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lundquist</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Cantell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Strander</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Interferon therapy in juvenile laryngeal papillomatosis</article-title>
<source>Arch. Otolaryngol.</source>
<year>1981</year>
<volume>107</volume>
<fpage>327</fpage>
<lpage>332</lpage>
<pub-id pub-id-type="pmid">6164359</pub-id>
</element-citation>
</ref>
<ref id="CR171">
<label>171</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pazin</surname>
<given-names>GJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of interferon-α on human warts</article-title>
<source>J. Interferon Res.</source>
<year>1982</year>
<volume>2</volume>
<fpage>235</fpage>
<lpage>243</lpage>
<pub-id pub-id-type="pmid">7119508</pub-id>
</element-citation>
</ref>
<ref id="CR172">
<label>172</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eron</surname>
<given-names>LJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon therapy for condylomata acuminata</article-title>
<source>N. Engl. J. Med.</source>
<year>1986</year>
<volume>315</volume>
<fpage>1059</fpage>
<lpage>1064</lpage>
<pub-id pub-id-type="pmid">3531860</pub-id>
</element-citation>
</ref>
<ref id="CR173">
<label>173</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Healy</surname>
<given-names>GB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment of recurrent respiratory papillomatosis with human leukocyte interferon. Results of a multicenter randomized clinical trial</article-title>
<source>N. Engl. J. Med.</source>
<year>1988</year>
<volume>319</volume>
<fpage>401</fpage>
<lpage>407</lpage>
<pub-id pub-id-type="pmid">3398891</pub-id>
</element-citation>
</ref>
<ref id="CR174">
<label>174</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weck</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Buddin</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Whisnant</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Interferons in the treatment of genital human papillomavirus infections</article-title>
<source>Am. J. Med.</source>
<year>1988</year>
<volume>85</volume>
<fpage>159</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="pmid">3044081</pub-id>
</element-citation>
</ref>
<ref id="CR175">
<label>175</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deuñas</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Use of interferon-α in laryngeal papillomatosis: eight years of the Cuban national programme</article-title>
<source>J. Laryngol. Otol.</source>
<year>1997</year>
<volume>111</volume>
<fpage>134</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">9102438</pub-id>
</element-citation>
</ref>
<ref id="CR176">
<label>176</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beutner</surname>
<given-names>KR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1998</year>
<volume>42</volume>
<fpage>789</fpage>
<lpage>794</lpage>
<pub-id pub-id-type="pmid">9559784</pub-id>
</element-citation>
</ref>
<ref id="CR177">
<label>177</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tyring</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A randomized, controlled, molecular study of condylomata acuminata clearance during treatment with imiquimod</article-title>
<source>J. Infect. Dis.</source>
<year>1998</year>
<volume>178</volume>
<fpage>551</fpage>
<lpage>555</lpage>
<pub-id pub-id-type="pmid">9697742</pub-id>
</element-citation>
</ref>
<ref id="CR178">
<label>178</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Hopwood</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Imiquimod for the treatment of genital warts: a quantitative systematic review</article-title>
<source>BMC Infect. Dis.</source>
<year>2001</year>
<volume>1</volume>
<fpage>e3</fpage>
</element-citation>
</ref>
<ref id="CR179">
<label>179</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lane</surname>
<given-names>HC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-α in patients with asymptomatic human immunodeficiency virus (HIV) infection. A randomized, placebo-controlled trial</article-title>
<source>Ann. Intern. Med.</source>
<year>1990</year>
<volume>112</volume>
<fpage>805</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="pmid">1971503</pub-id>
</element-citation>
</ref>
<ref id="CR180">
<label>180</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krown</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Aeppli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Balfour</surname>
<given-names>HH</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Phase II, randomized, open-label, community-based trial to compare the safety and activity of combination therapy with recombinant interferon-α2b and zidovudine versus zidovudine alone in patients with asymptomatic to mildly symptomatic HIV infection. HIV Protocol C91–253 Study Team</article-title>
<source>J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.</source>
<year>1999</year>
<volume>20</volume>
<fpage>245</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">10077172</pub-id>
</element-citation>
</ref>
<ref id="CR181">
<label>181</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merigan</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Tyrrell</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Inhibition of respiratory virus infection by locally applied interferon</article-title>
