Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection

Identifieur interne : 000031 ( Pmc/Corpus ); précédent : 000030; suivant : 000032

Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection

Auteurs : Guangyu Qiu ; Zhibo Gai ; Yile Tao ; Jean Schmitt ; Gerd A. Kullak-Ublick ; Jing Wang

Source :

RBID : PMC:7158889

Abstract

The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the in situhybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.


Url:
DOI: 10.1021/acsnano.0c02439
PubMed: 32281785
PubMed Central: 7158889

Links to Exploration step

PMC:7158889

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection</title>
<author>
<name sortKey="Qiu, Guangyu" sort="Qiu, Guangyu" uniqKey="Qiu G" first="Guangyu" last="Qiu">Guangyu Qiu</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gai, Zhibo" sort="Gai, Zhibo" uniqKey="Gai Z" first="Zhibo" last="Gai">Zhibo Gai</name>
<affiliation>
<nlm:aff id="aff3">Department of Clinical Pharmacology and Toxicology,
<institution>University Hospital Zurich, University of Zürich</institution>
, Zürich 8091,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Experimental Center,
<institution>Shandong University of Traditional Chinese Medicine</institution>
, Jinan 250355,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tao, Yile" sort="Tao, Yile" uniqKey="Tao Y" first="Yile" last="Tao">Yile Tao</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jean" sort="Schmitt, Jean" uniqKey="Schmitt J" first="Jean" last="Schmitt">Jean Schmitt</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kullak Ublick, Gerd A" sort="Kullak Ublick, Gerd A" uniqKey="Kullak Ublick G" first="Gerd A." last="Kullak-Ublick">Gerd A. Kullak-Ublick</name>
<affiliation>
<nlm:aff id="aff3">Department of Clinical Pharmacology and Toxicology,
<institution>University Hospital Zurich, University of Zürich</institution>
, Zürich 8091,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Mechanistic Safety, CMO & Patient Safety, Global Drug Development,
<institution>Novartis Pharma</institution>
, Basel 4002,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32281785</idno>
<idno type="pmc">7158889</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7158889</idno>
<idno type="RBID">PMC:7158889</idno>
<idno type="doi">10.1021/acsnano.0c02439</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection</title>
<author>
<name sortKey="Qiu, Guangyu" sort="Qiu, Guangyu" uniqKey="Qiu G" first="Guangyu" last="Qiu">Guangyu Qiu</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gai, Zhibo" sort="Gai, Zhibo" uniqKey="Gai Z" first="Zhibo" last="Gai">Zhibo Gai</name>
<affiliation>
<nlm:aff id="aff3">Department of Clinical Pharmacology and Toxicology,
<institution>University Hospital Zurich, University of Zürich</institution>
, Zürich 8091,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Experimental Center,
<institution>Shandong University of Traditional Chinese Medicine</institution>
, Jinan 250355,
<country>PR China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tao, Yile" sort="Tao, Yile" uniqKey="Tao Y" first="Yile" last="Tao">Yile Tao</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jean" sort="Schmitt, Jean" uniqKey="Schmitt J" first="Jean" last="Schmitt">Jean Schmitt</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kullak Ublick, Gerd A" sort="Kullak Ublick, Gerd A" uniqKey="Kullak Ublick G" first="Gerd A." last="Kullak-Ublick">Gerd A. Kullak-Ublick</name>
<affiliation>
<nlm:aff id="aff3">Department of Clinical Pharmacology and Toxicology,
<institution>University Hospital Zurich, University of Zürich</institution>
, Zürich 8091,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">Mechanistic Safety, CMO & Patient Safety, Global Drug Development,
<institution>Novartis Pharma</institution>
, Basel 4002,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation>
<nlm:aff id="aff1">Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS Nano</title>
<idno type="ISSN">1936-0851</idno>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="nn0c02439_0006" id="ab-tgr1"></graphic>
</p>
<p>The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the
<italic>in situ</italic>
hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C. Huang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ren, L" uniqKey="Ren L">L. Ren</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y. Hu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Fan, G" uniqKey="Fan G">G. Fan</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J. Xu</name>
</author>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X. Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, R" uniqKey="Lu R">R. Lu</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Niu, P" uniqKey="Niu P">P. Niu</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Song, H" uniqKey="Song H">H. Song</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B. Huang</name>
</author>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothe, C" uniqKey="Rothe C">C. Rothe</name>
</author>
<author>
<name sortKey="Schunk, M" uniqKey="Schunk M">M. Schunk</name>
</author>
<author>
<name sortKey="Sothmann, P" uniqKey="Sothmann P">P. Sothmann</name>
</author>
<author>
<name sortKey="Bretzel, G" uniqKey="Bretzel G">G. Bretzel</name>
</author>
<author>
<name sortKey="Froeschl, G" uniqKey="Froeschl G">G. Froeschl</name>
</author>
<author>
<name sortKey="Wallrauch, C" uniqKey="Wallrauch C">C. Wallrauch</name>
</author>
<author>
<name sortKey="Zimmer, T" uniqKey="Zimmer T">T. Zimmer</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
<author>
<name sortKey="Janke, C" uniqKey="Janke C">C. Janke</name>
</author>
<author>
<name sortKey="Guggemos, W" uniqKey="Guggemos W">W. Guggemos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoecklin, S B" uniqKey="Stoecklin S">S. B. Stoecklin</name>
</author>
<author>
<name sortKey="Rolland, P" uniqKey="Rolland P">P. Rolland</name>
</author>
<author>
<name sortKey="Silue, Y" uniqKey="Silue Y">Y. Silue</name>
</author>
<author>
<name sortKey="Mailles, A" uniqKey="Mailles A">A. Mailles</name>
</author>
<author>
<name sortKey="Campese, C" uniqKey="Campese C">C. Campese</name>
</author>
<author>
<name sortKey="Simondon, A" uniqKey="Simondon A">A. Simondon</name>
</author>
<author>
<name sortKey="Mechain, M" uniqKey="Mechain M">M. Mechain</name>
</author>
<author>
<name sortKey="Meurice, L" uniqKey="Meurice L">L. Meurice</name>
</author>
<author>
<name sortKey="Nguyen, M" uniqKey="Nguyen M">M. Nguyen</name>
</author>
<author>
<name sortKey="Bassi, C" uniqKey="Bassi C">C. Bassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L F" uniqKey="Wang L">L. F. Wang</name>
</author>
<author>
<name sortKey="Anderson, D E" uniqKey="Anderson D">D. E. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T. G. Ksiazek</name>
</author>
<author>
<name sortKey="Erdman, D" uniqKey="Erdman D">D. Erdman</name>
</author>
<author>
<name sortKey="Goldsmith, C S" uniqKey="Goldsmith C">C. S. Goldsmith</name>
</author>
<author>
<name sortKey="Zaki, S R" uniqKey="Zaki S">S. R. Zaki</name>
</author>
<author>
<name sortKey="Peret, T" uniqKey="Peret T">T. Peret</name>
</author>
<author>
<name sortKey="Emery, S" uniqKey="Emery S">S. Emery</name>
</author>
<author>
<name sortKey="Tong, S X" uniqKey="Tong S">S. X. Tong</name>
</author>
<author>
<name sortKey="Urbani, C" uniqKey="Urbani C">C. Urbani</name>
</author>
<author>
<name sortKey="Comer, J A" uniqKey="Comer J">J. A. Comer</name>
</author>
<author>
<name sortKey="Lim, W" uniqKey="Lim W">W. Lim</name>
</author>
<author>
<name sortKey="Rollin, P E" uniqKey="Rollin P">P. E. Rollin</name>
</author>
<author>
<name sortKey="Dowell, S F" uniqKey="Dowell S">S. F. Dowell</name>
</author>
<author>
<name sortKey="Ling, A E" uniqKey="Ling A">A. E. Ling</name>
</author>
<author>
<name sortKey="Humphrey, C D" uniqKey="Humphrey C">C. D. Humphrey</name>
</author>
<author>
<name sortKey="Shieh, W J" uniqKey="Shieh W">W. J. Shieh</name>
</author>
<author>
<name sortKey="Guarner, J" uniqKey="Guarner J">J. Guarner</name>
</author>
<author>
<name sortKey="Paddock, C D" uniqKey="Paddock C">C. D. Paddock</name>
</author>
<author>
<name sortKey="Rota, P" uniqKey="Rota P">P. Rota</name>
</author>
<author>
<name sortKey="Fields, B" uniqKey="Fields B">B. Fields</name>
</author>
<author>
<name sortKey="Derisi, J" uniqKey="Derisi J">J. DeRisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mahase, E" uniqKey="Mahase E">E. Mahase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V. M. Corman</name>
</author>
<author>
<name sortKey="Landt, O" uniqKey="Landt O">O. Landt</name>
</author>
<author>
<name sortKey="Kaiser, M" uniqKey="Kaiser M">M. Kaiser</name>
</author>
<author>
<name sortKey="Molenkamp, R" uniqKey="Molenkamp R">R. Molenkamp</name>
</author>
<author>
<name sortKey="Meijer, A" uniqKey="Meijer A">A. Meijer</name>
</author>
<author>
<name sortKey="Chu, D K" uniqKey="Chu D">D. K. Chu</name>
</author>
<author>
<name sortKey="Bleicker, T" uniqKey="Bleicker T">T. Bleicker</name>
</author>
<author>
<name sortKey="Brunink, S" uniqKey="Brunink S">S. Brünink</name>
</author>
<author>
<name sortKey="Schneider, J" uniqKey="Schneider J">J. Schneider</name>
</author>
<author>
<name sortKey="Schmidt, M L" uniqKey="Schmidt M">M. L. Schmidt</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, X" uniqKey="Xie X">X. Xie</name>
</author>
<author>
<name sortKey="Zhong, Z" uniqKey="Zhong Z">Z. Zhong</name>
</author>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W. Zhao</name>
</author>
<author>
<name sortKey="Zheng, C" uniqKey="Zheng C">C. Zheng</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F. Wang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Zhao, Q" uniqKey="Zhao Q">Q. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, Z" uniqKey="Ye Z">Z. Ye</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Song, B" uniqKey="Song B">B. Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soler, M" uniqKey="Soler M">M. Soler</name>
</author>
<author>
<name sortKey="Huertas, C S" uniqKey="Huertas C">C. S. Huertas</name>
</author>
<author>
<name sortKey="Lechuga, L M" uniqKey="Lechuga L">L. M. Lechuga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masson, J F" uniqKey="Masson J">J. F. Masson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haes, A J" uniqKey="Haes A">A. J. Haes</name>
</author>
<author>
<name sortKey="Chang, L" uniqKey="Chang L">L. Chang</name>
</author>
<author>
<name sortKey="Klein, W L" uniqKey="Klein W">W. L. Klein</name>
</author>
<author>
<name sortKey="Van Duyne, R P" uniqKey="Van Duyne R">R. P. Van Duyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willets, K A" uniqKey="Willets K">K. A. Willets</name>
