Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry

Identifieur interne : 000184 ( PascalFrancis/Curation ); précédent : 000183; suivant : 000185

Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry

Auteurs : Mayuko Takeda-Shitaka [Japon] ; Daisuke Takaya [Japon] ; Chieko Chiba [Japon] ; Hirokazu Tanaka [Japon] ; Hideaki Umeyama [Japon]

Source :

RBID : Pascal:04-0517242

Descripteurs français

English descriptors

Abstract

The human genome and other genome sequencing projects have generated huge amounts of protein sequence information. Recently, a structural genomics project that aims to determine at-least one representative three-dimensional structure from every protein family experimentally has been started. Homology modeling will play an essential role in structure based drug design such as in silico screening; because based on these representative structures the three-dimensional structures of the remaining proteins encoded in the various genomes can be predicted by homology modeling. The results of the last Critical Assessment of Techniques for Protein Structure Prediction (CASP5) demonstrated that the quality of homology modeling prediction has improved; reaching a level of reliability that biologists can now confidently use homology modeling. With improvements in modeling software and the growing number of known protein structures, homology modeling is becoming a more and more powerful and reliable tool. The present paper discusses the features and roles of homology modeling in structure based drug design, and describes the CHIMERA and FAMS modeling systems as examples. For a sample application, homology modeling of non-structural proteins of the severe acute respiratory syndrome (SARS) coronavirus is discussed. Many biological functions involve formation of protein-protein complexes; in which the protein molecules behave dynamically in the course of binding. Therefore, an understanding of protein-protein interaction will be very important for structure based drug design. To this end, normal mode analysis is useful. The present paper discusses the prediction of protein-protein interaction using normal mode analysis and examples of applications are given.
pA  
A01 01  1    @0 0929-8673
A03   1    @0 Curr. med. chem.
A05       @2 11
A06       @2 5
A08 01  1  ENG  @1 Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry
A11 01  1    @1 TAKEDA-SHITAKA (Mayuko)
A11 02  1    @1 TAKAYA (Daisuke)
A11 03  1    @1 CHIBA (Chieko)
A11 04  1    @1 TANAKA (Hirokazu)
A11 05  1    @1 UMEYAMA (Hideaki)
A14 01      @1 School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane @2 Minato-ku, Tokyo 108-8641 @3 JPN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 551-558
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 22999 @5 354000117028920030
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 60 ref.
A47 01  1    @0 04-0517242
A60       @1 P
A61       @0 A
A64 01  1    @0 Current medicinal chemistry
A66 01      @0 NLD
C01 01    ENG  @0 The human genome and other genome sequencing projects have generated huge amounts of protein sequence information. Recently, a structural genomics project that aims to determine at-least one representative three-dimensional structure from every protein family experimentally has been started. Homology modeling will play an essential role in structure based drug design such as in silico screening; because based on these representative structures the three-dimensional structures of the remaining proteins encoded in the various genomes can be predicted by homology modeling. The results of the last Critical Assessment of Techniques for Protein Structure Prediction (CASP5) demonstrated that the quality of