<source>Lancet</source>
<year>1973</year>
<volume>301</volume>
<fpage>563</fpage>
<lpage>567</lpage>
</element-citation>
</ref>
<ref id="CR182">
<label>182</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scott</surname>
<given-names>GM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prevention of rhinovirus colds by human interferon α-2 from
<italic>Escherichia coli</italic>
</article-title>
<source>Lancet</source>
<year>1982</year>
<volume>320</volume>
<fpage>186</fpage>
<lpage>188</lpage>
</element-citation>
</ref>
<ref id="CR183">
<label>183</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Higgins</surname>
<given-names>PG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intranasal interferon as protection against experimental respiratory coronavirus infection in volunteers</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1983</year>
<volume>24</volume>
<fpage>713</fpage>
<lpage>715</lpage>
<pub-id pub-id-type="pmid">6318655</pub-id>
</element-citation>
</ref>
<ref id="CR184">
<label>184</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Treanor</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Betts</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Erb</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Dolin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Intranasally administered interferon as prophylaxis against experimentally induced influenza A virus infection in humans</article-title>
<source>J. Infect. Dis.</source>
<year>1987</year>
<volume>156</volume>
<fpage>379</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="pmid">3598236</pub-id>
</element-citation>
</ref>
<ref id="CR185">
<label>185</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Albrecht</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Intranasal recombinant α-2b interferon treatment of naturally occurring common colds</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1988</year>
<volume>32</volume>
<fpage>224</fpage>
<lpage>230</lpage>
<pub-id pub-id-type="pmid">2834996</pub-id>
</element-citation>
</ref>
<ref id="CR186">
<label>186</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Douglas</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prophylactic efficacy of intranasal α 2-interferon against rhinovirus infections in the family setting</article-title>
<source>N. Engl. J. Med.</source>
<year>1986</year>
<volume>314</volume>
<fpage>65</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">3001518</pub-id>
</element-citation>
</ref>
<ref id="CR187">
<label>187</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farr</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Gwaltney</surname>
<given-names>JM</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Adams</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
</person-group>
<article-title>Intranasal interferon-α 2 for prevention of natural rhinovirus colds</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1984</year>
<volume>6</volume>
<fpage>31</fpage>
<lpage>34</lpage>
</element-citation>
</ref>
<ref id="CR188">
<label>188</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loutfy</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study</article-title>
<source>JAMA</source>
<year>2003</year>
<volume>290</volume>
<fpage>3222</fpage>
<lpage>3228</lpage>
<pub-id pub-id-type="pmid">14693875</pub-id>
</element-citation>
</ref>
<ref id="CR189">
<label>189</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobs</surname>
<given-names>L</given-names>
</name>
<name>
<surname>O'Malley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ekes</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Intrathecal interferon reduces exacerbations of multiple sclerosis</article-title>
<source>Science</source>
<year>1981</year>
<volume>214</volume>
<fpage>1026</fpage>
<lpage>1028</lpage>
<pub-id pub-id-type="pmid">6171035</pub-id>
</element-citation>
</ref>
<ref id="CR190">
<label>190</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knobler</surname>
<given-names>RL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systemic α-interferon therapy of multiple sclerosis</article-title>
<source>Neurology</source>
<year>1984</year>
<volume>34</volume>
<fpage>1273</fpage>
<lpage>1279</lpage>
<pub-id pub-id-type="pmid">6384817</pub-id>
</element-citation>
</ref>
<ref id="CR191">
<label>191</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panitch</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>KP</given-names>
</name>
</person-group>
<article-title>Exacerbations of multiple sclerosis in patients treated with γ interferon</article-title>
<source>Lancet</source>
<year>1987</year>
<volume>329</volume>
<fpage>893</fpage>
<lpage>895</lpage>
</element-citation>
</ref>
<ref id="CR192">
<label>192</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panitch</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Schindler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>KP</given-names>
</name>
</person-group>
<article-title>Treatment of multiple sclerosis with γ interferon: exacerbations associated with activation of the immune system</article-title>
<source>Neurology</source>
<year>1987</year>
<volume>37</volume>
<fpage>1097</fpage>
<lpage>1102</lpage>
<pub-id pub-id-type="pmid">3110648</pub-id>
</element-citation>
</ref>
<ref id="CR193">
<label>193</label>
<mixed-citation publication-type="other">IFNB MS Study Group. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial.