</author>
<author>
<name sortKey="Van Duyne, R P" uniqKey="Van Duyne R">R. P. Van Duyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anker, J N" uniqKey="Anker J">J. N. Anker</name>
</author>
<author>
<name sortKey="Hall, W P" uniqKey="Hall W">W. P. Hall</name>
</author>
<author>
<name sortKey="Lyandres, O" uniqKey="Lyandres O">O. Lyandres</name>
</author>
<author>
<name sortKey="Shah, N C" uniqKey="Shah N">N. C. Shah</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Van Duyne, R P" uniqKey="Van Duyne R">R. P. Van Duyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, G Y" uniqKey="Qiu G">G. Y. Qiu</name>
</author>
<author>
<name sortKey="Ng, S P" uniqKey="Ng S">S. P. Ng</name>
</author>
<author>
<name sortKey="Wu, C M L" uniqKey="Wu C">C. M. L. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, G" uniqKey="Qiu G">G. Qiu</name>
</author>
<author>
<name sortKey="Thakur, A" uniqKey="Thakur A">A. Thakur</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C. Xu</name>
</author>
<author>
<name sortKey="Ng, S P" uniqKey="Ng S">S. P. Ng</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y. Lee</name>
</author>
<author>
<name sortKey="Wu, C M L" uniqKey="Wu C">C. M. L. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wrapp, D" uniqKey="Wrapp D">D. Wrapp</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Corbett, K S" uniqKey="Corbett K">K. S. Corbett</name>
</author>
<author>
<name sortKey="Goldsmith, J A" uniqKey="Goldsmith J">J. A. Goldsmith</name>
</author>
<author>
<name sortKey="Hsieh, C L" uniqKey="Hsieh C">C.-L. Hsieh</name>
</author>
<author>
<name sortKey="Abiona, O" uniqKey="Abiona O">O. Abiona</name>
</author>
<author>
<name sortKey="Graham, B S" uniqKey="Graham B">B. S. Graham</name>
</author>
<author>
<name sortKey="Mclellan, J S" uniqKey="Mclellan J">J. S. McLellan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, D Y" uniqKey="Zhang D">D. Y. Zhang</name>
</author>
<author>
<name sortKey="Chen, S X" uniqKey="Chen S">S. X. Chen</name>
</author>
<author>
<name sortKey="Yin, P" uniqKey="Yin P">P. Yin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stehr, J" uniqKey="Stehr J">J. Stehr</name>
</author>
<author>
<name sortKey="Hrelescu, C" uniqKey="Hrelescu C">C. Hrelescu</name>
</author>
<author>
<name sortKey="Sperling, R A" uniqKey="Sperling R">R. A. Sperling</name>
</author>
<author>
<name sortKey="Raschke, G" uniqKey="Raschke G">G. Raschke</name>
</author>
<author>
<name sortKey="Wunderlich, M" uniqKey="Wunderlich M">M. Wunderlich</name>
</author>
<author>
<name sortKey="Nichtl, A" uniqKey="Nichtl A">A. Nichtl</name>
</author>
<author>
<name sortKey="Heindl, D" uniqKey="Heindl D">D. Heindl</name>
</author>
<author>
<name sortKey="Kurzinger, K" uniqKey="Kurzinger K">K. Kürzinger</name>
</author>
<author>
<name sortKey="Parak, W J" uniqKey="Parak W">W. J. Parak</name>
</author>
<author>
<name sortKey="Klar, T A" uniqKey="Klar T">T. A. Klar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J X" uniqKey="Zhang J">J. X. Zhang</name>
</author>
<author>
<name sortKey="Fang, J Z" uniqKey="Fang J">J. Z. Fang</name>
</author>
<author>
<name sortKey="Duan, W" uniqKey="Duan W">W. Duan</name>
</author>
<author>
<name sortKey="Wu, L R" uniqKey="Wu L">L. R. Wu</name>
</author>
<author>
<name sortKey="Zhang, A W" uniqKey="Zhang A">A. W. Zhang</name>
</author>
<author>
<name sortKey="Dalchau, N" uniqKey="Dalchau N">N. Dalchau</name>
</author>
<author>
<name sortKey="Yordanov, B" uniqKey="Yordanov B">B. Yordanov</name>
</author>
<author>
<name sortKey="Petersen, R" uniqKey="Petersen R">R. Petersen</name>
</author>
<author>
<name sortKey="Phillips, A" uniqKey="Phillips A">A. Phillips</name>
</author>
<author>
<name sortKey="Zhang, D Y" uniqKey="Zhang D">D. Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, N C" uniqKey="Harris N">N. C. Harris</name>
</author>
<author>
<name sortKey="Kiang, C H" uniqKey="Kiang C">C.-H. Kiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jauffred, L" uniqKey="Jauffred L">L. Jauffred</name>
</author>
<author>
<name sortKey="Samadi, A" uniqKey="Samadi A">A. Samadi</name>
</author>
<author>
<name sortKey="Klingberg, H" uniqKey="Klingberg H">H. Klingberg</name>
</author>
<author>
<name sortKey="Bendix, P M" uniqKey="Bendix P">P. M. Bendix</name>
</author>
<author>
<name sortKey="Oddershede, L B" uniqKey="Oddershede L">L. B. Oddershede</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J. H. Lee</name>
</author>
<author>
<name sortKey="Cheglakov, Z" uniqKey="Cheglakov Z">Z. Cheglakov</name>
</author>
<author>
<name sortKey="Yi, J" uniqKey="Yi J">J. Yi</name>
</author>
<author>
<name sortKey="Cronin, T M" uniqKey="Cronin T">T. M. Cronin</name>
</author>
<author>
<name sortKey="Gibson, K J" uniqKey="Gibson K">K. J. Gibson</name>
</author>
<author>
<name sortKey="Tian, B Z" uniqKey="Tian B">B. Z. Tian</name>
</author>
<author>
<name sortKey="Weizmann, Y" uniqKey="Weizmann Y">Y. Weizmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Son, J H" uniqKey="Son J">J. H. Son</name>
</author>
<author>
<name sortKey="Cho, B" uniqKey="Cho B">B. Cho</name>
</author>
<author>
<name sortKey="Hong, S" uniqKey="Hong S">S. Hong</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S. H. Lee</name>
</author>
<author>
<name sortKey="Hoxha, O" uniqKey="Hoxha O">O. Hoxha</name>
</author>
<author>
<name sortKey="Haack, A J" uniqKey="Haack A">A. J. Haack</name>
</author>
<author>
<name sortKey="Lee, L P" uniqKey="Lee L">L. P. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M. Kim</name>
</author>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J. H. Lee</name>
</author>
<author>
<name sortKey="Nam, J M" uniqKey="Nam J">J. M. Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S. Wang</name>
</author>
<author>
<name sortKey="Huang, P" uniqKey="Huang P">P. Huang</name>
</author>
<author>
<name sortKey="Nie, L" uniqKey="Nie L">L. Nie</name>
</author>
<author>
<name sortKey="Xing, R" uniqKey="Xing R">R. Xing</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Lin, J" uniqKey="Lin J">J. Lin</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Niu, G" uniqKey="Niu G">G. Niu</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, G Y" uniqKey="Qiu G">G. Y. Qiu</name>
</author>
<author>
<name sortKey="Ng, S P" uniqKey="Ng S">S. P. Ng</name>
</author>
<author>
<name sortKey="Wu, C M L" uniqKey="Wu C">C. M. L. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smolyaninov, A" uniqKey="Smolyaninov A">A. Smolyaninov</name>
</author>
<author>
<name sortKey="El Amili, A" uniqKey="El Amili A">A. El Amili</name>
</author>
<author>
<name sortKey="Vallini, F" uniqKey="Vallini F">F. Vallini</name>
</author>
<author>
<name sortKey="Pappert, S" uniqKey="Pappert S">S. Pappert</name>
</author>
<author>
<name sortKey="Fainman, Y" uniqKey="Fainman Y">Y. Fainman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z X" uniqKey="Chen Z">Z. X. Chen</name>
</author>
<author>
<name sortKey="Shan, X N" uniqKey="Shan X">X. N. Shan</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y. Guan</name>
</author>
<author>
<name sortKey="Wang, S P" uniqKey="Wang S">S. P. Wang</name>
</author>
<author>
<name sortKey="Zhu, J J" uniqKey="Zhu J">J. J. Zhu</name>
</author>
<author>
<name sortKey="Tao, N J" uniqKey="Tao N">N. J. Tao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baffou, G" uniqKey="Baffou G">G. Baffou</name>
</author>
<author>
<name sortKey="Quidant, R" uniqKey="Quidant R">R. Quidant</name>
</author>
<author>
<name sortKey="Garcia De Abajo, F J" uniqKey="Garcia De Abajo F">F. J. García de Abajo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baffou, G" uniqKey="Baffou G">G. Baffou</name>
</author>
<author>
<name sortKey="Bon, P" uniqKey="Bon P">P. Bon</name>
</author>
<author>
<name sortKey="Savatier, J" uniqKey="Savatier J">J. Savatier</name>
</author>
<author>
<name sortKey="Polleux, J" uniqKey="Polleux J">J. Polleux</name>
</author>
<author>
<name sortKey="Zhu, M" uniqKey="Zhu M">M. Zhu</name>
</author>
<author>
<name sortKey="Merlin, M" uniqKey="Merlin M">M. Merlin</name>
</author>
<author>
<name sortKey="Rigneault, H" uniqKey="Rigneault H">H. Rigneault</name>
</author>
<author>
<name sortKey="Monneret, S" uniqKey="Monneret S">S. Monneret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N. Zhu</name>
</author>
<author>
<name sortKey="Zhang, D Y" uniqKey="Zhang D">D. Y. Zhang</name>
</author>
<author>
<name sortKey="Wang, W L" uniqKey="Wang W">W. L. Wang</name>
</author>
<author>
<name sortKey="Li, X W" uniqKey="Li X">X. W. Li</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Song, J D" uniqKey="Song J">J. D. Song</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Huang, B Y" uniqKey="Huang B">B. Y. Huang</name>
</author>
<author>
<name sortKey="Shi, W F" uniqKey="Shi W">W. F. Shi</name>
</author>
<author>
<name sortKey="Lu, R J" uniqKey="Lu R">R. J. Lu</name>
</author>
<author>
<name sortKey="Niu, P H" uniqKey="Niu P">P. H. Niu</name>
</author>
<author>
<name sortKey="Zhan, F X" uniqKey="Zhan F">F. X. Zhan</name>
</author>
<author>
<name sortKey="Ma, X J" uniqKey="Ma X">X. J. Ma</name>
</author>
<author>
<name sortKey="Wang, D Y" uniqKey="Wang D">D. Y. Wang</name>
</author>
<author>
<name sortKey="Xu, W B" uniqKey="Xu W">W. B. Xu</name>
</author>
<author>
<name sortKey="Wu, G Z" uniqKey="Wu G">G. Z. Wu</name>
</author>
<author>
<name sortKey="Gao, G G F" uniqKey="Gao G">G. G. F. Gao</name>
</author>
<author>
<name sortKey="Tan, W J" uniqKey="Tan W">W. J. Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, S C" uniqKey="Xu S">S. C. Xu</name>
</author>
<author>
<name sortKey="Zhan, J" uniqKey="Zhan J">J. Zhan</name>
</author>
<author>
<name sortKey="Man, B Y" uniqKey="Man B">B. Y. Man</name>
</author>
<author>
<name sortKey="Jiang, S Z" uniqKey="Jiang S">S. Z. Jiang</name>
</author>
<author>
<name sortKey="Yue, W W" uniqKey="Yue W">W. W. Yue</name>
</author>
<author>
<name sortKey="Gao, S B" uniqKey="Gao S">S. B. Gao</name>
</author>
<author>
<name sortKey="Guo, C G" uniqKey="Guo C">C. G. Guo</name>
</author>
<author>
<name sortKey="Liu, H P" uniqKey="Liu H">H. P. Liu</name>
</author>
<author>
<name sortKey="Li, Z H" uniqKey="Li Z">Z. H. Li</name>
</author>
<author>
<name sortKey="Wang, J H" uniqKey="Wang J">J. H. Wang</name>
</author>
<author>
<name sortKey="Zhou, Y Q" uniqKey="Zhou Y">Y. Q. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schreiber, G" uniqKey="Schreiber G">G. Schreiber</name>
</author>
<author>
<name sortKey="Haran, G" uniqKey="Haran G">G. Haran</name>
</author>
<author>
<name sortKey="Zhou, H X" uniqKey="Zhou H">H. X. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, G" uniqKey="Qiu G">G. Qiu</name>
</author>
<author>