homology modeling prediction has improved; reaching a level of reliability that biologists can now confidently use homology modeling. With improvements in modeling software and the growing number of known protein structures, homology modeling is becoming a more and more powerful and reliable tool. The present paper discusses the features and roles of homology modeling in structure based drug design, and describes the CHIMERA and FAMS modeling systems as examples. For a sample application, homology modeling of non-structural proteins of the severe acute respiratory syndrome (SARS) coronavirus is discussed. Many biological functions involve formation of protein-protein complexes; in which the protein molecules behave dynamically in the course of binding. Therefore, an understanding of protein-protein interaction will be very important for structure based drug design. To this end, normal mode analysis is useful. The present paper discusses the prediction of protein-protein interaction using normal mode analysis and examples of applications are given.
C02 01  X    @0 002B02W
C03 01  X  FRE  @0 Article synthèse @5 01
C03 01  X  ENG  @0 Review @5 01
C03 01  X  SPA  @0 Artículo síntesis @5 01
C03 02  X  FRE  @0 Relation structure activité @5 03
C03 02  X  ENG  @0 Structure activity relation @5 03
C03 02  X  SPA  @0 Relación estructura actividad @5 03
C03 03  X  FRE  @0 Prédiction @5 08
C03 03  X  ENG  @0 Prediction @5 08
C03 03  X  SPA  @0 Predicción @5 08
C03 04  X  FRE  @0 Structure @5 09
C03 04  X  ENG  @0 Structure @5 09
C03 04  X  SPA  @0 Estructura @5 09
C03 05  X  FRE  @0 Protéine @5 10
C03 05  X  ENG  @0 Protein @5 10
C03 05  X  SPA  @0 Proteína @5 10
C03 06  X  FRE  @0 Structure secondaire @5 11
C03 06  X  ENG  @0 Secondary structure @5 11
C03 06  X  SPA  @0 Estructura secundaria @5 11
C03 07  X  FRE  @0 Génomique @5 13
C03 07  X  ENG  @0 Genomics @5 13
C03 07  X  SPA  @0 Genómica @5 13
C03 08  X  FRE  @0 Interaction moléculaire @5 15
C03 08  X  ENG  @0 Molecular interaction @5 15
C03 08  X  SPA  @0 Interacción molecular @5 15
C03 09  X  FRE  @0 Modélisation @5 16
C03 09  X  ENG  @0 Modeling @5 16
C03 09  X  SPA  @0 Modelización @5 16
C03 10  X  FRE  @0 Modèle moléculaire @5 17
C03 10  X  ENG  @0 Molecular model @5 17
C03 10  X  SPA  @0 Modelo molecular @5 17
C03 11  X  FRE  @0 Homologie @5 18
C03 11  X  ENG  @0 Homology @5 18
C03 11  X  SPA  @0 Homología @5 18
C03 12  X  FRE  @0 Coronavirus @2 NW @5 20
C03 12  X  ENG  @0 Coronavirus @2 NW @5 20
C03 12  X  SPA  @0 Coronavirus @2 NW @5 20
C03 13  X  FRE  @0 Syndrome respiratoire aigu sévère @2 NM @5 21
C03 13  X  ENG  @0 Severe acute respiratory syndrome @2 NM @5 21
C03 13  X  SPA  @0 Síndrome respiratorio agudo severo @2 NM @5 21
C03 14  X  FRE  @0 RNA-directed RNA polymerase @2 FE @5 23
C03 14  X  ENG  @0 RNA-directed RNA polymerase @2 FE @5 23
C03 14  X  SPA  @0 RNA-directed RNA polymerase @2 FE @5 23
C03 15  X  FRE  @0 Site actif @5 24
C03 15  X  ENG  @0 Active site @5 24
C03 15  X  SPA  @0 Lugar activo @5 24
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
C07 04  X  FRE  @0 Virose @2 NM
C07 04  X  ENG  @0 Viral disease @2 NM
C07 04  X  SPA  @0 Virosis @2 NM
C07 05  X  FRE  @0 Infection @2 NM
C07 05  X  ENG  @0 Infection @2 NM
C07 05  X  SPA  @0 Infección @2 NM
C07 06  X  FRE  @0 Nucleotidyltransferases @2 FE
C07 06  X  ENG  @0 Nucleotidyltransferases @2 FE
C07 06  X  SPA  @0 Nucleotidyltransferases @2 FE
C07 07  X  FRE  @0 Transferases @2 FE
C07 07  X  ENG  @0 Transferases @2 FE
C07 07  X  SPA  @0 Transferases @2 FE
C07 08  X  FRE  @0 Enzyme @2 FE
C07 08  X  ENG  @0 Enzyme @2 FE
C07 08  X  SPA  @0 Enzima @2 FE
N21       @1 292
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0517242