<italic>Neurology</italic>
<bold>43</bold>
, 655–661 (1993).</mixed-citation>
</ref>
<ref id="CR194">
<label>194</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paty</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>DK</given-names>
</name>
</person-group>
<article-title>Interferon β-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group</article-title>
<source>Neurology</source>
<year>1993</year>
<volume>43</volume>
<fpage>662</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="pmid">8469319</pub-id>
</element-citation>
</ref>
<ref id="CR195">
<label>195</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bermel</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Rudick</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Interferon-β treatment for multiple sclerosis</article-title>
<source>Neurotherapeutics</source>
<year>2007</year>
<volume>4</volume>
<fpage>633</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="pmid">17920544</pub-id>
</element-citation>
</ref>
<ref id="CR196">
<label>196</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudick</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Cutter</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Interferon-β for multiple sclerosis: long-term benefits?</article-title>
<source>Ann. Neurol.</source>
<year>2007</year>
<volume>61</volume>
<fpage>283</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="pmid">17444503</pub-id>
</element-citation>
</ref>
<ref id="CR197">
<label>197</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hauser</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>Recombinant therapeutics: from bench to bedside (if your health plan concurs)</article-title>
<source>Ann. Neurol.</source>
<year>2006</year>
<volume>60</volume>
<fpage>10A</fpage>
<lpage>11A</lpage>
<pub-id pub-id-type="pmid">17120255</pub-id>
</element-citation>
</ref>
<ref id="CR198">
<label>198</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ascherio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munger</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Environmental risk factors for multiple sclerosis. Part II: noninfectious factors</article-title>
<source>Ann. Neurol.</source>
<year>2007</year>
<volume>61</volume>
<fpage>504</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="pmid">17492755</pub-id>
</element-citation>
</ref>
<ref id="CR199">
<label>199</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ascherio</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munger</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Environmental risk factors for multiple sclerosis. Part I: the role of infection</article-title>
<source>Ann. Neurol.</source>
<year>2007</year>
<volume>61</volume>
<fpage>288</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="pmid">17444504</pub-id>
</element-citation>
</ref>
<ref id="CR200">
<label>200</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lincoln</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis</article-title>
<source>Nature Genet.</source>
<year>2005</year>
<volume>37</volume>
<fpage>1108</fpage>
<lpage>1112</lpage>
<pub-id pub-id-type="pmid">16186814</pub-id>
</element-citation>
</ref>
<ref id="CR201">
<label>201</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peltonen</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Old suspects found guilty — the first genome profile of multiple sclerosis</article-title>
<source>N. Engl. J. Med.</source>
<year>2007</year>
<volume>357</volume>
<fpage>927</fpage>
<lpage>929</lpage>
<pub-id pub-id-type="pmid">17660531</pub-id>
</element-citation>
</ref>
<ref id="CR202">
<label>202</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calabresi</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon β-1b</article-title>
<source>Ann. Neurol.</source>
<year>1997</year>
<volume>41</volume>
<fpage>669</fpage>
<lpage>674</lpage>
<pub-id pub-id-type="pmid">9153530</pub-id>
</element-citation>
</ref>
<ref id="CR203">
<label>203</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frank</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serial contrast-enhanced magnetic resonance imaging in patients with early relapsing-remitting multiple sclerosis: implications for treatment trials</article-title>
<source>Ann. Neurol.</source>
<year>1994</year>
<volume>36</volume>
<fpage>S86</fpage>
<lpage>S90</lpage>
<pub-id pub-id-type="pmid">8017894</pub-id>
</element-citation>
</ref>
<ref id="CR204">
<label>204</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stone</surname>
<given-names>LA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effect of interferon-β on blood–brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis</article-title>
<source>Ann. Neurol.</source>
<year>1995</year>
<volume>37</volume>
<fpage>611</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="pmid">7755356</pub-id>
</element-citation>
</ref>
<ref id="CR205">
<label>205</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shiow</surname>
<given-names>LR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs</article-title>
<source>Nature</source>
<year>2006</year>
<volume>440</volume>
<fpage>540</fpage>
<lpage>544</lpage>
<pub-id pub-id-type="pmid">16525420</pub-id>
</element-citation>
</ref>
<ref id="CR206">
<label>206</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stuve</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon β-1b decreases the migration of T lymphocytes
<italic>in vitro</italic>
: effects on matrix metalloproteinase-9</article-title>
<source>Ann. Neurol.</source>
<year>1996</year>
<volume>40</volume>
<fpage>853</fpage>
<lpage>863</lpage>
<pub-id pub-id-type="pmid">9007090</pub-id>
</element-citation>
</ref>
<ref id="CR207">
<label>207</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leppert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Waubant</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Burk</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Oksenberg</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Interferon β-1b inhibits gelatinase secretion and
<italic>in vitro</italic>
migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis</article-title>
<source>Ann. Neurol.</source>
<year>1996</year>
<volume>40</volume>
<fpage>846</fpage>
<lpage>852</lpage>
<pub-id pub-id-type="pmid">9007089</pub-id>
</element-citation>
</ref>
<ref id="CR208">
<label>208</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernald</surname>
<given-names>GH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome-wide network analysis reveals the global properties of IFN-β immediate transcriptional effects in humans</article-title>
<source>J. Immunol.</source>
<year>2007</year>
<volume>178</volume>
<fpage>5076</fpage>
<lpage>5085</lpage>
<pub-id pub-id-type="pmid">17404290</pub-id>
</element-citation>
</ref>
<ref id="CR209">
<label>209</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rudick</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ransohoff</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Defining interferon β response status in multiple sclerosis patients</article-title>
<source>Ann. Neurol.</source>
<year>2004</year>
<volume>56</volume>
<fpage>548</fpage>
<lpage>555</lpage>
<pub-id pub-id-type="pmid">15389896</pub-id>
</element-citation>
</ref>
<ref id="CR210">
<label>210</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gutterman</surname>
<given-names>JU</given-names>
</name>
</person-group>
<article-title>Cytokine therapeutics: lessons from interferon α</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1994</year>
<volume>91</volume>
<fpage>1198</fpage>
<lpage>1205</lpage>
<pub-id pub-id-type="pmid">8108387</pub-id>
</element-citation>
</ref>
<ref id="CR211">
<label>211</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurzrock</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Talpaz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gutterman</surname>
<given-names>JU</given-names>
</name>
</person-group>
<article-title>Hairy cell leukemia: review of treatment</article-title>
<source>Br. J. Haematol.</source>
<year>1991</year>
<volume>79</volume>
<issue>Suppl. 1</issue>
<fpage>17</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">1718389</pub-id>
</element-citation>
</ref>
<ref id="CR212">
<label>212</label>
<mixed-citation publication-type="other">The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Long-term follow-up of the Italian trial of interferon-α versus conventional chemotherapy in chronic myeloid leukemia.
