Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction

Identifieur interne : 000811 ( Pmc/Checkpoint ); précédent : 000810; suivant : 000812

Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction

Auteurs : Shannon M. Fast [États-Unis] ; Marta C. González [États-Unis] ; Natasha Markuzon [États-Unis]

Source :

RBID : PMC:4542207

Abstract

Background

Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence.

Methodology

The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response.

Conclusions

The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy.


Url:
DOI: 10.1371/journal.pone.0136059
PubMed: 26288274
PubMed Central: 4542207


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4542207

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction</title>
<author>
<name sortKey="Fast, Shannon M" sort="Fast, Shannon M" uniqKey="Fast S" first="Shannon M." last="Fast">Shannon M. Fast</name>
<affiliation wicri:level="2">
<nlm:aff id="aff001">
<addr-line>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Marta C" sort="Gonzalez, Marta C" uniqKey="Gonzalez M" first="Marta C." last="González">Marta C. González</name>
<affiliation wicri:level="2">
<nlm:aff id="aff002">
<addr-line>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Markuzon, Natasha" sort="Markuzon, Natasha" uniqKey="Markuzon N" first="Natasha" last="Markuzon">Natasha Markuzon</name>
<affiliation wicri:level="2">
<nlm:aff id="aff001">
<addr-line>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26288274</idno>
<idno type="pmc">4542207</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542207</idno>
<idno type="RBID">PMC:4542207</idno>
<idno type="doi">10.1371/journal.pone.0136059</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">001345</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001345</idno>
<idno type="wicri:Area/Pmc/Curation">001345</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001345</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000811</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000811</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction</title>
<author>
<name sortKey="Fast, Shannon M" sort="Fast, Shannon M" uniqKey="Fast S" first="Shannon M." last="Fast">Shannon M. Fast</name>
<affiliation wicri:level="2">
<nlm:aff id="aff001">
<addr-line>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Marta C" sort="Gonzalez, Marta C" uniqKey="Gonzalez M" first="Marta C." last="González">Marta C. González</name>
<affiliation wicri:level="2">
<nlm:aff id="aff002">
<addr-line>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Markuzon, Natasha" sort="Markuzon, Natasha" uniqKey="Markuzon N" first="Natasha" last="Markuzon">Natasha Markuzon</name>
<affiliation wicri:level="2">
<nlm:aff id="aff001">
<addr-line>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="sec001">
<title>Background</title>
<p>Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence.</p>
</sec>
<sec id="sec002">
<title>Methodology</title>
<p>The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Fauci, As" uniqKey="Fauci A">AS Fauci</name>
</author>
<author>
<name sortKey="Morens, Dm" uniqKey="Morens D">DM Morens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Araz, Om" uniqKey="Araz O">OM Araz</name>
</author>
<author>
<name sortKey="Damien, P" uniqKey="Damien P">P Damien</name>
</author>
<author>
<name sortKey="Paltiel, Da" uniqKey="Paltiel D">DA Paltiel</name>
</author>
<author>
<name sortKey="Burke, S" uniqKey="Burke S">S Burke</name>
</author>
<author>
<name sortKey="Van De Geijn, B" uniqKey="Van De Geijn B">B van de Geijn</name>
</author>
<author>
<name sortKey="Galvani, A" uniqKey="Galvani A">A Galvani</name>
</author>
<author>
<name sortKey="Meyers, La" uniqKey="Meyers L">LA Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baguelin, M" uniqKey="Baguelin M">M Baguelin</name>
</author>
<author>
<name sortKey="Van Hoek, Aj" uniqKey="Van Hoek A">AJ Van Hoek</name>
</author>
<author>
<name sortKey="Jit, M" uniqKey="Jit M">M Jit</name>
</author>
<author>
<name sortKey="Flasche, S" uniqKey="Flasche S">S Flasche</name>
</author>
<author>
<name sortKey="White, Pj" uniqKey="White P">PJ White</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelso, Jk" uniqKey="Kelso J">JK Kelso</name>
</author>
<author>
<name sortKey="Halder, N" uniqKey="Halder N">N Halder</name>
</author>
<author>
<name sortKey="Postma, J" uniqKey="Postma J">J Postma</name>
</author>
<author>
<name sortKey="Milne, Gj" uniqKey="Milne G">GJ Milne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perlroth, Dj" uniqKey="Perlroth D">DJ Perlroth</name>
</author>
<author>
<name sortKey="Glass, Rj" uniqKey="Glass R">RJ Glass</name>
</author>
<author>
<name sortKey="Davey, Vj" uniqKey="Davey V">VJ Davey</name>
</author>
<author>
<name sortKey="Cannon, D" uniqKey="Cannon D">D Cannon</name>
</author>
<author>
<name sortKey="Garber, Am" uniqKey="Garber A">AM Garber</name>
</author>
<author>
<name sortKey="Owens, Dk" uniqKey="Owens D">DK Owens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strong, P" uniqKey="Strong P">P Strong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgrath, Jw" uniqKey="Mcgrath J">JW McGrath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaracostas, J" uniqKey="Zaracostas J">J Zaracostas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, C" uniqKey="Cheng C">C Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinsman, J" uniqKey="Kinsman J">J Kinsman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasperson, Re" uniqKey="Kasperson R">RE Kasperson</name>
</author>
<author>
<name sortKey="Renn, O" uniqKey="Renn O">O Renn</name>
</author>
<author>
<name sortKey="Slovic, P" uniqKey="Slovic P">P Slovic</name>
</author>
<author>
<name sortKey="Brown, Hs" uniqKey="Brown H">HS Brown</name>
</author>
<author>
<name sortKey="Emel, J" uniqKey="Emel J">J Emel</name>
</author>
<author>
<name sortKey="Goble, R" uniqKey="Goble R">R Goble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fast, Sm" uniqKey="Fast S">SM Fast</name>