<name sortKey="Yue, Y" uniqKey="Yue Y">Y. Yue</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Zhao, Y B" uniqKey="Zhao Y">Y.-B. Zhao</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Y" uniqKey="Pan Y">Y. Pan</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Yang, P" uniqKey="Yang P">P. Yang</name>
</author>
<author>
<name sortKey="Poon, L L" uniqKey="Poon L">L. L. Poon</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ACS Nano</journal-id>
<journal-id journal-id-type="iso-abbrev">ACS Nano</journal-id>
<journal-id journal-id-type="publisher-id">nn</journal-id>
<journal-id journal-id-type="coden">ancac3</journal-id>
<journal-title-group>
<journal-title>ACS Nano</journal-title>
</journal-title-group>
<issn pub-type="ppub">1936-0851</issn>
<issn pub-type="epub">1936-086X</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32281785</article-id>
<article-id pub-id-type="pmc">7158889</article-id>
<article-id pub-id-type="doi">10.1021/acsnano.0c02439</article-id>
<article-categories>
<subj-group>
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Qiu</surname>
<given-names>Guangyu</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath2">
<name>
<surname>Gai</surname>
<given-names>Zhibo</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
<xref rid="aff4" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name>
<surname>Tao</surname>
<given-names>Yile</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath4">
<name>
<surname>Schmitt</surname>
<given-names>Jean</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath5">
<name>
<surname>Kullak-Ublick</surname>
<given-names>Gerd A.</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath6">
<name>
<surname>Wang</surname>
<given-names>Jing</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<aff id="aff1">
<label></label>
Institute of Environmental Engineering,
<institution>ETH Zürich</institution>
, Zürich 8093,
<country>Switzerland</country>
</aff>
<aff id="aff2">
<label></label>
Laboratory for Advanced Analytical Technologies, Empa,
<institution>Swiss Federal Laboratories for Materials Science and Technology</institution>
, Dübendorf 8600,
<country>Switzerland</country>
</aff>
<aff id="aff3">
<label>§</label>
Department of Clinical Pharmacology and Toxicology,
<institution>University Hospital Zurich, University of Zürich</institution>
, Zürich 8091,
<country>Switzerland</country>
</aff>
<aff id="aff4">
<label></label>
Experimental Center,
<institution>Shandong University of Traditional Chinese Medicine</institution>
, Jinan 250355,
<country>PR China</country>
</aff>
<aff id="aff5">
<label></label>
Mechanistic Safety, CMO & Patient Safety, Global Drug Development,
<institution>Novartis Pharma</institution>
, Basel 4002,
<country>Switzerland</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
Email:
<email>jing.wang@ifu.baug.ethz.ch</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>13</day>
<month>04</month>
<year>2020</year>
</pub-date>
<elocation-id>acsnano.0c02439</elocation-id>
<history>
<date date-type="received">
<day>21</day>
<month>03</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>04</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2020 American Chemical Society</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
<license license-type="open-access">
<license-p>This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="nn0c02439_0006" id="ab-tgr1"></graphic>
</p>
<p>The ongoing outbreak of the novel coronavirus disease (COVID-19) has spread globally and poses a threat to public health in more than 200 countries. Reliable laboratory diagnosis of the disease has been one of the foremost priorities for promoting public health interventions. The routinely used reverse transcription polymerase chain reaction (RT-PCR) is currently the reference method for COVID-19 diagnosis. However, it also reported a number of false-positive or -negative cases, especially in the early stages of the novel virus outbreak. In this work, a dual-functional plasmonic biosensor combining the plasmonic photothermal (PPT) effect and localized surface plasmon resonance (LSPR) sensing transduction provides an alternative and promising solution for the clinical COVID-19 diagnosis. The two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors can perform a sensitive detection of the selected sequences from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through nucleic acid hybridization. For better sensing performance, the thermoplasmonic heat is generated on the same AuNIs chip when illuminated at their plasmonic resonance frequency. The localized PPT heat is capable to elevate the
<italic>in situ</italic>
hybridization temperature and facilitate the accurate discrimination of two similar gene sequences. Our dual-functional LSPR biosensor exhibits a high sensitivity toward the selected SARS-CoV-2 sequences with a lower detection limit down to the concentration of 0.22 pM and allows precise detection of the specific target in a multigene mixture. This study gains insight into the thermoplasmonic enhancement and its applicability in the nucleic acid tests and viral disease diagnosis.</p>
</abstract>
<kwd-group>
<kwd>plasmonic photothermal effect</kwd>
<kwd>severe acute respiratory syndrome coronavirus 2</kwd>
<kwd>coronavirus disease</kwd>
<kwd>LSPR</kwd>
<kwd>biosensors</kwd>
<kwd>nuclei acids</kwd>
<kwd>RNA virus</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>nn0c02439</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>nn0c02439</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="notes-d1e21-autogenerated">
<fn-group>
<fn fn-type="" id="d30e177">
<p>This article is made available for a limited time sponsored by ACS under the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/freetoread/index.html">ACS Free to Read License</ext-link>
, which permits copying and redistribution of the article for non-commercial scholarly purposes.</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<p id="sec1">At the end of 2019, the first case of pneumonia of unknown origin was detected in Wuhan, China.
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
</sup>
High-throughput sequencing revealed that this was a new severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) and a novel coronavirus disease (COVID-19).
<sup>
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
Through 1 April 2020, the rapid spread of COVID-19 has impacted more than 200 countries with more than 900000 laboratory-confirmed cases and 45000 deaths (with high numbers in China, United States, Spain, and Italy).
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
,
<xref ref-type="bibr" rid="ref4">4</xref>
</sup>
COVID-19 is the third large-scale pandemic caused by coronavirus in the last two decades after severe acute respiratory syndrome (SARS) in 2003 and Middle East Respiratory Syndrome (MERS) in 2012.
<sup>
<xref ref-type="bibr" rid="ref5">5</xref>
,
<xref ref-type="bibr" rid="ref6">6</xref>
</sup>
These two coronaviruses have caused about 10000 cumulative cases, with mortality rates of 10% for SARS-CoV and 37% for MERS-CoV. Regarding the SARS-CoV-2, the laboratory-confirmed COVID-19 cases have already been more than 90 times higher than the total confirmed cases of SARS and MERS.
<sup>
<xref ref-type="bibr" rid="ref7">7</xref>
</sup>
There is no doubt that fast and accurate identification of a novel virus can greatly contribute to the control of an emerging pandemic.</p>
<p>Reliable laboratory diagnosis has been one of the foremost priorities for promoting epidemic prevention and control. In acute respiratory infection, the molecular method reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect causative viruses using samples from respiratory secretions.
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
According to the latest version of “WHO interim guidance for laboratory testing for COVID-19 in humans”, several molecular assays that detect the COVID-19 have been developed.
<sup>
<xref ref-type="bibr" rid="ref9">9</xref>
</sup>
The gene targets for RT-PCR molecular assays selected by different countries are genetically similar, including the RNA-dependent RNA polymerase (RdRp) sequence and the open reading frame 1ab (ORF1ab) sequence. Generally, RT-PCR is currently the most sensitive method of viral RNA detection by rapidly making many copies of a specific sequence. The sensitivity of a recent SARS-CoV-2 study has reached 3.7 RNA copies on detecting the RdRp sequence.
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
However, RT-PCR can also fail for various reasons, such as its amplification of spurious nucleic acid contaminations. The RT-PCR assays for SARS-CoV-2 detection have reported a number of false-negative results on confirmed infection cases.
<sup>
<xref ref-type="bibr" rid="ref10">10</xref>
</sup>
In clinical diagnosis, a single negative PCR result does not rule out COVID-19 infection as the reported positive rate was only 30–50% for laboratory-confirmed COVID-19 cases at the early stage of the outbreak,
<sup>
<xref ref-type="bibr" rid="ref11">11</xref>
</sup>
particularly if the sample is from an upper respiratory tract (URT) specimen. A recent study of 167 COVID-19 infection patients showed that five (3%) patients had positive chest computed tomography (CT) findings but false-negative results from the RT-PCR testing. These five patients were eventually confirmed with COVID-19 infection by repeated swab tests.
<sup>
<xref ref-type="bibr" rid="ref10">10</xref>
</sup>
In addition, the current RT-PCR-based detection methods demand high manpower and long processing time, which may not be able to provide the capacity to test all the suspected cases during full-scale outbreaks. Other approaches such as CT scan and culture methods are apparently not suitable for fast-response detection and real-time analysis.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
</sup>
Therefore, it is advantageous to thoroughly investigate suspected patients by another reliable diagnosis system.</p>
<p>Biosensors are ideal for providing an alternative and reliable solution to clinical diagnosis, real-time detection, and continuous monitoring.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
,
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
Among the different biosensing techniques, localized surface plasmon resonance (LSPR) biosensing systems are applicable to different classes of analytes of clinical interests.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
LSPR is a strong photon-driven coherent oscillation of the surface conduction electrons, which can be modulated when coupling occurs at the surface of the plasmonic materials.