<italic>Blood</italic>
<bold>92</bold>
, 1541–1548 (1998).</mixed-citation>
</ref>
<ref id="CR213">
<label>213</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talpaz</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Interferon-α-based treatment of chronic myeloid leukemia and implications of signal transduction inhibition</article-title>
<source>Semin. Hematol.</source>
<year>2001</year>
<volume>38</volume>
<fpage>22</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">11526598</pub-id>
</element-citation>
</ref>
<ref id="CR214">
<label>214</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonifazi</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chronic myeloid leukemia and interferon-α: a study of complete cytogenetic responders</article-title>
<source>Blood</source>
<year>2001</year>
<volume>98</volume>
<fpage>3074</fpage>
<lpage>3081</lpage>
<pub-id pub-id-type="pmid">11698293</pub-id>
</element-citation>
</ref>
<ref id="CR215">
<label>215</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
<etal></etal>
</person-group>
<source>Cancer Medicine</source>
<year>2006</year>
<fpage>733</fpage>
<lpage>743</lpage>
</element-citation>
</ref>
<ref id="CR216">
<label>216</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rohatiner</surname>
<given-names>AZ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Meta-analysis to evaluate the role of interferon in follicular lymphoma</article-title>
<source>J. Clin. Oncol.</source>
<year>2005</year>
<volume>23</volume>
<fpage>2215</fpage>
<lpage>2223</lpage>
<pub-id pub-id-type="pmid">15684317</pub-id>
</element-citation>
</ref>
<ref id="CR217">
<label>217</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gresser</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Maury</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Belardelli</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Anti-tumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. VI. Adjuvant therapy after surgery in the inhibition of liver and spleen metastases</article-title>
<source>Int. J. Cancer</source>
<year>1987</year>
<volume>39</volume>
<fpage>789</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="pmid">2438237</pub-id>
</element-citation>
</ref>
<ref id="CR218">
<label>218</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Müller</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Smeland</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Saeter</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Strander</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Interferon-α as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series</article-title>
<source>Acta Oncol.</source>
<year>2005</year>
<volume>44</volume>
<fpage>475</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">16118081</pub-id>
</element-citation>
</ref>
<ref id="CR219">
<label>219</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirkwood</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A pooled analysis of Eastern Cooperative Oncology Group and intergroup trials of adjuvant high-dose interferon for melanoma</article-title>
<source>Clin. Cancer Res.</source>
<year>2004</year>
<volume>10</volume>
<fpage>1670</fpage>
<lpage>1677</lpage>
<pub-id pub-id-type="pmid">15014018</pub-id>
</element-citation>
</ref>
<ref id="CR220">
<label>220</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wheatley</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Does adjuvant interferon-α for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials</article-title>
<source>Cancer Treat. Rev.</source>
<year>2003</year>
<volume>29</volume>
<fpage>241</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="pmid">12927565</pub-id>
</element-citation>
</ref>
<ref id="CR221">
<label>221</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eggermont</surname>
<given-names>AMM</given-names>
</name>
<name>
<surname>Gore</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Randomized adjuvant therapy trials in melanoma: surgical and systemic trials</article-title>
<source>Semin. Oncol.</source>
<year>2007</year>
<volume>34</volume>
<fpage>507</fpage>
<lpage>513</lpage>
</element-citation>
</ref>
<ref id="CR222">
<label>222</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiss</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Safety profile of interferon-α therapy</article-title>
<source>Semin. Oncol.</source>
<year>1998</year>
<volume>25</volume>
<fpage>S9</fpage>
<lpage>S13</lpage>
</element-citation>
</ref>
<ref id="CR223">
<label>223</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirkwood</surname>
<given-names>JM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanisms and management of toxicities associated with high-dose interferon α-2b therapy</article-title>
<source>J. Clin. Oncol.</source>
<year>2002</year>
<volume>20</volume>
<fpage>3703</fpage>
<lpage>3718</lpage>
<pub-id pub-id-type="pmid">12202672</pub-id>
</element-citation>
</ref>
<ref id="CR224">
<label>224</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diaz</surname>
<given-names>MO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Deletions of interferon genes in acute lymphoblastic leukemia</article-title>
<source>N. Engl. J. Med.</source>
<year>1990</year>
<volume>322</volume>
<fpage>77</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">2294436</pub-id>
</element-citation>
</ref>
<ref id="CR225">
<label>225</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fountain</surname>
<given-names>JW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Homozygous deletions within human chromosome band 9p21 in melanoma</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1992</year>
<volume>89</volume>
<fpage>10557</fpage>
