Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity

Identifieur interne : 000A03 ( Pmc/Checkpoint ); précédent : 000A02; suivant : 000A04

Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity

Auteurs : Christopher C. Stobart ; Nicole R. Sexton ; Havisha Munjal ; Xiaotao Lu ; Katrina L. Molland ; Sakshi Tomar ; Andrew D. Mesecar ; Mark R. Denison

Source :

RBID : PMC:3838113

Abstract

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.


Url:
DOI: 10.1128/JVI.02050-13
PubMed: 24027335
PubMed Central: 3838113


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3838113

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity</title>
<author>
<name sortKey="Stobart, Christopher C" sort="Stobart, Christopher C" uniqKey="Stobart C" first="Christopher C." last="Stobart">Christopher C. Stobart</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R." last="Sexton">Nicole R. Sexton</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Munjal, Havisha" sort="Munjal, Havisha" uniqKey="Munjal H" first="Havisha" last="Munjal">Havisha Munjal</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Molland, Katrina L" sort="Molland, Katrina L" uniqKey="Molland K" first="Katrina L." last="Molland">Katrina L. Molland</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D." last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R." last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24027335</idno>
<idno type="pmc">3838113</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838113</idno>
<idno type="RBID">PMC:3838113</idno>
<idno type="doi">10.1128/JVI.02050-13</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000C79</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000C79</idno>
<idno type="wicri:Area/Pmc/Curation">000C79</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000C79</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000A03</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000A03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity</title>
<author>
<name sortKey="Stobart, Christopher C" sort="Stobart, Christopher C" uniqKey="Stobart C" first="Christopher C." last="Stobart">Christopher C. Stobart</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R." last="Sexton">Nicole R. Sexton</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Munjal, Havisha" sort="Munjal, Havisha" uniqKey="Munjal H" first="Havisha" last="Munjal">Havisha Munjal</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Molland, Katrina L" sort="Molland, Katrina L" uniqKey="Molland K" first="Katrina L." last="Molland">Katrina L. Molland</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D." last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R." last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Virology</title>
<idno type="ISSN">0022-538X</idno>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Virol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Virol</journal-id>
<journal-id journal-id-type="hwp">jvi</journal-id>
<journal-id journal-id-type="pmc">jvi</journal-id>
<journal-id journal-id-type="publisher-id">JVI</journal-id>
<journal-title-group>
<journal-title>Journal of Virology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-538X</issn>
<issn pub-type="epub">1098-5514</issn>
<publisher>
<publisher-name>American Society for Microbiology</publisher-name>
<publisher-loc>1752 N St., N.W., Washington, DC</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24027335</article-id>
<article-id pub-id-type="pmc">3838113</article-id>
<article-id pub-id-type="publisher-id">02050-13</article-id>
<article-id pub-id-type="doi">10.1128/JVI.02050-13</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Genome Replication and Regulation of Viral Gene Expression</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Stobart</surname>
<given-names>Christopher C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sexton</surname>
<given-names>Nicole R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Munjal</surname>
<given-names>Havisha</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Xiaotao</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Molland</surname>
<given-names>Katrina L.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tomar</surname>
<given-names>Sakshi</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mesecar</surname>
<given-names>Andrew D.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>e</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Denison</surname>
<given-names>Mark R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
</contrib>
<aff id="aff1">Departments of Pathology, Microbiology, and Immunology
<label>a</label>
</aff>
<aff id="aff2">Pediatrics
<label>b</label>
</aff>
<aff id="aff3">Elizabeth B. Lamb Center for Pediatric Research,
<label>c</label>
Vanderbilt University Medical Center, Nashville, Tennessee, USA</aff>
<aff id="aff4">Departments of Biological Sciences
<label>d</label>
</aff>
<aff id="aff5">Chemistry,
<label>e</label>
Purdue University, West Lafayette, Indiana, USA</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Address correspondence to Mark R. Denison,
<email>mark.denison@vanderbilt.edu</email>
.</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>12</month>
<year>2013</year>
</pub-date>
<volume>87</volume>
<issue>23</issue>
<fpage>12611</fpage>
<lpage>12618</lpage>
<history>
<date date-type="received">
<day>22</day>
<month>7</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013, American Society for Microbiology. All Rights Reserved.</copyright-statement>
<copyright-year>2013</copyright-year>
<copyright-holder>American Society for Microbiology</copyright-holder>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="zjv02313012611.pdf"></self-uri>
<abstract>
<p>Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.</p>
</abstract>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R." last="Denison">Mark R. Denison</name>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D." last="Mesecar">Andrew D. Mesecar</name>
<name sortKey="Molland, Katrina L" sort="Molland, Katrina L" uniqKey="Molland K" first="Katrina L." last="Molland">Katrina L. Molland</name>
<name sortKey="Munjal, Havisha" sort="Munjal, Havisha" uniqKey="Munjal H" first="Havisha" last="Munjal">Havisha Munjal</name>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R." last="Sexton">Nicole R. Sexton</name>
<name sortKey="Stobart, Christopher C" sort="Stobart, Christopher C" uniqKey="Stobart C" first="Christopher C." last="Stobart">Christopher C. Stobart</name>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000A03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3838113
   |texte=   Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:24027335" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021