<sup>
<xref ref-type="bibr" rid="ref16">16</xref>
</sup>
Owing to the enhanced plasmonic field in the vicinity of the nanostructures, LSPR sensing systems demonstrate high sensitivity to local variation, including the refractive index change and molecular binding.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
Thus, LSPR is an ideal candidate for real-time and label-free detection of micro- and nanoscale analytes.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
,
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
A latest research has utilized SPR to test the biophysical properties of SARS-CoV-2 spike protein and found that the SARS-CoV-2 spike glycoprotein bound angiotensin-converting enzyme 2 (ACE2) with much higher affinity than SARS-CoV spike protein.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
In addition, several SARS-CoV receptor-binding domains (RBDs)-specific monoclinal antibodies were also tested in this study and demonstrated that these antibodies did not have appreciable binding to the spike protein of SARS-CoV-2. The key property of nucleic acids that renders them so useful for clinical diagnosis, therapy and bionanotechnology is the predictable and specific hybridization of complementary bases.
<sup>
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
Thus, the LSPR technique for genetic testing and nucleic acid detection in clinical practices could be an interesting alternative for SARS-CoV-2 detection and COVID-19 diagnosis.</p>
<p>The novel SARS-CoV-2 virus is a positive sense, single-stranded RNA virus. The DNA–RNA hybridization has been widely used in RT-PCR as well as various biomedical sensors. The criteria for hybridization are based on nucleic acid strand melting.
<sup>
<xref ref-type="bibr" rid="ref22">22</xref>
,
<xref ref-type="bibr" rid="ref23">23</xref>
</sup>
Two complementary strands can specifically hybridize with each other when the temperature is slightly lower than their melting temperature, while a single mismatch can cause the melting temperature to decrease significantly.
<sup>
<xref ref-type="bibr" rid="ref24">24</xref>
</sup>
It is worth noting that the plasmonic nanoparticles normally exhibit large optical cross sections and the absorbed light can be nonradiatively relaxed resulting in a significant heating energy.
<sup>
<xref ref-type="bibr" rid="ref25">25</xref>
,
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
The converted plasmonic photothermal (PPT) heat energy, also known as the thermoplasmonic effect is highly localized near the nanoparticles, which can be used as a stable
<italic>in situ</italic>
heat source for controllable and uniform thermal processing.
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
<xref ref-type="bibr" rid="ref29">29</xref>
</sup>
In this work, we developed a dual-functional LSPR biosensor through combining the photothermal effect and plasmonic sensing transduction for SARS-CoV-2 viral nucleic acid detection. The plasmonic chip with the two-dimensional distribution of nanoabsorbers (AuNIs) is capable to generate the local PPT heat and transduce the
<italic>in situ</italic>
hybridization for highly sensitive and accurate SARS-CoV-2 detection.</p>
<sec id="sec2">
<title>Results and Discussion</title>
<p>The dual-functional plasmonic performances were systematically studied in the aspects of LSPR sensing transduction and PPT heating. The common-path differential phase-sensitive LSPR system, as shown in
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
a, was adopted to measure the local refractive index changes or the binding events. In the LSPR sensing transduction unit, the sensing beam was generated by a wide spectrum LED source and operated in the ATR (attenuated total reflection) mode at the interface between the glass substrate and liquid environment. When reaching the two-dimensional AuNI sensing layer, the measured optical power of the beam was found to be 32.58 μW. The local plasmonic responses were retrieved from the ATR spectral interferograms by using the windowed Fourier transform phase extraction method, as described elsewhere.
<sup>
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
This phase response, reported in radian units, is more prominent than the conventional spectral and angular responses. Therefore, it has been utilized for improving the sensitivity of plasmonic sensors.
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
</sup>
In order to generate a stable and intense thermoplasmonic field, an excitation laser with 532 nm peak wavelength and 40 mW maximum optical power was applied onto the AuNI chip in the normal incident angle (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
b). In addition, optimizing the AuNI chip so that its peak absorbance wavelength was exactly at 532 nm can significantly improve the conversion efficiency of thermoplasmonic. By adjusting the Au nanofilm thickness before dewetting, the absorption peak (under normal incident angle) can be accurately controlled within a wavelength range from 523.4 to 539.7 nm as shown in
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
c,d and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S1</ext-link>
. In this work, the AuNIs that matched the laser excitation wavelength at 532.2 nm (±0.2 nm) were utilized for the PPT heating.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
</sup>
It is worth noting that under the ATR conditions with a 72° inclined incident angle the plasmonic resonance wavelength for LSPR sensing transduction red-shifted to 580 nm due to the prism coupling and the inclined angle of incidence (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
e).
<sup>
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
The phase changes caused by a local variation of LSPR conditions were confined in a narrow wavelength region from 578 to 582 nm. Moreover, after addition of a long-pass filter (LPF) with a cut-on wavelength at 552 nm, the 532 nm photothermal excitation laser from the PPT unit did not influence the stability of the real-time LSPR sensing transduction.</p>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Experimental setup and system optimization. (a) Schematic and (b) experimental setup of the dual-functional PPT enhanced LSPR biosensing system. In the LSPR sensing path, the collimated wide spectrum beam passed through the aperture-iris (I1/I2), the linear polarizers (P1/P2), the birefringent crystal (BC), and totally reflected at the interface of AuNI-dielectric for LSPR detection. In the excitation unit, a laser diode (LD) was used to generate the PPT effect on AuNIs in the normal incident angle. (c, d) Normalized absorbances of the AuNI sensor chips showing a fine-tune peak absorption from 523.4 to 539.7 nm (±0.2 nm). (e) Plasmonic resonance wavelength at about 580 nm under the ATR (attenuated total reflection) configuration for LSPR sensing transduction.</p>
</caption>
<graphic xlink:href="nn0c02439_0001" id="gr1" position="float"></graphic>
</fig>
<p>In the thermoplasmonic testing, the direct absorption of laser irradiation at 532 nm decayed nonradiatively by generating more hot electrons in AuNIs.
<sup>
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
The photoexcited highly energetic electrons quickly dissipated and released thermal energies to heat the ambient environments. Conversely, the PPT-induced temperature increase was also responsible for a refractive index variation of the surrounding environment, which can be
<italic>in situ</italic>
detected by the LSPR detection system as shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a. Specifically, the AuNI chip was exposed to laser excitation for 50 s, as indicated by the shaded region. Then the laser was switched off to reattain the baseline. The generation and equilibrium of local photothermal heating were relatively fast. According to the laser switching tests as shown in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S2</ext-link>
, the rapid heating process was completed within 1 s after turning on the laser excitation. Subsequently, the dynamic equilibrium process took another 11 s before finally entering the steady state. In our experiments, we calibrated the LSPR phase response under different ambient temperatures. The
<italic>in situ</italic>
temperature arising from the PPT effect was characterized based on the measurement of the thermal-induced refractive index variation in the vicinity of AuNIs.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
,
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
During the ambient temperature variation, the real-time LSPR phase responses and temperature values were recorded in parallel (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
b), and the correlation was established as shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
c. Based on this calibrated LSPR-temperature regression, the localized photothermal temperatures under different laser powers were retrieved as shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
d.</p>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>
<italic>In situ</italic>
characterization of local PPT heating on AuNIs. (a) Periodic laser excitation and the PPT-induced plasmonic phase response. (b) Temperature variations and real-time LSPR responses. (c) Calibration curve illustrating the relationship between the temperature and LSPR phase response. (d) Real-time LSPR responses caused by the laser-induced PPT effect under different laser powers. (e) Scanned local LSPR responses around the PPT heat source on AuNIs. (d) Mapping the temperature distribution around the PPT heat source.</p>
</caption>
<graphic xlink:href="nn0c02439_0002" id="gr2" position="float"></graphic>
</fig>
<p>To further evaluate the laser-induced PPT effect and the local temperature profile, we utilized the spectrometer to scan the heating area for mapping the LSPR phase responses and actual temperature distribution on the AuNI sensor chips. In the experimental setup as shown in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S3</ext-link>
, the excitation laser with 32 mW power was applied to the optimal AuNI absorbers with a peak absorption at 532.2 nm (±0.2 nm). At each point of interest, we used the LSPR transducing unit to record two interferometric spectra: one reference without PPT heating and one spectrum with PPT heating. By scanning the laser spot and surrounding area with a 0.5 mm step interval, the spatial distribution of LSPR phase changes was retrieved as shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
e. At each scanning pixel, the retrieved phase response was subsequently converted to the local temperature based on the calibration curve in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
c. Therefore, the corresponding temperature distribution around the PPT heating was obtained and illustrated in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
f. The local temperature was significantly elevated from 21.47 °C (room temperature) to 41.08 °C at the center of the laser spot.</p>
<p>We shall now present the sensing results of the SARS-CoV-2 by the proposed dual-functional plasmonic biosensors. The full genome sequence data of the viruses,
<italic>i.e.</italic>
, SARS-CoV-2 and SARS-CoV, have been retrieved from the GISAID platform. The selected oligonucleotides for specific SARS-CoV-2 detection and their relative positions were given in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
a and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Table S1</ext-link>
. These viral oligonucleotides refer to sequences used in different countries for COVID-19 diagnosis, and some of them have been published in the latest research.
