Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003559 ( Pmc/Corpus ); précédent : 0003558; suivant : 0003560 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The outbreak pattern of the SARS cases in Asia</title>
<author>
<name sortKey="Zhang, Zhibin" sort="Zhang, Zhibin" uniqKey="Zhang Z" first="Zhibin" last="Zhang">Zhibin Zhang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Chengfa" sort="Sheng, Chengfa" uniqKey="Sheng C" first="Chengfa" last="Sheng">Chengfa Sheng</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Zufei" sort="Ma, Zufei" uniqKey="Ma Z" first="Zufei" last="Ma">Zufei Ma</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Dianmo" sort="Li, Dianmo" uniqKey="Li D" first="Dianmo" last="Li">Dianmo Li</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32214712</idno>
<idno type="pmc">7089107</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089107</idno>
<idno type="RBID">PMC:7089107</idno>
<idno type="doi">10.1007/BF03183407</idno>
<date when="2004">2004</date>
<idno type="wicri:Area/Pmc/Corpus">000355</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000355</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The outbreak pattern of the SARS cases in Asia</title>
<author>
<name sortKey="Zhang, Zhibin" sort="Zhang, Zhibin" uniqKey="Zhang Z" first="Zhibin" last="Zhang">Zhibin Zhang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sheng, Chengfa" sort="Sheng, Chengfa" uniqKey="Sheng C" first="Chengfa" last="Sheng">Chengfa Sheng</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Zufei" sort="Ma, Zufei" uniqKey="Ma Z" first="Zufei" last="Ma">Zufei Ma</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Dianmo" sort="Li, Dianmo" uniqKey="Li D" first="Dianmo" last="Li">Dianmo Li</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chinese Science Bulletin = Kexue Tongbao</title>
<idno type="ISSN">1001-6538</idno>
<idno type="eISSN">1861-9541</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The severe acute respiratory syndrome (SARS) caused tremendous damage to many Asia countries, especially China. The transmission process and outbreak pattern of SARS is still not well understood. This study aims to find a simple model to describe the outbreak pattern of SARS cases by using SARS case data commonly released by governments. The outbreak pattern of cumulative SARS cases is expected to be a logistic type because the infection will be slowed down due to the increasing control effort by people and/or due to depletion of susceptible individuals. The increase rate of SARS cases is expected to decrease with the cumulative SARS cases, as described by the traditional logistical model, which is widely used in population dynamic studies. The instantaneous rate of increases were significantly and negatively correlated with the cumulative SARS cases in mainland of China (including Beijing, Hebei, Tianjin, Shanxi, the Autonomous Region of Inner Mongolia) and Singapore. The basic reproduction number
<italic>R</italic>
<sub>0</sub>
in Asia ranged from 2.0 to 5.6 (except for Taiwan, China). The
<italic>R</italic>
<sub>0</sub>
of Hebei and Tianjin were much higher than that of Singapore, Hongkong, Beijing, Shanxi, Inner Mongolia, indicating SARS virus might have originated differently or new mutations occurred during transmission. We demonstrated that the outbreaks of SARS in many regions of Asia were well described by the logistic model, and the control measures implemented by governments are effective. The maximum instantaneous rate of increase, basic reproductive number, and maximum cumulative SARS cases were also calculated by using the logistic model.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dye, C" uniqKey="Dye C">C. Dye</name>
</author>
<author>
<name sortKey="Gay, N" uniqKey="Gay N">N. Gay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J. Wallinga</name>
</author>
<author>
<name sortKey="Edmunds, W J" uniqKey="Edmunds W">W. J. Edmunds</name>
</author>
<author>
<name sortKey="Kretzchmar, M" uniqKey="Kretzchmar M">M. Kretzchmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diekmann, O" uniqKey="Diekmann O">O. Diekmann</name>
</author>
<author>
<name sortKey="Heesterbeek, H" uniqKey="Heesterbeek H">H. Heesterbeek</name>
</author>
<author>
<name sortKey="Metz, J A J" uniqKey="Metz J">J. A. J. Metz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hethcote, H W" uniqKey="Hethcote H">H. W. Hethcote</name>
</author>
<author>
<name sortKey="Van Den Driesssche, P" uniqKey="Van Den Driesssche P">P. van den Driesssche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, N G" uniqKey="Becker N">N. G. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, N G" uniqKey="Becker N">N. G. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, N G" uniqKey="Becker N">N. G. Becker</name>
</author>
<author>
<name sortKey="Britton, T" uniqKey="Britton T">T. Britton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kramer, I" uniqKey="Kramer I">I. Kramer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yip, P" uniqKey="Yip P">P. Yip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shao, Q X" uniqKey="Shao Q">Q. X. Shao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, P D" uniqKey="O Eill P">P. D. O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Pech, R" uniqKey="Pech R">R. Pech</name>
</author>
<author>
<name sortKey="Davis, S" uniqKey="Davis S">S. Davis</name>
</author>
<author>