<lpage>10561</lpage>
<pub-id pub-id-type="pmid">1438246</pub-id>
</element-citation>
</ref>
<ref id="CR226">
<label>226</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olopade</surname>
<given-names>OI</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Homozygous loss of the interferon genes defines the critical region on 9p that is deleted in lung cancers</article-title>
<source>Cancer Res.</source>
<year>1993</year>
<volume>53</volume>
<issue>Suppl. 10</issue>
<fpage>2410</fpage>
<lpage>2415</lpage>
<pub-id pub-id-type="pmid">7683574</pub-id>
</element-citation>
</ref>
<ref id="CR227">
<label>227</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeYoung</surname>
<given-names>KL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma</article-title>
<source>Oncogene</source>
<year>1997</year>
<volume>15</volume>
<fpage>453</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="pmid">9242382</pub-id>
</element-citation>
</ref>
<ref id="CR228">
<label>228</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Interferon-inducible protein IFIXα1 functions as a negative regulator of HDM2</article-title>
<source>Mol. Cell Biol.</source>
<year>2006</year>
<volume>26</volume>
<fpage>1979</fpage>
<lpage>1996</lpage>
<pub-id pub-id-type="pmid">16479015</pub-id>
</element-citation>
</ref>
<ref id="CR229">
<label>229</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnsen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>France</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sy</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Harding</surname>
<given-names>CV</given-names>
</name>
</person-group>
<article-title>Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines</article-title>
<source>Cancer Res.</source>
<year>1998</year>
<volume>58</volume>
<fpage>3660</fpage>
<lpage>3667</lpage>
<pub-id pub-id-type="pmid">9721876</pub-id>
</element-citation>
</ref>
<ref id="CR230">
<label>230</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shou</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>2830</fpage>
<lpage>2835</lpage>
<pub-id pub-id-type="pmid">11880635</pub-id>
</element-citation>
</ref>
<ref id="CR231">
<label>231</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seliger</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigen-processing down-regulation</article-title>
<source>Clin. Cancer Res.</source>
<year>2003</year>
<volume>9</volume>
<fpage>1721</fpage>
<lpage>1727</lpage>
<pub-id pub-id-type="pmid">12738726</pub-id>
</element-citation>
</ref>
<ref id="CR232">
<label>232</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoek</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>5270</fpage>
<lpage>5282</lpage>
<pub-id pub-id-type="pmid">15289333</pub-id>
</element-citation>
</ref>
<ref id="CR233">
<label>233</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pitha-Rowe</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Microarray analyses uncover
<italic>UBE1L</italic>
as a candidate target gene for lung cancer chemoprevention</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>8109</fpage>
<lpage>8115</lpage>
<pub-id pub-id-type="pmid">15520223</pub-id>
</element-citation>
</ref>
<ref id="CR234">
<label>234</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ito</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>STAT3 polymorphism predicts interferon-α response in patients with metastatic renal cell carcinoma</article-title>
<source>J. Clin. Oncol.</source>
<year>2007</year>
<volume>25</volume>
<fpage>2785</fpage>
<lpage>2791</lpage>
<pub-id pub-id-type="pmid">17602083</pub-id>
</element-citation>
</ref>
<ref id="CR235">
<label>235</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casey</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases</article-title>
<source>Nature Genet.</source>
<year>2002</year>
<volume>32</volume>
<fpage>581</fpage>
<lpage>583</lpage>
<pub-id pub-id-type="pmid">12415269</pub-id>
</element-citation>
</ref>
<ref id="CR236">
<label>236</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Augmentation of effects of interferon-stimulated genes by reversal of epigenetic silencing: potential application to melanoma</article-title>
<source>Cytokine Growth Factor Rev.</source>
<year>2007</year>
<volume>18</volume>
<fpage>491</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="pmid">17689283</pub-id>
</element-citation>
</ref>
<ref id="CR237">
<label>237</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakaii</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFN-α prevents the growth of pre-neoplastic lesions and inhibits the development of hepatocellular carcinoma in the rat</article-title>
<source>Carcinogenesis</source>
<year>2004</year>
<volume>25</volume>
<fpage>389</fpage>
<lpage>397</lpage>
<pub-id pub-id-type="pmid">14633663</pub-id>
</element-citation>
</ref>
<ref id="CR238">
<label>238</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Sidky</surname>
<given-names>YA</given-names>
</name>
<name>
<surname>Ertürk</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Wierenga</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Bryan</surname>
<given-names>GT</given-names>
</name>
</person-group>
<article-title>Protection from carcinogen-induced murine bladder carcinoma by interferons and an oral interferon-inducing pyrimidinone, bropirimine</article-title>
<source>Cancer Res.</source>
<year>1990</year>
<volume>50</volume>
<fpage>1071</fpage>
<lpage>1074</lpage>
<pub-id pub-id-type="pmid">2297754</pub-id>
</element-citation>
</ref>
<ref id="CR239">
<label>239</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kulik</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>Can therapy of hepatitis C affect the development of hepatocellular carcinoma?</article-title>