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
,
<xref ref-type="bibr" rid="ref9">9</xref>
,
<xref ref-type="bibr" rid="ref35">35</xref>
</sup>
The basic local alignment search tool (BLAST) was used to compare these viral sequences with the library of SARS-CoV-2 to confirm their representativeness and specificity. In the present case of COVID-19, SARS-CoV-2 isolates or samples from infected patients are challenging to obtain and handle. Thus, the corresponding DNA sequences were artificially synthesized for representative LSPR sensing demonstration of SARS-CoV-2 and SARS-CoV. According to the WHO guideline and local alignment searching results, two specific sequences from SARS-CoV-2 were selected,
<italic>i.e.</italic>
, the RdRp and the ORF1ab as shown in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
a. Validation and proof of selectivity were demonstrated by choosing the closely related nucleic acid sequence from RdRp of SARS-CoV. In addition, an oligonucleotide sequence from the coronaviral envelope protein gene (E) was also synthesized and tested to aid the virus identification.</p>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Selected viral sequences for SARS-CoV-2 detection. (a) Selected sequences and their relative positions used for SARS-CoV-2 and SARS-CoV detection. M: membrane protein gene; N: nucleocapsid protein gene; S: spike protein gene. The numbers below the sequences are genome positions according to GenBank, SARS-CoV-2 NC_045512. (b) Schematic illustration of AuNI functionalization based on the reaction with thiol-cDNA ligands. (c). Real-time monitoring of AuNI functionalization dynamics. Ten microliter solution containing 0.1 nmol of cDNA was injected in each step. (d) Calibrated surface functionalization efficiency to retrieve the optimal cDNA amount.</p>
</caption>
<graphic xlink:href="nn0c02439_0003" id="gr3" position="float"></graphic>
</fig>
<p>Based on the synthetic oligonucleotide receptors with a thiol group (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Table S2</ext-link>
), the LSPR sensing chips were directly functionalized by forming the Au–S bond between the thiol-cDNA receptor and AuNIs as illustrated in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
b. The surface functionalization process was initially optimized on its amount and concentration in order to achieve proper surface coverage and high sensitivity. During the real-time surface functionalization as shown in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
c, step-by-step injections of 0.1 nmol of thiol-cDNA of RdRp-COVID, (RdRp-COVID-C) caused continuous phase jumps due to the covalent binding between AuNIs and thiol-cDNA. After a total immobilization of 1 nmol (10 × 0.1 nmol) of RdRp-COVID-C as shown in
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
c,d, the LSPR response stopped growing and indicated the appropriate amount of cDNA receptors for AuNI functionalization. Hereafter, the solution containing 1 nmol of thiol-cDNA was utilized to functionalize the AuNI microfluidic sensor chips for SARS-CoV-2 sequence detection (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S4</ext-link>
). The proper surface functionalization that is sufficient to functionalize the entire AuNI sensing surface can increase the sensitivity and suppress the nonspecific binding events. In contrast, the AuNI sensor chip was oversaturated when functionalized with 10 nmol of cDNA and insufficiently covered by using 0.1 nmol of cDNA (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S5</ext-link>
).</p>
<p>The surface-functionalized AuNI chips were subsequently installed in the LSPR systems for specific viral sequence detection (
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
a). The impacts of the localized thermoplasmonic heating on nucleic acids hybridization and LSPR detection were systematically studied. According to the temperature profile shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
f, the excited PPT heat with approximately 41 °C nominal temperature was generated on the AuNI sensor. Before the injection of the RdRp sequence, nuclease-free water was flown across the microfluidic sensing chamber and the thermoplasmonic laser (32 mW) was turned on to establish a steady phase reference and baseline. According to the phase-sensing diagram in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
b and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">S6a</ext-link>
, the LSPR response of the dual-functional AuNI biosensor started to increase when the RdRp-COVID genes were injected into the microfluidic chamber at about 200 s and attained the maximum phase value after about 800 s hybridization. The dual-functional AuNI sensing chip was further flushed with nuclease-free water to remove the nonspecific binding items and to check the final LSPR phase response. In the comparison with and without the PPT effect, the hybridization rate and the LSPR sensing response level were obviously suppressed when the PPT unit was shut down as shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
b. It proved that the localized photothermal effect can significantly improve the hybridization kinetics of the RdRp-COVID and its cDNA. Thus, the response-slope of the photothermal enhanced LSPR was much steeper than that without the photothermal assistance. Due to the faster hybridization kinetics, the differential phase response levels were also elevated for the RdRp-COVID sequence at different concentrations as shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
c and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S6</ext-link>
. The PPT effect and its derived local heat can effectively promote the fast and sensitive detection of nucleic acids by improving the hybridization kinetics of fully matching strands.</p>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>PPT enhancement in LSPR biosensing. (a) Schematic illustration of the hybridization of two complementary strands. (b) Real-time hybridization of RdRp-COVID and its cDNA sequence (RdRp-COVID-C) with or without the thermoplasmonic enhancement. (c) PPT enhancement on RdRp-COVID sequence detection at different concentrations. The error bars refer to the standard deviations of LSPR responses after reaching the steady conditions following the buffer flushing. (d) Schematic illustration of inhibited hybridization of two partially matched sequences. The red arrows indicated the mismatch bases of RdRp-SARS and functionalized cDNA of RdRp-COVID. (e) Discrimination of two similar sequences with PPT heat. The laser was applied at 200 s and switched off at 700 s. (f) RdRp-SARS sequence dissociation from the immobilized RdRp-COVID-C sequence. The original phase responses (red dots) and the corresponding smoothed means (black curve) are shown.</p>
</caption>
<graphic xlink:href="nn0c02439_0004" id="gr4" position="float"></graphic>
</fig>
<p>More importantly, the PPT heating was capable of inhibiting the spurious binding of nonmatching sequences by elevating the local temperature at the vicinity of AuNIs. SARS-CoV and SARS-CoV-2 viruses are similar β-coronavirus, and their genetic similarities are high. The specific SARS-CoV-2 genetic target recommended by the WHO,
<italic>i.e.</italic>
, the RdRp-COVID sequence as shown in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Table S1</ext-link>
, is very closely related to that of SARS-CoV. Specifically, in the selected gene sequences, only three fixed nucleotide bases were different between RdRp-COVID and RdRp-SARS. A real-time LSPR detection was conducted on the two closely related sequences. The LSPR sensor without the aid of photothermal unit reported a false positive response signal when detecting the RdRp-SARS sequence (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S7</ext-link>
), which indicated that a similar but not fully complement sequence was also able to interact and partially hybridize with the cDNA receptors at room temperature. Although the hybridization kinetics of RdRp-SARS sequence from SARS-CoV was clearly slower than that of SARS-CoV-2, the nonmatching spurious binding of any closely related sequence can affect the accurate virus detection and discrimination. Therefore, the local heat based on the proposed PPT effect was employed to improve the specificity of hybridization. At the elevated temperature of 41 °C as illustrated in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
d, the standard free energy of hybridization was weaker due to the mismatched base-pairs. Thus, the similar but not fully matched sequences of SARS-CoV can be distinguished. In detail, the calculated association rate constant
<italic>k</italic>
<sub>a</sub>
of RdRp-COVID with PPT heating enhancement was found to be 1.11 × 10
<sup>6</sup>
M
<sup>–1</sup>
s
<sup>–1</sup>
. A detailed discussion and calculations are given in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S6c</ext-link>
. For a typical biological sensing system,
<italic>k</italic>
<sub>a</sub>
ranges between 10
<sup>3</sup>
and 10
<sup>7</sup>
M
<sup>–1</sup>
s
<sup>–1</sup>
and a higher associate rate indicates a stronger binding affinity.
<sup>
<xref ref-type="bibr" rid="ref36">36</xref>
,
<xref ref-type="bibr" rid="ref37">37</xref>
</sup>
In a comparison experiment including the PPT heat with 32 mW optical power, the 532 nm laser was applied onto the surface of the AuNI sensor from 200 to 700 s as shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
e. The local PPT heat was generated immediately to make the LSPR phase jump to about 1.76 rad. After turning off the laser at 700 s, the LSPR phase response of the mismatching RdRp-SARS gene was fully suppressed to the ground state of blank measurement (
<italic>i.e.</italic>
, the responses from 0 to 200 s) as shown by the black curve in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
e. Since the RdRp-SARS sequences reported a weak response of 0.002 rad, we determined that its association rate constant was lower than 10
<sup>3</sup>
M
<sup>–1</sup>
s
<sup>–1</sup>
under the PPT heating. At the same time, the fully matching RdRp-COVID sequence from SARS-CoV-2, showed an apparent phase difference before and after the laser excitation (orange curve in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
e). Thus, we believed that a similar but not fully matched sequence could be distinguished based on their different binding affinity and the PPT heating.</p>
<p>In another set of verification experiments, the RdRp-SARS genes were initially bound to the RdRp-COVID-C receptors at room temperature. Then the 532 nm laser (32 mW) was applied on the AuNI surface to stimulate the local thermoplasmonic effect. In the real-time LSPR sensorgram shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
f, we observed the dissociation of the RdRp-SARS genes from the RdRp-COVID-C receptors after the temperature rise. The calculated dissociation rate constant was 8.287 × 10
<sup>–3</sup>
s
<sup>–1</sup>
as shown in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S8</ext-link>
. The dissociation half-life
<italic>t</italic>
<sub>1/2</sub>
, which indicated the time to dissociate half of the hybridized sequences, was 83.3 s. In contrast, the complementary sequence of RdRp-COVID showed a much lower dissociation rate constant at 3.5 × 10
<sup>–6</sup>
s
<sup>–1</sup>
and a long dissociation half-life time of 1.97 × 10
<sup>5</sup>
s. These results further verified that the thermoplasmonic effect can eliminate the nonmatching hybridization quickly and promote the selective detection of the target sequence, so as to achieve highly accurate nucleic acid detection and virus differentiation. Compared with the conventional plasmonic biosensing system, we demonstrated how this proposed dual-functional plasmonic sensing system can be the basis of a reliable and easy-to-implement thermoplasmonic biosensing technique: it can significantly reduce the false-positive-rate and enhance the reliability in genetic diagnosis.</p>
<p>To quantify the sensing performance, the dual-functional plasmonic detections of RdRp-COVID were further investigated over the concentration range from 0.01 pM to 50 μM as shown in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
a. The AuNI sensing system started to attain the saturation condition when the concentration of the RdRp-COVID sequence reached 1 μM. In contrast, the low RdRp-COVID concentration,
<italic>i.e.</italic>
, 0.1 pM, only resulted in a weak phase response by 2.90 × 10
<sup>–3</sup>
radian (
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
b), which was close to the system blank measurement of 2.92 × 10
<sup>–3</sup>
radian. Thus, as illustrated in the sensing calibration curve in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
b, the dual-functional LSPR sensing system exhibited a limit of the range from 0.1 pM to 1 μM for detecting oligonucleotides, covering 7 orders of magnitude. The calibrated regression curve was further used to estimate the limit of detection (LoD), which is defined by IUPAC (International Union of Pure and Applied Chemistry) as the sum of the blank measures,
<italic>i.e.</italic>
, 2.92 × 10
<sup>–3</sup>
radian with the nuclease-free water buffer and triple of its standard deviation (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S9</ext-link>
). Thus, the LoD of the photothermal enhanced LSPR sensing system was found to be (2.92 × 10
<sup>–3</sup>
) + 3 × (3.12 × 10
<sup>–3</sup>
) = 0.0123 rad as shown by the dashed line in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
b. Therefore, the detectable RdRp-COVID sequence concentration corresponding to the systematic LoD was about 0.22 ± 0.08 pM (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">Figure S9</ext-link>
). A 200 μL analyte solution at this LoD concentration contained about 2.26 × 10
<sup>7</sup>
copies of the RdRp-COVID sequence. The actual size of SARS-CoV-2 is about 29.9 kilobases in length, which is 1000 times longer than the RdRp-COVID sequence used in this study. Thus, based on the LSPR signal–target size relationship, the estimated LoD for detecting the entire RNA strands from SARS-CoV-2 could be approximately 2.26 × 10
<sup>4</sup>
copies.
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
A recent study reported the viral loads of SARS-CoV-2 from different respiratory trace samples including the throat/nasal swabs and the sputum. Based on these clinical specimens collected from 82 infected individuals, the overall viral load soon after onset was higher than 1 × 10
<sup>6</sup>
copies/mL.