<name sortKey="Shi, D" uniqKey="Shi D">D. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailei, N T T" uniqKey="Bailei N">N. T. T. Bailei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, R M" uniqKey="Anderson R">R. M. Anderson</name>
</author>
<author>
<name sortKey="May, R M" uniqKey="May R">R. M. May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Capasso, V" uniqKey="Capasso V">V. Capasso</name>
</author>
<author>
<name sortKey="Serio, G" uniqKey="Serio G">G. Serio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mollison, D" uniqKey="Mollison D">D. Mollison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keepling, M J" uniqKey="Keepling M">M. J. Keepling</name>
</author>
<author>
<name sortKey="Rand, D A" uniqKey="Rand D">D. A. Rand</name>
</author>
<author>
<name sortKey="Morris, A J" uniqKey="Morris A">A. J. Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ball, F" uniqKey="Ball F">F. Ball</name>
</author>
<author>
<name sortKey="Neal, P" uniqKey="Neal P">P. Neal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenhalgh, D" uniqKey="Greenhalgh D">D. Greenhalgh</name>
</author>
<author>
<name sortKey="Diekmann, O" uniqKey="Diekmann O">O. Diekmann</name>
</author>
<author>
<name sortKey="De Jong, M C M" uniqKey="De Jong M">M. C. M. de Jong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendez, V M" uniqKey="Mendez V">V. M. Méndez</name>
</author>
<author>
<name sortKey="Fort, J" uniqKey="Fort J">J. Fort</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moghadas, S M" uniqKey="Moghadas S">S. M. Moghadas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wendi, W" uniqKey="Wendi W">W. Wendi</name>
</author>
<author>
<name sortKey="Zhien, M" uniqKey="Zhien M">M. Zhien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruan, S" uniqKey="Ruan S">S. Ruan</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H M" uniqKey="Yang H">H. M. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W D" uniqKey="Wang W">W. D. Wang</name>
</author>
<author>
<name sortKey="Ruan, S G" uniqKey="Ruan S">S. G. Ruan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Chin Sci Bull</journal-id>
<journal-id journal-id-type="iso-abbrev">Chin. Sci. Bull</journal-id>
<journal-title-group>
<journal-title>Chinese Science Bulletin = Kexue Tongbao</journal-title>
</journal-title-group>
<issn pub-type="ppub">1001-6538</issn>
<issn pub-type="epub">1861-9541</issn>
<publisher>
<publisher-name>Science in China Press</publisher-name>
<publisher-loc>Beijing</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32214712</article-id>
<article-id pub-id-type="pmc">7089107</article-id>
<article-id pub-id-type="publisher-id">BF03183407</article-id>
<article-id pub-id-type="doi">10.1007/BF03183407</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The outbreak pattern of the SARS cases in Asia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Zhang</surname>
<given-names>Zhibin</given-names>
</name>
<address>
<email>zhangzb@ioz.ac.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sheng</surname>
<given-names>Chengfa</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>Zufei</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Dianmo</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.9227.e</institution-id>
<institution-id institution-id-type="ISNI">0000000119573309</institution-id>
<institution>Institute of Zoology,</institution>
<institution>Chinese Academy of Sciences,</institution>
</institution-wrap>
100080 Beijing, China</aff>
</contrib-group>
<pub-date pub-type="ppub">
<year>2004</year>
</pub-date>
<volume>49</volume>
<issue>17</issue>
<fpage>1819</fpage>
<lpage>1823</lpage>
<history>
<date date-type="received">
<day>18</day>
<month>3</month>
<year>2004</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>8</month>
<year>2004</year>
</date>
</history>
<permissions>
<copyright-statement>© Science in China Press 2004</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>The severe acute respiratory syndrome (SARS) caused tremendous damage to many Asia countries, especially China. The transmission process and outbreak pattern of SARS is still not well understood. This study aims to find a simple model to describe the outbreak pattern of SARS cases by using SARS case data commonly released by governments. The outbreak pattern of cumulative SARS cases is expected to be a logistic type because the infection will be slowed down due to the increasing control effort by people and/or due to depletion of susceptible individuals. The increase rate of SARS cases is expected to decrease with the cumulative SARS cases, as described by the traditional logistical model, which is widely used in population dynamic studies. The instantaneous rate of increases were significantly and negatively correlated with the cumulative SARS cases in mainland of China (including Beijing, Hebei, Tianjin, Shanxi, the Autonomous Region of Inner Mongolia) and Singapore. The basic reproduction number
<italic>R</italic>
<sub>0</sub>
in Asia ranged from 2.0 to 5.6 (except for Taiwan, China). The
<italic>R</italic>
<sub>0</sub>
of Hebei and Tianjin were much higher than that of Singapore, Hongkong, Beijing, Shanxi, Inner Mongolia, indicating SARS virus might have originated differently or new mutations occurred during transmission. We demonstrated that the outbreaks of SARS in many regions of Asia were well described by the logistic model, and the control measures implemented by governments are effective. The maximum instantaneous rate of increase, basic reproductive number, and maximum cumulative SARS cases were also calculated by using the logistic model.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>severe acute respiratory syndrome (SARS)</kwd>