<source>J. Natl Comp. Cancer Netw.</source>
<year>2006</year>
<volume>4</volume>
<fpage>751</fpage>
<lpage>757</lpage>
</element-citation>
</ref>
<ref id="CR240">
<label>240</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chawla-Sarkar</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis</article-title>
<source>Apoptosis</source>
<year>2003</year>
<volume>8</volume>
<fpage>237</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="pmid">12766484</pub-id>
</element-citation>
</ref>
<ref id="CR241">
<label>241</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ballestrero</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tumor necrosis factor-related apoptosis-inducing ligand cooperates with anticancer drugs to overcome chemoresistance in antiapoptotic Bcl-2 family members expressing jurkat cells</article-title>
<source>Clin. Cancer Res.</source>
<year>2004</year>
<volume>10</volume>
<fpage>1463</fpage>
<lpage>1470</lpage>
<pub-id pub-id-type="pmid">14977850</pub-id>
</element-citation>
</ref>
<ref id="CR242">
<label>242</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antiviral response by natural killer cells through
<italic>TRAIL</italic>
gene induction by IFN-α/β</article-title>
<source>Eur. J. Immunol.</source>
<year>2001</year>
<volume>31</volume>
<fpage>3138</fpage>
<lpage>3146</lpage>
<pub-id pub-id-type="pmid">11745330</pub-id>
</element-citation>
</ref>
<ref id="CR243">
<label>243</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaperot</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virus or TLR agonists induce TRAIL-mediated cytotoxic activity of plasmacytoid dendritic cells</article-title>
<source>J. Immunol.</source>
<year>2006</year>
<volume>176</volume>
<fpage>248</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="pmid">16365416</pub-id>
</element-citation>
</ref>
<ref id="CR244">
<label>244</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buechner</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regression of basal cell carcinoma by intralesional interferon-α treatment is mediated by CD95 (Apo-1/Fas)-CD95ligand-induced suicide</article-title>
<source>J. Clin. Invest.</source>
<year>1997</year>
<volume>100</volume>
<fpage>2691</fpage>
<lpage>2696</lpage>
<pub-id pub-id-type="pmid">9389732</pub-id>
</element-citation>
</ref>
<ref id="CR245">
<label>245</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ugurel</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterogenous susceptibility to CD95-induced apoptosis in melanoma cells correlates with
<italic>Bcl-2</italic>
and
<italic>Bcl-x</italic>
expression and is sensitive to modulation by interferon-γ</article-title>
<source>Int. J. Cancer</source>
<year>1999</year>
<volume>82</volume>
<fpage>727</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="pmid">10417772</pub-id>
</element-citation>
</ref>
<ref id="CR246">
<label>246</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwartzberg</surname>
<given-names>LS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of the Fas signaling pathway by IFN-γ in therapy of colon cancer: Phase I trial and correlative studies of IFN-γ, 5-fluorouracil, and leukovorin</article-title>
<source>Clin. Cancer. Res.</source>
<year>2002</year>
<volume>8</volume>
<fpage>2488</fpage>
<lpage>2498</lpage>
<pub-id pub-id-type="pmid">12171874</pub-id>
</element-citation>
</ref>
<ref id="CR247">
<label>247</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leaman</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of X-linked inhibitor of apoptosis-associated factor-1 (
<italic>XAF1</italic>
) as an interferon-stimulated gene that augments TRAIL/Apo2L-induced apoptosis</article-title>
<source>J. Biol. Chem.</source>
<year>2002</year>
<volume>277</volume>
<fpage>28504</fpage>
<lpage>28511</lpage>
<pub-id pub-id-type="pmid">12029096</pub-id>
</element-citation>
</ref>
<ref id="CR248">
<label>248</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses</article-title>
<source>Oncogene</source>
<year>2006</year>
<volume>25</volume>
<fpage>5807</fpage>
<lpage>5822</lpage>
<pub-id pub-id-type="pmid">16909101</pub-id>
</element-citation>
</ref>
<ref id="CR249">
<label>249</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pizzoferrato</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ectopic expression of interferon regulatory factor-1 promotes human breast cancer cell death and results in reduced expression of survivin</article-title>
<source>Cancer Res.</source>
<year>2004</year>
<volume>64</volume>
<fpage>8381</fpage>
<lpage>8388</lpage>
<pub-id pub-id-type="pmid">15548708</pub-id>
</element-citation>
</ref>
<ref id="CR250">
<label>250</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfeffer</surname>
<given-names>LM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons</article-title>
<source>Cancer Res.</source>
<year>1998</year>
<volume>58</volume>
<fpage>2489</fpage>
<lpage>2499</lpage>
<pub-id pub-id-type="pmid">9635566</pub-id>
</element-citation>
</ref>
<ref id="CR251">
<label>251</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tannenbaum</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Immune-inflammatory mechanisms in IFN-γ-mediated anti-tumor activity</article-title>
<source>Semin. Cancer Biol.</source>
<year>2000</year>
<volume>10</volume>
<fpage>113</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="pmid">10936062</pub-id>
</element-citation>
</ref>
<ref id="CR252">
<label>252</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glimcher</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Townsend</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Lord</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Recent developments in the transcriptional regulation of cytolytic effector cells</article-title>
