Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion

Identifieur interne : 000690 ( PascalFrancis/Curation ); précédent : 000689; suivant : 000691

Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion

Auteurs : Megan W. Howard [États-Unis] ; Emily A. Travanty [États-Unis] ; Scott A. Jeffers [États-Unis] ; M. K. Smith [États-Unis] ; Sonia T. Wennier [États-Unis] ; Larissa B. Thackray [États-Unis] ; Kathryn V. Holmes [États-Unis]

Source :

RBID : Pascal:08-0181306

Descripteurs français

English descriptors

Abstract

The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S A19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S A19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S A19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.
pA  
A01 01  1    @0 0022-538X
A03   1    @0 J. virol.
A05       @2 82
A06       @2 6
A08 01  1  ENG  @1 Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion
A11 01  1    @1 HOWARD (Megan W.)
A11 02  1    @1 TRAVANTY (Emily A.)
A11 03  1    @1 JEFFERS (Scott A.)
A11 04  1    @1 SMITH (M. K.)
A11 05  1    @1 WENNIER (Sonia T.)
A11 06  1    @1 THACKRAY (Larissa B.)
A11 07  1    @1 HOLMES (Kathryn V.)
A14 01      @1 Department of Microbiology, University of Colorado Denver School of Medicine @2 Aurora, Colorado 80045 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 Graduate Program in Molecular Biology, University of Colorado Denver School of Medicine @2 Aurora, Colorado 80045 @3 USA @Z 5 aut.
A20       @1 2883-2894
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 13592 @5 354000183723500280
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 59 ref.
A47 01  1    @0 08-0181306
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of virology
A66 01      @0 USA
C01 01    ENG  @0 The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S A19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S A19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S A19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.
C02 01  X    @0 002A05C10
C03 01  X  FRE  @0 Coronavirus @2 NW @5 01
C03 01  X  ENG  @0 Coronavirus @2 NW @5 01
C03 01  X  SPA  @0 Coronavirus @2 NW @5 01
C03 02  X  FRE  @0 Aigu @5 05
C03 02  X  ENG  @0 Acute @5 05
C03 02  X  SPA  @0 Agudo @5 05
C03 03  X  FRE  @0 Glycoprotéine @5 06
C03 03  X  ENG  @0 Glycoprotein @5 06
C03 03  X  SPA  @0 Glicoproteína @5 06
C03 04  X  FRE  @0 Récepteur biologique @5 07
C03 04  X  ENG  @0 Biological receptor @5 07
C03 04  X  SPA  @0 Receptor biológico @5 07
C03 05  X  FRE  @0 Fusion cellulaire @5 08
C03 05  X  ENG  @0 Cell fusion @5 08
C03 05  X  SPA  @0 Fusión celular @5 08
C03 06  X  FRE  @0 Virologie @5 09
C03 06  X  ENG  @0 Virology @5 09
C03 06  X  SPA  @0 Virología @5 09
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
N21       @1 112
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0181306

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion</title>
<author>
<name sortKey="Howard, Megan W" sort="Howard, Megan W" uniqKey="Howard M" first="Megan W." last="Howard">Megan W. Howard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Travanty, Emily A" sort="Travanty, Emily A" uniqKey="Travanty E" first="Emily A." last="Travanty">Emily A. Travanty</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Jeffers, Scott A" sort="Jeffers, Scott A" uniqKey="Jeffers S" first="Scott A." last="Jeffers">Scott A. Jeffers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Smith, M K" sort="Smith, M K" uniqKey="Smith M" first="M. K." last="Smith">M. K. Smith</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Wennier, Sonia T" sort="Wennier, Sonia T" uniqKey="Wennier S" first="Sonia T." last="Wennier">Sonia T. Wennier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate Program in Molecular Biology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Thackray, Larissa B" sort="Thackray, Larissa B" uniqKey="Thackray L" first="Larissa B." last="Thackray">Larissa B. Thackray</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Kathryn V" sort="Holmes, Kathryn V" uniqKey="Holmes K" first="Kathryn V." last="Holmes">Kathryn V. Holmes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0181306</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0181306 INIST</idno>
<idno type="RBID">Pascal:08-0181306</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000298</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000690</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion</title>
<author>
<name sortKey="Howard, Megan W" sort="Howard, Megan W" uniqKey="Howard M" first="Megan W." last="Howard">Megan W. Howard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Travanty, Emily A" sort="Travanty, Emily A" uniqKey="Travanty E" first="Emily A." last="Travanty">Emily A. Travanty</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Jeffers, Scott A" sort="Jeffers, Scott A" uniqKey="Jeffers S" first="Scott A." last="Jeffers">Scott A. Jeffers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Smith, M K" sort="Smith, M K" uniqKey="Smith M" first="M. K." last="Smith">M. K. Smith</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Wennier, Sonia T" sort="Wennier, Sonia T" uniqKey="Wennier S" first="Sonia T." last="Wennier">Sonia T. Wennier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate Program in Molecular Biology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Thackray, Larissa B" sort="Thackray, Larissa B" uniqKey="Thackray L" first="Larissa B." last="Thackray">Larissa B. Thackray</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Kathryn V" sort="Holmes, Kathryn V" uniqKey="Holmes K" first="Kathryn V." last="Holmes">Kathryn V. Holmes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acute</term>
<term>Biological receptor</term>
<term>Cell fusion</term>
<term>Coronavirus</term>
<term>Glycoprotein</term>
<term>Virology</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coronavirus</term>
<term>Aigu</term>
<term>Glycoprotéine</term>
<term>Récepteur biologique</term>
<term>Fusion cellulaire</term>
<term>Virologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S A19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S A19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S A19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-538X</s0>
</fA01>
<fA03 i2="1">
<s0>J. virol.</s0>
</fA03>
<fA05>
<s2>82</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HOWARD (Megan W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TRAVANTY (Emily A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JEFFERS (Scott A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SMITH (M. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WENNIER (Sonia T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>THACKRAY (Larissa B.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HOLMES (Kathryn V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Microbiology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate Program in Molecular Biology, University of Colorado Denver School of Medicine</s1>
<s2>Aurora, Colorado 80045</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2883-2894</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13592</s2>
<s5>354000183723500280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>59 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0181306</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of virology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S A19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S A19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S A19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Aigu</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Acute</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Agudo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Glycoprotéine</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Glycoprotein</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Glicoproteína</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Récepteur biologique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Biological receptor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Receptor biológico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Fusion cellulaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cell fusion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fusión celular</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Virologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Virology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Virología</s0>
<s5>09</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>112</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000690 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000690 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0181306
   |texte=   Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021