<kwd>outbreak</kwd>
<kwd>epidemiology</kwd>
<kwd>logistic model</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Science in China Press 2004</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<back>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">Lipsitch, M. et al., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300: 1966–1970.</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="other">Riley, S. et al., Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions, Science, 300: 1961–1966.</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dye</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gay</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Modeling the SARS Epidemic</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<issue>5627</issue>
<fpage>1884</fpage>
<lpage>1885</lpage>
<pub-id pub-id-type="doi">10.1126/science.1086925</pub-id>
<pub-id pub-id-type="pmid">12766208</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallinga</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Edmunds</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Kretzchmar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Perspective: human contact patterns and the spread of airborne infection disease</article-title>
<source>Trends in Microbiology</source>
<year>1999</year>
<volume>9</volume>
<fpage>372</fpage>
<lpage>377</lpage>
<pub-id pub-id-type="doi">10.1016/S0966-842X(99)01546-2</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diekmann</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Heesterbeek</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>J. A. J.</given-names>
</name>
</person-group>
<article-title>On the definition and computation of the basic reproductive ratio
<italic>R</italic>
<sub>0</sub>
in the models for infectious diseases in the heterogeneous populations</article-title>
<source>J. Math. Biol.</source>
<year>1990</year>
<volume>28</volume>
<fpage>365</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="doi">10.1007/BF00178324</pub-id>
<pub-id pub-id-type="pmid">2117040</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hethcote</surname>
<given-names>H. W.</given-names>
</name>
<name>
<surname>van den Driesssche</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>An SIS epidemic model with variable population size and a delay</article-title>
<source>J. Math. Biol.</source>
<year>1995</year>
<volume>54</volume>
<fpage>177</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1007/BF00178772</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>N. G.</given-names>
</name>
</person-group>
<source>Analysis of Infectious Disease Data</source>
<year>1989</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Chapman and Hall</publisher-name>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>N. G.</given-names>
</name>
</person-group>
<article-title>Parametric inference for epidemic models</article-title>
<source>Math. Biosci.</source>
<year>1993</year>
<volume>117</volume>
<fpage>239</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="doi">10.1016/0025-5564(93)90026-7</pub-id>
<pub-id pub-id-type="pmid">8400578</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>N. G.</given-names>
</name>
<name>
<surname>Britton</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Statistical studies of infectious disease incidence</article-title>
<source>Stat. Soc. Series B</source>
<year>1999</year>
<volume>61</volume>
<fpage>287</fpage>
<lpage>287</lpage>
<pub-id pub-id-type="doi">10.1111/1467-9868.00177</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kramer</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Accurately simulating the growth in the size of the HIV infected population in AIDS epidemic country: Computing the USA HIV infection curve</article-title>
<source>Mathematical and Computer Modeling</source>
<year>1994</year>
<volume>19</volume>
<fpage>91</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1016/0895-7177(94)90052-3</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yip</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Estimating the initial relative infection rate for a stochastic epidemic model</article-title>
<source>Theoretical Population Biology</source>
<year>1989</year>
<volume>36</volume>
<fpage>202</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/0040-5809(89)90030-0</pub-id>
<pub-id pub-id-type="pmid">2814904</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shao</surname>
<given-names>Q. X.</given-names>
</name>
</person-group>
<article-title>Some properties of an estimator for the basic reproductive number of a general epidemic model</article-title>
<source>Math. Biosci.</source>
<year>1999</year>
<volume>159</volume>
<fpage>79</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(99)00009-7</pub-id>
<pub-id pub-id-type="pmid">10361806</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>P. D.</given-names>
</name>
</person-group>
<article-title>A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov Chain Monte Carlo methods</article-title>
<source>Math. Biosci.</source>
<year>2002</year>
<volume>180</volume>
<fpage>103</fpage>
<lpage>114</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(02)00109-8</pub-id>
<pub-id pub-id-type="pmid">12387918</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Pech</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Extrinsic and intrinsic factors determine the eruptive dynamics of Brandt’s voles
<italic>Microtus brandti</italic>