<source>Nature Rev. Immunol.</source>
<year>2004</year>
<volume>4</volume>
<fpage>900</fpage>
<lpage>911</lpage>
<pub-id pub-id-type="pmid">15516969</pub-id>
</element-citation>
</ref>
<ref id="CR253">
<label>253</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mikhak</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells</article-title>
<source>J. Immunol.</source>
<year>2006</year>
<volume>176</volume>
<fpage>4959</fpage>
<lpage>4967</lpage>
<pub-id pub-id-type="pmid">16585592</pub-id>
</element-citation>
</ref>
<ref id="CR254">
<label>254</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dunn</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Koebel</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Interferons, immunity and cancer immunoediting</article-title>
<source>Nature Rev. Immunol.</source>
<year>2006</year>
<volume>6</volume>
<fpage>836</fpage>
<lpage>848</lpage>
<pub-id pub-id-type="pmid">17063185</pub-id>
</element-citation>
</ref>
<ref id="CR255">
<label>255</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swann</surname>
<given-names>JB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Type I IFN contributes to NK cell homeostasis, activation, and antitumor functions</article-title>
<source>J. Immunol.</source>
<year>2007</year>
<volume>178</volume>
<fpage>7540</fpage>
<lpage>7549</lpage>
<pub-id pub-id-type="pmid">17548588</pub-id>
</element-citation>
</ref>
<ref id="CR256">
<label>256</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strehl</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-γ, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing</article-title>
<source>Immunol. Rev.</source>
<year>2005</year>
<volume>207</volume>
<fpage>19</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">16181324</pub-id>
</element-citation>
</ref>
<ref id="CR257">
<label>257</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greiner</surname>
<given-names>JW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intraperitoneal administration of interferon-γ to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carcinoembryonic antigen on malignant ascites cells</article-title>
<source>J. Clin. Oncol.</source>
<year>1992</year>
<volume>10</volume>
<fpage>735</fpage>
<lpage>746</lpage>
<pub-id pub-id-type="pmid">1569446</pub-id>
</element-citation>
</ref>
<ref id="CR258">
<label>258</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Folkman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Angiogenesis: an organizing principle for drug discovery</article-title>
<source>Nature Rev. Drug Discovery</source>
<year>2007</year>
<volume>6</volume>
<fpage>273</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="pmid">17396134</pub-id>
</element-citation>
</ref>
<ref id="CR259">
<label>259</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brouty-Boye</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zetter</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Inhibition of cell motility by interferons</article-title>
<source>Science</source>
<year>1980</year>
<volume>208</volume>
<fpage>516</fpage>
<lpage>518</lpage>
<pub-id pub-id-type="pmid">6154315</pub-id>
</element-citation>
</ref>
<ref id="CR260">
<label>260</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dvorak</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Gresser</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice</article-title>
<source>J. Natl Cancer Inst.</source>
<year>1989</year>
<volume>81</volume>
<fpage>497</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">2921774</pub-id>
</element-citation>
</ref>
<ref id="CR261">
<label>261</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidky</surname>
<given-names>YA</given-names>
</name>
<name>
<surname>Borden</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses</article-title>
<source>Cancer Res.</source>
<year>1987</year>
<volume>47</volume>
<fpage>5155</fpage>
<lpage>5161</lpage>
<pub-id pub-id-type="pmid">2441862</pub-id>
</element-citation>
</ref>
<ref id="CR262">
<label>262</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinney</surname>
<given-names>CP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-α administration</article-title>
<source>Cancer Res.</source>
<year>1998</year>
<volume>58</volume>
<fpage>808</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="pmid">9485039</pub-id>
</element-citation>
</ref>
<ref id="CR263">
<label>263</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCarty</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Bielenberg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Donawho</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bucana</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Fidler</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>Evidence for the causal role of endogenous interferon-α/β in the regulation of angiogenesis, tumorigenicity, and metastasis of cutaneous neoplasms</article-title>
<source>Clin. Exp. Metastasis</source>
<year>2002</year>
<volume>19</volume>
<fpage>609</fpage>
<lpage>615</lpage>
<pub-id pub-id-type="pmid">12498390</pub-id>
</element-citation>
</ref>
<ref id="CR264">
<label>264</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Marschall</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of interferon α on vascular endothelial growth factor gene transcription and tumor angiogenesis</article-title>
<source>J. Natl Cancer Inst.</source>
<year>2003</year>
<volume>95</volume>
<fpage>437</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">12644537</pub-id>
</element-citation>
</ref>
<ref id="CR265">