</author>
<author>
<name sortKey="Gonzalez, Mc" uniqKey="Gonzalez M">MC González</name>
</author>
<author>
<name sortKey="Wilson, Jm" uniqKey="Wilson J">JM Wilson</name>
</author>
<author>
<name sortKey="Markuzon, N" uniqKey="Markuzon N">N Markuzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hildalgo, Ca" uniqKey="Hildalgo C">CA Hildalgo</name>
</author>
<author>
<name sortKey="Barabasi, A L" uniqKey="Barabasi A">A-L Barabasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonneux, L" uniqKey="Bonneux L">L Bonneux</name>
</author>
<author>
<name sortKey="Damme, Wv" uniqKey="Damme W">WV Damme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilman, Sl" uniqKey="Gilman S">SL Gilman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maharaj, S" uniqKey="Maharaj S">S Maharaj</name>
</author>
<author>
<name sortKey="Kleczkowski, A" uniqKey="Kleczkowski A">A Kleczkowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rassy, D" uniqKey="Rassy D">D Rassy</name>
</author>
<author>
<name sortKey="Smith, Rd" uniqKey="Smith R">RD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26288274</article-id>
<article-id pub-id-type="pmc">4542207</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-24959</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0136059</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction</article-title>
<alt-title alt-title-type="running-head">Cost-Effective Disease Control Accounting for Societal Reaction</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Fast</surname>
<given-names>Shannon M.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>González</surname>
<given-names>Marta C.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Markuzon</surname>
<given-names>Natasha</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Information and Decision Systems Division, The Charles Stark Draper Laboratory, Cambridge, MA, United States of America</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Bauch</surname>
<given-names>Chris T.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Waterloo, CANADA</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: SF MG NM. Performed the experiments: SF. Analyzed the data: SF. Wrote the paper: SF MG NM.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>nmarkuzon@draper.com</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>19</day>
<month>8</month>
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>8</issue>
<elocation-id>e0136059</elocation-id>
<history>
<date date-type="received">
<day>8</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>7</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 Fast et al</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Fast et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0136059.pdf"></self-uri>
<abstract>
<sec id="sec001">
<title>Background</title>
<p>Studies of cost-effective disease prevention have typically focused on the tradeoff between the cost of disease transmission and the cost of applying control measures. We present a novel approach that also accounts for the cost of social disruptions resulting from the spread of disease. These disruptions, which we call social response, can include heightened anxiety, strain on healthcare infrastructure, economic losses, or violence.</p>
</sec>
<sec id="sec002">
<title>Methodology</title>
<p>The spread of disease and social response are simulated under several different intervention strategies. The modeled social response depends upon the perceived risk of the disease, the extent of disease spread, and the media involvement. Using Monte Carlo simulation, we estimate the total number of infections and total social response for each strategy. We then identify the strategy that minimizes the expected total cost of the disease, which includes the cost of the disease itself, the cost of control measures, and the cost of social response.</p>
</sec>
<sec id="sec003">
<title>Conclusions</title>
<p>The model-based simulations suggest that the least-cost disease control strategy depends upon the perceived risk of the disease, as well as media intervention. The most cost-effective solution for diseases with low perceived risk was to implement moderate control measures. For diseases with higher perceived severity, such as SARS or Ebola, the most cost-effective strategy shifted toward intervening earlier in the outbreak, with greater resources. When intervention elicited increased media involvement, it remained important to control high severity diseases quickly. For moderate severity diseases, however, it became most cost-effective to implement no intervention and allow the disease to run its course. Our simulation results imply that, when diseases are perceived as severe, the costs of social response have a significant influence on selecting the most cost-effective strategy.</p>
</sec>
</abstract>
<funding-group>
<funding-statement>This research was funded by the US Defense Threat Reduction Agency (
<ext-link ext-link-type="uri" xlink:href="http://www.dtra.mil">www.dtra.mil</ext-link>
) contract HDTRA1-12-C-0061. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="2"></table-count>
<page-count count="12"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Fast, Shannon M" sort="Fast, Shannon M" uniqKey="Fast S" first="Shannon M." last="Fast">Shannon M. Fast</name>
</region>
<name sortKey="Gonzalez, Marta C" sort="Gonzalez, Marta C" uniqKey="Gonzalez M" first="Marta C." last="González">Marta C. González</name>
<name sortKey="Markuzon, Natasha" sort="Markuzon, Natasha" uniqKey="Markuzon N" first="Natasha" last="Markuzon">Natasha Markuzon</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000811 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000811 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4542207
   |texte=   Cost-Effective Control of Infectious Disease Outbreaks Accounting for Societal Reaction
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:26288274" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021