in Inner Mongolia, China</article-title>
<source>Oikos</source>
<year>2003</year>
<volume>100</volume>
<fpage>299</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="doi">10.1034/j.1600-0706.2003.11810.x</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bailei</surname>
<given-names>N. T. T.</given-names>
</name>
</person-group>
<source>The Mathematical Theory of Diseases</source>
<year>1975</year>
<edition>2nd edition</edition>
<publisher-loc>London</publisher-loc>
<publisher-name>Griffin</publisher-name>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>May</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
<source>Infectious Diseases of Humans: Dynamics and Control</source>
<year>1992</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>Oxford Univ. Press</publisher-name>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Capasso</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Serio</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>A generalization of the Kermack-McKendrick deterministic epidemic model</article-title>
<source>Math. Biosci.</source>
<year>1978</year>
<volume>42</volume>
<fpage>43</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/0025-5564(78)90006-8</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mollison</surname>
<given-names>D.</given-names>
</name>
</person-group>
<source>Epidemic Models: Their Structure and Relation to Data</source>
<year>1995</year>
<publisher-loc>Cambridge</publisher-loc>
<publisher-name>Cambridge Univ. Press</publisher-name>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keepling</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Rand</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
<article-title>Correlation models for childhood epidemics</article-title>
<source>Proc. R. Soc. Lond.</source>
<year>1997</year>
<volume>264</volume>
<fpage>1149</fpage>
<lpage>1149</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.1997.0159</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ball</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Neal</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>A general model for stochastic SIR epidemics with two level of mixing</article-title>
<source>Math. Biosci.</source>
<year>2002</year>
<volume>180</volume>
<fpage>73</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(02)00125-6</pub-id>
<pub-id pub-id-type="pmid">12387917</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenhalgh</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Diekmann</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>de Jong</surname>
<given-names>M. C. M.</given-names>
</name>
</person-group>
<article-title>Subcritical endemic steady states in mathematical models for animal infectious with incomplete immunity</article-title>
<source>Math. Biosci.</source>
<year>2000</year>
<volume>165</volume>
<fpage>1</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(00)00012-2</pub-id>
<pub-id pub-id-type="pmid">10804257</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Méndez</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Fort</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Dynamical evolution of discrete epidemic models</article-title>
<source>Physica A: Statistical Mechanics and Its Applications</source>
<year>2000</year>
<volume>284</volume>
<fpage>309</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1016/S0378-4371(00)00210-7</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moghadas</surname>
<given-names>S. M.</given-names>
</name>
</person-group>
<article-title>Global stability of two-stage epidemic model with generalized non-linear incidence</article-title>
<source>Mathematics and Computers in Simulation</source>
<year>2002</year>
<volume>60</volume>
<fpage>107</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="doi">10.1016/S0378-4754(02)00002-2</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wendi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhien</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Global dynamics of an epidemic model with time delay</article-title>
<source>Nonlinear Analysis: Real World Applications</source>
<year>2002</year>
<volume>3</volume>
<fpage>365</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="doi">10.1016/S1468-1218(01)00035-9</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Dynamical behavior of an epidemic model with a nonlinear incidence rate</article-title>
<source>Journal of Differential Equations</source>
<year>2003</year>
<volume>188</volume>
<fpage>135</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-0396(02)00089-X</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H. M.</given-names>
</name>
</person-group>
<source>SARS Control Manual (in Chinese)</source>
<year>2003</year>
<publisher-loc>Beijing</publisher-loc>
<publisher-name>Science Press</publisher-name>
<fpage>22</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W. D.</given-names>
</name>
<name>
<surname>Ruan</surname>
<given-names>S. G.</given-names>
</name>
</person-group>
<article-title>Simulating the SARS outbreak in Beijing with limited data</article-title>
<source>Journal of Theoretical Biology</source>
<year>2004</year>
<volume>227</volume>
<fpage>369</fpage>
<lpage>379</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtbi.2003.11.014</pub-id>
<pub-id pub-id-type="pmid">15019504</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003559 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003559 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021