<label>265</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reznikov</surname>
<given-names>LL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spontaneous and inducible cytokine responses in healthy humans receiving a single dose of IFN-α2b: increased production of interleukin-1 receptor antagonist and suppression of IL-1-induced IL-8</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>1998</year>
<volume>18</volume>
<fpage>897</fpage>
<lpage>903</lpage>
<pub-id pub-id-type="pmid">9809626</pub-id>
</element-citation>
</ref>
<ref id="CR266">
<label>266</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Richmond</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan</article-title>
<source>Mol. Ther.</source>
<year>2004</year>
<volume>9</volume>
<fpage>846</fpage>
<lpage>855</lpage>
<pub-id pub-id-type="pmid">15194051</pub-id>
</element-citation>
</ref>
<ref id="CR267">
<label>267</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feldman</surname>
<given-names>ED</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon γ-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells</article-title>
<source>Ann. Surg. Oncol.</source>
<year>2006</year>
<volume>13</volume>
<fpage>125</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">16378159</pub-id>
</element-citation>
</ref>
<ref id="CR268">
<label>268</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guenzi</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression</article-title>
<source>EMBO J.</source>
<year>2003</year>
<volume>22</volume>
<fpage>3772</fpage>
<lpage>3782</lpage>
<pub-id pub-id-type="pmid">12881412</pub-id>
</element-citation>
</ref>
<ref id="CR269">
<label>269</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindner</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Interferons as antiangiogenic agents</article-title>
<source>Curr. Oncol. Rep.</source>
<year>2002</year>
<volume>4</volume>
<fpage>510</fpage>
<lpage>514</lpage>
<pub-id pub-id-type="pmid">12354364</pub-id>
</element-citation>
</ref>
<ref id="CR270">
<label>270</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Faria</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions</article-title>
<source>Immunity</source>
<year>2006</year>
<volume>24</volume>
<fpage>295</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="pmid">16546098</pub-id>
</element-citation>
</ref>
<ref id="CR271">
<label>271</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Activation and evasion of the antiviral 2′-5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA</article-title>
<source>RNA</source>
<year>2002</year>
<volume>8</volume>
<fpage>512</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="pmid">11991644</pub-id>
</element-citation>
</ref>
<ref id="CR272">
<label>272</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gale</surname>
<given-names>MJ</given-names>
<suffix>Jr</suffix>
</name>
<etal></etal>
</person-group>
<article-title>Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein</article-title>
<source>Virology</source>
<year>1997</year>
<volume>230</volume>
<fpage>217</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="pmid">9143277</pub-id>
</element-citation>
</ref>
<ref id="CR273">
<label>273</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpten</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Germline mutations in the ribonuclease L gene in families showing linkage with HPC1</article-title>
<source>Nature Genet.</source>
<year>2002</year>
<volume>30</volume>
<fpage>181</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">11799394</pub-id>
</element-citation>
</ref>
<ref id="CR274">
<label>274</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urisman</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant</article-title>
<source>PLoS Pathog.</source>
<year>2006</year>
<volume>2</volume>
<fpage>e25</fpage>
<pub-id pub-id-type="pmid">16609730</pub-id>
</element-citation>
</ref>
<ref id="CR275">
<label>275</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dong</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>1655</fpage>
<lpage>1660</lpage>
<pub-id pub-id-type="pmid">17234809</pub-id>
</element-citation>
</ref>
<ref id="CR276">
<label>276</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedersen</surname>
<given-names>IM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon modulation of cellular microRNAs as an antiviral mechanism</article-title>
<source>Nature</source>
<year>2007</year>
<volume>449</volume>
<fpage>919</fpage>
<lpage>922</lpage>
<pub-id pub-id-type="pmid">17943132</pub-id>
</element-citation>
</ref>
<ref id="CR277">
<label>277</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brideau-Andersen</surname>
<given-names>AD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Directed evolution of gene-shuffled IFN-α molecules with activity profiles tailored for treatment of chronic viral diseases</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>8269</fpage>
<lpage>8274</lpage>
<pub-id pub-id-type="pmid">17494769</pub-id>
</element-citation>
</ref>
<ref id="CR278">
<label>278</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walsh</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis</article-title>
<source>Arthritis Rheum.</source>
<year>2007</year>
<volume>56</volume>
<fpage>3784</fpage>
<lpage>3792</lpage>
<pub-id pub-id-type="pmid">17968926</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000556 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000556 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7097588
   |texte=   Interferons at age 50: past, current and future impact on biomedicine
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:18049472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021