<sup>
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
This indicated that our proposed dual-functional LSPR system has the potential for direct analysis of SARS-CoV-2 sequences in respiratory samples.</p>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Evaluation of the dual-functional LSPR biosensor performance on detecting viral nucleic acids. (a) Plot of LSPR phase responses
<italic>versus</italic>
RdRp-COVID oligos concentrations using the PPT enhanced LSPR biosensor. (b) Zoom-in view of the low concentration range for LoD identification. (c) Concentrations of various viral oligos measured using the dual-functional LSPR biosensors. (d) Detection comparison of single analyte RdRp-COVID and mixture of multiple sequences. The error bars refer to the standard deviations of LSPR responses after reaching the steady conditions following the buffer flushing.</p>
</caption>
<graphic xlink:href="nn0c02439_0005" id="gr5" position="float"></graphic>
</fig>
<p>In addition to the RdRp-COVID sequence, we also validated our dual-functional LSPR sensing system by performing the selective hybridization detection on several different genome sequences from both SARS-CoV-2 and SARS-CoV,
<italic>i.e.</italic>
, the ORF1ab-COVID sequence and the E sequence from SARS-CoV-2, the RdRp-SARS sequence from SARS-CoV. The corresponding LSPR phase sensing responses with the
<italic>in situ</italic>
PPT enhancement are illustrated in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
c. The complementary cDNA sequences,
<italic>i.e.</italic>
, ORF1ab-COVID-C, E-C, and RdRp-SARS-C, were functionalized onto the AuNI chips, respectively, for the detection of specific viral sequence. Since the physical length and molecular weight were roughly same, the hybridization of these target sequences reported a similar LSPR phase response (
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
c). As the concentration increased from 1 pM to 1 nM, the mean LSPR response levels of each sequence also climbed in a proportional manner, which further proved the feasibility of this dual-functional LSPR sensing system for quantitative analysis of viral nucleic acids. Among them, the ORF1ab-COVID sequence produced the strongest responses due to its high molecular weight (8715.6 g/mol) and long length (28 bases), while the responses for E sequence were slightly lower.</p>
<p>In clinical diagnosis, the respiratory trace samples after viral lysis and RNA extraction may contain multiple nucleic acid sequences from the same viral source of SARS-CoV-2. Thus, detecting the accurate concentration of a specific sequence under the interference of multiple nonspecific sequences was beneficial to demonstrate its potential for real clinical applications. In experiments as shown in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
d, the multisequence mixture containing RdRp-COVID sequences (100 pM), E sequences (100 pM), and ORF1ab-COVID sequences (100 pM) was prepared to simulate an actual sample after virus lysis. The ORF1ab-COVID and E sequences in the mixture showed extremely low spurious binding with the immobilized RdRp-COVID-C receptors. Compared with the standard detection of 100 pM RdRp-COVID as shown in
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
d, the calculated recovery rate based on the dual-functional LSPR biosensors was found to be 96% in the mixture sample. This experimental result further demonstrated that the dual-functional LSPR system with the
<italic>in situ</italic>
PPT enhancement can perform accurate detection of the target sequence and facilitate the highly accurate SARS-CoV-2 detection.</p>
</sec>
<sec id="sec3">
<title>Conclusions</title>
<p>Our developed dual-functional plasmonic system has successfully demonstrated a highly sensitive, fast, and reliable diagnostic capability for SARS-CoV-2 virus detection. This dual-functional plasmonic biosensing concept integrated the PPT effect and the LSPR sensing transduction on a single cost-effective AuNI chip. By using two different angles of incidence, the plasmonic resonances of PPT and LSPR can be excited at two different wavelengths, which significantly enhanced the sensing stability, sensitivity, and reliability. With this configuration, the LSPR sensing unit attained a real-time and label-free detection of viral sequences including RdRp-COVID, ORF1ab-COVID, and E genes from SARS-Cov-2. More importantly, the
<italic>in situ</italic>
PPT enhancement on the AuNI chips dramatically improved the hybridization kinetics and the specificity of nucleic acid detection. Similar sequences such as RdRp genes from SARS-CoV and SARS-CoV-2 can be accurately discriminated with the
<italic>in situ</italic>
PPT enhancement. Under the outbreak background of COVID-19, this proposed dual-functional LSPR biosensor can provide a reliable and easy-to-implement diagnosis platform to improve the diagnostic accuracy in clinical tests and relieve the pressure on PCR-based tests.</p>
</sec>
<sec id="sec4">
<title>Materials and Methods</title>
<sec id="sec4.1">
<title>Materials</title>
<p>All chemicals were purchased from commercial suppliers and used without further purification. Nuclease-free water was purchased from ThermoFisher and used as the buffer for oligonucleotide dilution and LSPR detection. All selected oligonucleotides, including the RdRp-COVID, RdRp-SARS, ORF1ab-COVID, E sequence, and their thiol-cDNA receptors, including the RdRp-COVID-C, RdRp-SARS-C, and ORF1ab-COVID-C, E-C, were synthesized and provided by Microsynth (Balgach, Switzerland). All AuNI sensor chips and fluidic sensing chambers were cleaned using absolute ethanol followed by rinsing with Milli-Q water before testing.</p>
</sec>
<sec id="sec4.2">
<title>Synthesis of Dual-Functional AuNI Chip</title>
<p>The AuNI sensor chips were synthesized based on the self-assembly process of thermal dewetted Au nanofilm. The original magnetron-sputtered Au nanofilms were optimized in a thickness range from 5.0 to 5.2 nm. Then the Au nanofilm was thermally annealed at 550 °C for 3 h. The AuNIs were self-assembled on the BK7 glass surface. The visible light absorption of each AuNI sensor chip was measured to retrieve the optimal plasmonic resonance condition.</p>
</sec>
<sec id="sec4.3">
<title>Dual-Functional LSPR System</title>
<p>In our interferometric LSPR phase sensing system, a white light sensing beam was generated by an LED source and subsequently linearly polarized by a polarizer (P1). The thin birefringent crystal (BC) added sufficient retardation into the two orthogonal components of the linearly polarized light,
<italic>i.e.</italic>
, the
<italic>s-</italic>
and
<italic>p-</italic>
components, to create the spectral interferogram. The BK7 prism was able to couple the incident light into the AuNI–dielectric interface at an inclined nominal incident angle of 72° and excited the local electromagnetic fields in the vicinity of the AuNIs by the Kretschmann configuration. The plasmonic resonance wavelength for LSPR sensing transduction was found to be 580 nm. The interferometric spectra were screened by an aperture-iris (I1/I2, Thorlabs) with a hole diameter of 0.5 mm and finally recorded by the spectrometer (AvaSpec, Avantes). In addition to this plasmonic transducing unit, a high-power 532 nm laser diode (LD, 532 nm peak wavelength, DJ532–40 Thorlabs) was used for PPT heating by illuminating the AuNI chips in the normal incident angle. A long-wavelength pass filter (LPF, 552 nm cut-on wavelength) was used to block the excitation signal before the spectrometer. The ambient temperature was measured and recorded with digital temperature sensors (SHTC1, Sensirion) for LSPR-temperature calibration.</p>
</sec>
<sec id="sec4.4">
<title>Surface Functionalization with Thiol-cDNA</title>
<p>The AuNI surface functionalization was investigated based on the step-by-step injection of 0.1 nmol thiol-cDNA. In the sensing chamber, 90 μL of nuclease-free water was initially injected to build the phase reference baseline for 400 s. Then, each time a 10 μL solution which contained 0.1 nmol thiol-cDNA,
<italic>e.g.</italic>
, the RdRp-COVID-C sequence was injected into the sensor chamber in every 200 s, until no further phase changes were recorded. Based on the optimal result, the solution containing 1 nmol cDNA was utilized to functionalize the AuNI chips for the following SARS-CoV-2 sequences detection.</p>
</sec>
<sec id="sec4.5">
<title>Detection of SARS-CoV-2 Viral Sequences</title>
<p>After the probe immobilization, the desired concentration of target DNA in nuclease-free water (200 μL) was introduced into the AuNI microfluidic chamber for 800 s, and the hybridization reaction was allowed under the PPT heat (32 mW optical power at 532 nm). In the LSPR sensing path, an aperture-iris with a hole diameter of 0.5 mm was used to screen the sensing beam entering the spectrometer, which corresponded to the ATR light from the center of the PPT heat. Experiments on the mismatched nucleic acids and multisequence mixtures were also conducted based on the dual-functional LSPR biosensors as described above. A stringent buffer flushing with nuclease-free water was conducted after the hybridization. The whole testing process was real-time recorded by the spectrometer for plasmonic phase detection.</p>
</sec>
</sec>
</body>
<back>
<notes id="notes1" notes-type="si">
<title>Supporting Information Available</title>
<p>The Supporting Information is available free of charge at
<ext-link ext-link-type="uri" xlink:href="https://pubs.acs.org/doi/10.1021/acsnano.0c02439?goto=supporting-info">https://pubs.acs.org/doi/10.1021/acsnano.0c02439</ext-link>
.
<list id="silist" list-type="simple">
<list-item>
<p>Absorbance spectra of AuNIs; temperature profile of PPT heating; PPT heating system for characterizing the temperature distribution; selected target sequences from SARS-CoV-2 and SARS-CoV; complementary thiol-cDNA for LSPR functionalization; microfluidic detection system; comparison of AuNI surface functionalization; PPT effect on real-time LSPR detection; discrimination of two similar sequences without PPT heat; dissociation rate constant of RdRp-SARS; blank measurement for LoD (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c02439/suppl_file/nn0c02439_si_001.pdf">PDF</ext-link>
)</p>
</list-item>
</list>
</p>
</notes>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sifile1">
<media xlink:href="nn0c02439_si_001.pdf">
<caption>
<p>nn0c02439_si_001.pdf</p>
</caption>
</media>
</supplementary-material>
</sec>
<notes notes-type="" id="notes2">
<title>Author Contributions</title>
<p>G.Q., Z.G., and J.W. conceived the research ideas. G.Q. constructed the dual-functional plasmonic system for SARS-CoV-2 detection in J.W.’s group. Z.G., G.K.-U. and Y.T. contributed to the design and analysis of oligonucleotides. J.S. and G.Q. contributed to the thermoplasmonic measurement. G.Q. conducted the experiments and data analysis. G.Q. and J.W. wrote the manuscript. All authors have discussed the results and have given approval to the final version of the manuscripts.</p>
</notes>
<notes notes-type="COI-statement" id="NOTES-d7e825-autogenerated">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>The authors acknowledge support from the FIRST Micro & Nanoscience Center in ETH Zürich and the China Scholarship Council. We also thank Dr. Ying Du for providing the microfluidic chip.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1">
<name>
<surname>Huang</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Ren</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Hu</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Fan</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Gu</surname>
<given-names>X.</given-names>
</name>
<article-title>Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China</article-title>
.
<source>Lancet</source>
<year>2020</year>
,
<volume>395</volume>
,
<fpage>497</fpage>
<lpage>506</lpage>
.
<pub-id pub-id-type="pmid">31986264</pub-id>
</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="journal" id="cit2">
<name>
<surname>Lu</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Niu</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Song</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Zhu</surname>
<given-names>N.</given-names>
</name>
<article-title>Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding</article-title>
.
<source>Lancet</source>
<year>2020</year>
,
<volume>395</volume>
,
<fpage>565</fpage>
<lpage>574</lpage>
.
<pub-id pub-id-type="pmid">32007145</pub-id>
</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Rothe</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Schunk</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Sothmann</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Bretzel</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Froeschl</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Wallrauch</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Zimmer</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
;
<name>
<surname>Janke</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Guggemos</surname>
<given-names>W.</given-names>
</name>
<article-title>Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany</article-title>
.
<source>N. Engl. J. Med.</source>
<year>2020</year>
,
<volume>382</volume>
,
<fpage>970</fpage>
<pub-id pub-id-type="doi">10.1056/NEJMc2001468</pub-id>
.
<pub-id pub-id-type="pmid">32003551</pub-id>
</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>Stoecklin</surname>
<given-names>S. B.</given-names>
</name>
;
<name>
<surname>Rolland</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Silue</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Mailles</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Campese</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Simondon</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Mechain</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Meurice</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Nguyen</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Bassi</surname>
<given-names>C.</given-names>
</name>
<article-title>First Cases of Coronavirus Disease 2019 (COVID-19) in France: Surveillance, Investigations and Control Measures, January 2020</article-title>
.
<source>Eurosurveillance</source>
<year>2020</year>
,
<volume>25</volume>
,
<fpage>2000094</fpage>
.</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="journal" id="cit5">
<name>
<surname>Wang</surname>
<given-names>L. F.</given-names>
</name>
;
<name>
<surname>Anderson</surname>
<given-names>D. E.</given-names>
</name>
<article-title>Viruses in Bats and Potential Spillover to Animals and Humans</article-title>
.
<source>Curr. Opin. Virol.</source>
<year>2019</year>
,
<volume>34</volume>
,
<fpage>79</fpage>
<lpage>89</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.coviro.2018.12.007</pub-id>
.
<pub-id pub-id-type="pmid">30665189</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6">
<name>
<surname>Ksiazek</surname>
<given-names>T. G.</given-names>
</name>
;
<name>
<surname>Erdman</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Goldsmith</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Zaki</surname>
<given-names>S. R.</given-names>
</name>
;
<name>
<surname>Peret</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Emery</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Tong</surname>
<given-names>S. X.</given-names>
</name>
;
<name>
<surname>Urbani</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Comer</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Lim</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Rollin</surname>
<given-names>P. E.</given-names>
</name>
;
<name>
<surname>Dowell</surname>
<given-names>S. F.</given-names>
</name>
;
<name>
<surname>Ling</surname>
<given-names>A. E.</given-names>
</name>
;
<name>
<surname>Humphrey</surname>
<given-names>C. D.</given-names>
</name>
;
<name>
<surname>Shieh</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Guarner</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Paddock</surname>
<given-names>C. D.</given-names>
</name>
;
<name>
<surname>Rota</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Fields</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>DeRisi</surname>
<given-names>J.</given-names>
</name>
; et al.
<article-title>A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome</article-title>
.
<source>N. Engl. J. Med.</source>
<year>2003</year>
,
<volume>348</volume>
,
<fpage>1953</fpage>
<lpage>1966</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa030781</pub-id>
.
<pub-id pub-id-type="pmid">12690092</pub-id>
</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7">
<name>
<surname>Mahase</surname>
<given-names>E.</given-names>
</name>
<article-title>Coronavirus: COVID-19 Has Killed More People Than SARS and MERS Combined, Despite Lower Case Fatality Rate</article-title>
.
<source>Br. Med. J.</source>
<year>2020</year>
,
<fpage>M641</fpage>
<pub-id pub-id-type="doi">10.1136/bmj.m641</pub-id>
.
<pub-id pub-id-type="pmid">32071063</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Corman</surname>
<given-names>V. M.</given-names>
</name>
;
<name>
<surname>Landt</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Kaiser</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Molenkamp</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Meijer</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Chu</surname>
<given-names>D. K.</given-names>
</name>
;
<name>
<surname>Bleicker</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Brünink</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Schneider</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Schmidt</surname>
<given-names>M. L.</given-names>
</name>
<article-title>Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR</article-title>
.
<source>Eurosurveillance</source>
<year>2020</year>
,
<fpage>25</fpage>
.</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="weblink" id="cit9">
<person-group person-group-type="allauthors">
<collab>World Health Organization</collab>
</person-group>
.
<source>Laboratory Testing for Coronavirus Disease 2019 (Covid-19) in Suspected Human Cases: Interim Guidance, 2 March 2020</source>
; WHO/COVID-19/laboratory/2020.4;
<publisher-name>World Health Organization</publisher-name>
:
<publisher-loc>Geneva</publisher-loc>
,
<year>2020</year>
;
<uri xlink:href="https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance">https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance</uri>
(accessed March 2, 2020).</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<person-group person-group-type="allauthors">
<name>
<surname>Xie</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Zhong</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Zheng</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
</person-group>
,
<article-title>Chest CT for Typical 2019- nCoV Pneumonia: Relationship to Negative RT-PCR Testing</article-title>
.
<source>Radiology</source>
<year>2020</year>
,
<fpage>200343</fpage>
.
<pub-id pub-id-type="doi">10.1148/radiol.2020200343</pub-id>
<pub-id pub-id-type="pmid">32049601</pub-id>
</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11">
<person-group person-group-type="allauthors">
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>Q.</given-names>
</name>
</person-group>
,
<article-title>Inactivating Porcine Coronavirus before Nucleic Acid Isolation with the Temperature Higher Than 56 °C Damages Its Genome Integrity Seriously</article-title>
.
<source>BioRxiv</source>
,
<year>2020</year>
;
<pub-id pub-id-type="doi">10.1101/2020.02.20.958785</pub-id>
(accessed March 2, 2020).</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12">
<name>
<surname>Ye</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Song</surname>
<given-names>B.</given-names>
</name>
<article-title>Chest CT Manifestations of New Coronavirus Disease 2019 (COVID-19): A Pictorial Review</article-title>
.
<source>Eur. Radiol.</source>
<year>2020</year>
,
<fpage>1</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00330-020-06801-0</pub-id>
.
<pub-id pub-id-type="pmid">31278580</pub-id>
</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13">
<name>
<surname>Soler</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Huertas</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Lechuga</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Label-Free Plasmonic Biosensors for Point-of-Care Diagnostics: A Review</article-title>
.
<source>Expert Rev. Mol. Diagn.</source>
<year>2019</year>
,
<volume>19</volume>
,
<fpage>71</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="doi">10.1080/14737159.2019.1554435</pub-id>
.
<pub-id pub-id-type="pmid">30513011</pub-id>
</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14">
<name>
<surname>Masson</surname>
<given-names>J. F.</given-names>
</name>
<article-title>Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics</article-title>
.
<source>ACS Sens</source>
<year>2017</year>
,
<volume>2</volume>
,
<fpage>16</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="doi">10.1021/acssensors.6b00763</pub-id>
.
<pub-id pub-id-type="pmid">28722437</pub-id>
</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Haes</surname>
<given-names>A. J.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Klein</surname>
<given-names>W. L.</given-names>
</name>
;
<name>
<surname>Van Duyne</surname>
<given-names>R. P.</given-names>
</name>
<article-title>Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2005</year>
,
<volume>127</volume>
,
<fpage>2264</fpage>
<lpage>2271</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja044087q</pub-id>
.
<pub-id pub-id-type="pmid">15713105</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16">
<name>
<surname>Willets</surname>
<given-names>K. A.</given-names>
</name>
;
<name>
<surname>Van Duyne</surname>
<given-names>R. P.</given-names>
</name>
<article-title>Localized Surface Plasmon Resonance Spectroscopy and Sensing</article-title>
.
<source>Annu. Rev. Phys. Chem.</source>
<year>2007</year>
,
<volume>58</volume>
,
<fpage>267</fpage>
<lpage>297</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.physchem.58.032806.104607</pub-id>
.
<pub-id pub-id-type="pmid">17067281</pub-id>
</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17">
<name>
<surname>Anker</surname>
<given-names>J. N.</given-names>
</name>
;
<name>
<surname>Hall</surname>
<given-names>W. P.</given-names>
</name>
;
<name>
<surname>Lyandres</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Shah</surname>
<given-names>N. C.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Van Duyne</surname>
<given-names>R. P.</given-names>
</name>
<article-title>Biosensing with Plasmonic Nanosensors</article-title>
.
<source>Nat. Mater.</source>
<year>2008</year>
,
<volume>7</volume>
,
<fpage>442</fpage>
<lpage>453</lpage>
.
<pub-id pub-id-type="doi">10.1038/nmat2162</pub-id>
.
<pub-id pub-id-type="pmid">18497851</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18">
<name>
<surname>Qiu</surname>
<given-names>G. Y.</given-names>
</name>
;
<name>
<surname>Ng</surname>
<given-names>S. P.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>C. M. L.</given-names>
</name>
<article-title>Bimetallic Au-Ag Alloy Nanoislands for Highly Sensitive Localized Surface Plasmon Resonance Biosensing</article-title>
.
<source>Sens. Actuators, B</source>
<year>2018</year>
,
<volume>265</volume>
,
<fpage>459</fpage>
<lpage>467</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.snb.2018.03.066</pub-id>
.</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>Qiu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Thakur</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Ng</surname>
<given-names>S. P.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>C. M. L.</given-names>
</name>
<article-title>Detection of Glioma-Derived Exosomes with the Biotinylated Antibody-Functionalized Titanium Nitride Plasmonic Biosensor</article-title>
.
<source>Adv. Funct. Mater.</source>
<year>2019</year>
,
<volume>29</volume>
,
<fpage>1806761</fpage>
<pub-id pub-id-type="doi">10.1002/adfm.201806761</pub-id>
.</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20">
<name>
<surname>Wrapp</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Corbett</surname>
<given-names>K. S.</given-names>
</name>
;
<name>
<surname>Goldsmith</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Hsieh</surname>
<given-names>C.-L.</given-names>
</name>
;
<name>
<surname>Abiona</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Graham</surname>
<given-names>B. S.</given-names>
</name>
;
<name>
<surname>McLellan</surname>
<given-names>J. S.</given-names>
</name>
<article-title>Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation</article-title>
.
<source>Science</source>
<year>2020</year>
,
<volume>367</volume>
,
<fpage>1260</fpage>
<lpage>1263</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.abb2507</pub-id>
.
<pub-id pub-id-type="pmid">32075877</pub-id>
</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21">
<name>
<surname>Zhang</surname>
<given-names>D. Y.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>S. X.</given-names>
</name>
;
<name>
<surname>Yin</surname>
<given-names>P.</given-names>
</name>
<article-title>Optimizing the Specificity of Nucleic Acid Hybridization</article-title>
.
<source>Nat. Chem.</source>
<year>2012</year>
,
<volume>4</volume>
,
<fpage>208</fpage>
<pub-id pub-id-type="doi">10.1038/nchem.1246</pub-id>
.
<pub-id pub-id-type="pmid">22354435</pub-id>
</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22">
<name>
<surname>Stehr</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Hrelescu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Sperling</surname>
<given-names>R. A.</given-names>
</name>
;
<name>
<surname>Raschke</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Wunderlich</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Nichtl</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Heindl</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Kürzinger</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Parak</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Klar</surname>
<given-names>T. A.</given-names>
</name>
<article-title>Gold Nanostoves for Microsecond DNA Melting Analysis</article-title>
.
<source>Nano Lett.</source>
<year>2008</year>
,
<volume>8</volume>
,
<fpage>619</fpage>
<lpage>623</lpage>
.
<pub-id pub-id-type="doi">10.1021/nl073028i</pub-id>
.
<pub-id pub-id-type="pmid">18220441</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Zhang</surname>
<given-names>J. X.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>J. Z.</given-names>
</name>
;
<name>
<surname>Duan</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>L. R.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>A. W.</given-names>
</name>
;
<name>
<surname>Dalchau</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Yordanov</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Petersen</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Phillips</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>D. Y.</given-names>
</name>
<article-title>Predicting DNA Hybridization Kinetics from Sequence</article-title>
.
<source>Nat. Chem.</source>
<year>2018</year>
,
<volume>10</volume>
,
<fpage>91</fpage>
<lpage>98</lpage>
.
<pub-id pub-id-type="doi">10.1038/nchem.2877</pub-id>
.
<pub-id pub-id-type="pmid">29256499</pub-id>
</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Harris</surname>
<given-names>N. C.</given-names>
</name>
;
<name>
<surname>Kiang</surname>
<given-names>C.-H.</given-names>
</name>
<article-title>Defects Can Increase the Melting Temperature of DNA– Nanoparticle Assemblies</article-title>
.
<source>J. Phys. Chem. B</source>
<year>2006</year>
,
<volume>110</volume>
,
<fpage>16393</fpage>
<lpage>16396</lpage>
.
<pub-id pub-id-type="doi">10.1021/jp062287d</pub-id>
.
<pub-id pub-id-type="pmid">16913768</pub-id>
</mixed-citation>
</ref>
<ref id="ref25">
<mixed-citation publication-type="journal" id="cit25">
<name>
<surname>Jauffred</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Samadi</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Klingberg</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Bendix</surname>
<given-names>P. M.</given-names>
</name>
;
<name>
<surname>Oddershede</surname>
<given-names>L. B.</given-names>
</name>
<article-title>Plasmonic Heating of Nanostructures</article-title>
.
<source>Chem. Rev.</source>
<year>2019</year>
,
<volume>119</volume>
,
<fpage>8087</fpage>
<lpage>8130</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.chemrev.8b00738</pub-id>
.
<pub-id pub-id-type="pmid">31125213</pub-id>
</mixed-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26">
<name>
<surname>Lee</surname>
<given-names>J. H.</given-names>
</name>
;
<name>
<surname>Cheglakov</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Yi</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Cronin</surname>
<given-names>T. M.</given-names>
</name>
;
<name>
<surname>Gibson</surname>
<given-names>K. J.</given-names>
</name>
;
<name>
<surname>Tian</surname>
<given-names>B. Z.</given-names>
</name>
;
<name>
<surname>Weizmann</surname>
<given-names>Y.</given-names>
</name>
<article-title>Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2017</year>
,
<volume>139</volume>
,
<fpage>8054</fpage>
<lpage>8057</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.7b01779</pub-id>
.
<pub-id pub-id-type="pmid">28457135</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<mixed-citation publication-type="journal" id="cit27">
<name>
<surname>Son</surname>
<given-names>J. H.</given-names>
</name>
;
<name>
<surname>Cho</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Hong</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>S. H.</given-names>
</name>
;
<name>
<surname>Hoxha</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Haack</surname>
<given-names>A. J.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>L. P.</given-names>
</name>
<article-title>Ultrafast Photonic PCR</article-title>
.
<source>Light: Sci. Appl.</source>
<year>2015</year>
,
<volume>4</volume>
,
<elocation-id>e280</elocation-id>
<pub-id pub-id-type="doi">10.1038/lsa.2015.53</pub-id>
.</mixed-citation>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Kim</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>J. H.</given-names>
</name>
;
<name>
<surname>Nam</surname>
<given-names>J. M.</given-names>
</name>
<article-title>Plasmonic Photothermal Nanoparticles for Biomedical Applications</article-title>
.
<source>Adv. Sci.</source>
<year>2019</year>
,
<volume>6</volume>
,
<fpage>1900471</fpage>
<pub-id pub-id-type="doi">10.1002/advs.201900471</pub-id>
.</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Wang</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Nie</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Xing</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Lin</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Niu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<article-title>Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars</article-title>
.
<source>Adv. Mater.</source>
<year>2013</year>
,
<volume>25</volume>
,
<fpage>3055</fpage>
<lpage>3061</lpage>
.
<pub-id pub-id-type="doi">10.1002/adma.201204623</pub-id>
.
<pub-id pub-id-type="pmid">23404693</pub-id>
</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Qiu</surname>
<given-names>G. Y.</given-names>
</name>
;
<name>
<surname>Ng</surname>
<given-names>S. P.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>C. M. L.</given-names>
</name>
<article-title>Differential Phase-Detecting Localized Surface Plasmon Resonance Sensor with Self-Assembly Gold Nano-Islands</article-title>
.
<source>Opt. Lett.</source>
<year>2015</year>
,
<volume>40</volume>
,
<fpage>1924</fpage>
<lpage>1927</lpage>
.
<pub-id pub-id-type="doi">10.1364/OL.40.001924</pub-id>
.
<pub-id pub-id-type="pmid">25927749</pub-id>
</mixed-citation>
</ref>
<ref id="ref31">
<mixed-citation publication-type="journal" id="cit31">
<name>
<surname>Smolyaninov</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>El Amili</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Vallini</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Pappert</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Fainman</surname>
<given-names>Y.</given-names>
</name>
<article-title>Programmable Plasmonic Phase Modulation of Free-Space Wavefronts at Gigahertz Rates</article-title>
.
<source>Nat. Photonics</source>
<year>2019</year>
,
<volume>13</volume>
,
<fpage>431</fpage>
<lpage>435</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41566-019-0360-3</pub-id>
.</mixed-citation>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>Chen</surname>
<given-names>Z. X.</given-names>
</name>
;
<name>
<surname>Shan</surname>
<given-names>X. N.</given-names>
</name>
;
<name>
<surname>Guan</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>S. P.</given-names>
</name>
;
<name>
<surname>Zhu</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Tao</surname>
<given-names>N. J.</given-names>
</name>
<article-title>Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy</article-title>
.
<source>ACS Nano</source>
<year>2015</year>
,
<volume>9</volume>
,
<fpage>11574</fpage>
<lpage>11581</lpage>
.
<pub-id pub-id-type="doi">10.1021/acsnano.5b05306</pub-id>
.
<pub-id pub-id-type="pmid">26435320</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>Baffou</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Quidant</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>García de Abajo</surname>
<given-names>F. J.</given-names>
</name>
<article-title>Nanoscale Control of Optical Heating in Complex Plasmonic Systems</article-title>
.
<source>ACS Nano</source>
<year>2010</year>
,
<volume>4</volume>
,
<fpage>709</fpage>
<lpage>716</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn901144d</pub-id>
.
<pub-id pub-id-type="pmid">20055439</pub-id>
</mixed-citation>
</ref>
<ref id="ref34">
<mixed-citation publication-type="journal" id="cit34">
<name>
<surname>Baffou</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Bon</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Savatier</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Polleux</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Zhu</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Merlin</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Rigneault</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Monneret</surname>
<given-names>S.</given-names>
</name>
<article-title>Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis</article-title>
.
<source>ACS Nano</source>
<year>2012</year>
,
<volume>6</volume>
,
<fpage>2452</fpage>
<lpage>2458</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn2047586</pub-id>
.
<pub-id pub-id-type="pmid">22305011</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<mixed-citation publication-type="journal" id="cit35">
<name>
<surname>Zhu</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>D. Y.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>W. L.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X. W.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Song</surname>
<given-names>J. D.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>B. Y.</given-names>
</name>
;
<name>
<surname>Shi</surname>
<given-names>W. F.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>R. J.</given-names>
</name>
;
<name>
<surname>Niu</surname>
<given-names>P. H.</given-names>
</name>
;
<name>
<surname>Zhan</surname>
<given-names>F. X.</given-names>
</name>
;
<name>
<surname>Ma</surname>
<given-names>X. J.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>D. Y.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>W. B.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>G. Z.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>G. G. F.</given-names>
</name>
;
<name>
<surname>Tan</surname>
<given-names>W. J.</given-names>
</name>
<article-title>A Novel Coronavirus from Patients with Pneumonia in China, 2019</article-title>
.
<source>N. Engl. J. Med.</source>
<year>2020</year>
,
<volume>382</volume>
,
<fpage>727</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa2001017</pub-id>
.
<pub-id pub-id-type="pmid">31978945</pub-id>
</mixed-citation>
</ref>
<ref id="ref36">
<mixed-citation publication-type="journal" id="cit36">
<name>
<surname>Xu</surname>
<given-names>S. C.</given-names>
</name>
;
<name>
<surname>Zhan</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Man</surname>
<given-names>B. Y.</given-names>
</name>
;
<name>
<surname>Jiang</surname>
<given-names>S. Z.</given-names>
</name>
;
<name>
<surname>Yue</surname>
<given-names>W. W.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>S. B.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>C. G.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>H. P.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>Z. H.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>J. H.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>Y. Q.</given-names>
</name>
<article-title>Real-Time Reliable Determination of Binding Kinetics of DNA Hybridization Using a Multi-Channel Graphene Biosensor</article-title>
.
<source>Nat. Commun.</source>
<year>2017</year>
,
<pub-id pub-id-type="doi">10.1038/ncomms14902</pub-id>
.</mixed-citation>
</ref>
<ref id="ref37">
<mixed-citation publication-type="journal" id="cit37">
<name>
<surname>Schreiber</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Haran</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>H. X.</given-names>
</name>
<article-title>Fundamental Aspects of Protein-Protein Association Kinetics</article-title>
.
<source>Chem. Rev.</source>
<year>2009</year>
,
<volume>109</volume>
,
<fpage>839</fpage>
<lpage>860</lpage>
.
<pub-id pub-id-type="doi">10.1021/cr800373w</pub-id>
.
<pub-id pub-id-type="pmid">19196002</pub-id>
</mixed-citation>
</ref>
<ref id="ref38">
<mixed-citation publication-type="journal" id="cit38">
<name>
<surname>Qiu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Yue</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>Y.-B.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<article-title>Total Bioaerosols Detection by a Succinimidyl-Ester-Functionalized Plasmonic Biosensor to Reveal Different Characteristics at Three Locations in Switzerland</article-title>
.
<source>Environ. Sci. Technol.</source>
<year>2020</year>
,
<volume>54</volume>
,
<fpage>1353</fpage>
<lpage>1362</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.est.9b05184</pub-id>
.
<pub-id pub-id-type="pmid">31909609</pub-id>
</mixed-citation>
</ref>
<ref id="ref39">
<mixed-citation publication-type="journal" id="cit39">
<name>
<surname>Pan</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Poon</surname>
<given-names>L. L.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<article-title>Viral Load of SARS-CoV-2 in Clinical Samples</article-title>
.
<source>Lancet Infect. Dis.</source>
<year>2020</year>
,
<volume>20</volume>
,
<fpage>411</fpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(20)30113-4</pub-id>
.
<pub-id pub-id-type="pmid">32105638</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7158889
   |texte=   Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe
Acute Respiratory Syndrome Coronavirus 2 Detection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32281785" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021