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry</title>
<author>
<name sortKey="Takeda Shitaka, Mayuko" sort="Takeda Shitaka, Mayuko" uniqKey="Takeda Shitaka M" first="Mayuko" last="Takeda-Shitaka">Mayuko Takeda-Shitaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Takaya, Daisuke" sort="Takaya, Daisuke" uniqKey="Takaya D" first="Daisuke" last="Takaya">Daisuke Takaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Chiba, Chieko" sort="Chiba, Chieko" uniqKey="Chiba C" first="Chieko" last="Chiba">Chieko Chiba</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hirokazu" sort="Tanaka, Hirokazu" uniqKey="Tanaka H" first="Hirokazu" last="Tanaka">Hirokazu Tanaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Umeyama, Hideaki" sort="Umeyama, Hideaki" uniqKey="Umeyama H" first="Hideaki" last="Umeyama">Hideaki Umeyama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0517242</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0517242 INIST</idno>
<idno type="RBID">Pascal:04-0517242</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000806</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry</title>
<author>
<name sortKey="Takeda Shitaka, Mayuko" sort="Takeda Shitaka, Mayuko" uniqKey="Takeda Shitaka M" first="Mayuko" last="Takeda-Shitaka">Mayuko Takeda-Shitaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Takaya, Daisuke" sort="Takaya, Daisuke" uniqKey="Takaya D" first="Daisuke" last="Takaya">Daisuke Takaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Chiba, Chieko" sort="Chiba, Chieko" uniqKey="Chiba C" first="Chieko" last="Chiba">Chieko Chiba</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hirokazu" sort="Tanaka, Hirokazu" uniqKey="Tanaka H" first="Hirokazu" last="Tanaka">Hirokazu Tanaka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Umeyama, Hideaki" sort="Umeyama, Hideaki" uniqKey="Umeyama H" first="Hideaki" last="Umeyama">Hideaki Umeyama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Current medicinal chemistry</title>
<title level="j" type="abbreviated">Curr. med. chem.</title>
<idno type="ISSN">0929-8673</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Current medicinal chemistry</title>
<title level="j" type="abbreviated">Curr. med. chem.</title>
<idno type="ISSN">0929-8673</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active site</term>
<term>Coronavirus</term>
<term>Genomics</term>
<term>Homology</term>
<term>Modeling</term>
<term>Molecular interaction</term>
<term>Molecular model</term>
<term>Prediction</term>
<term>Protein</term>
<term>RNA-directed RNA polymerase</term>
<term>Review</term>
<term>Secondary structure</term>
<term>Severe acute respiratory syndrome</term>
<term>Structure</term>
<term>Structure activity relation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Article synthèse</term>
<term>Relation structure activité</term>
<term>Prédiction</term>
<term>Structure</term>
<term>Protéine</term>
<term>Structure secondaire</term>
<term>Génomique</term>
<term>Interaction moléculaire</term>
<term>Modélisation</term>
<term>Modèle moléculaire</term>
<term>Homologie</term>
<term>Coronavirus</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>RNA-directed RNA polymerase</term>
<term>Site actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human genome and other genome sequencing projects have generated huge amounts of protein sequence information. Recently, a structural genomics project that aims to determine at-least one representative three-dimensional structure from every protein family experimentally has been started. Homology modeling will play an essential role in structure based drug design such as in silico screening; because based on these representative structures the three-dimensional structures of the remaining proteins encoded in the various genomes can be predicted by homology modeling. The results of the last Critical Assessment of Techniques for Protein Structure Prediction (CASP5) demonstrated that the quality of homology modeling prediction has improved; reaching a level of reliability that biologists can now confidently use homology modeling. With improvements in modeling software and the growing number of known protein structures, homology modeling is becoming a more and more powerful and reliable tool. The present paper discusses the features and roles of homology modeling in structure based drug design, and describes the CHIMERA and FAMS modeling systems as examples. For a sample application, homology modeling of non-structural proteins of the severe acute respiratory syndrome (SARS) coronavirus is discussed. Many biological functions involve formation of protein-protein complexes; in which the protein molecules behave dynamically in the course of binding. Therefore, an understanding of protein-protein interaction will be very important for structure based drug design. To this end, normal mode analysis is useful. The present paper discusses the prediction of protein-protein interaction using normal mode analysis and examples of applications are given.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0929-8673</s0>
</fA01>
<fA03 i2="1">
<s0>Curr. med. chem.</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TAKEDA-SHITAKA (Mayuko)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TAKAYA (Daisuke)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHIBA (Chieko)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TANAKA (Hirokazu)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>UMEYAMA (Hideaki)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane</s1>
<s2>Minato-ku, Tokyo 108-8641</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>551-558</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22999</s2>
<s5>354000117028920030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0517242</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Current medicinal chemistry</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The human genome and other genome sequencing projects have generated huge amounts of protein sequence information. Recently, a structural genomics project that aims to determine at-least one representative three-dimensional structure from every protein family experimentally has been started. Homology modeling will play an essential role in structure based drug design such as in silico screening; because based on these representative structures the three-dimensional structures of the remaining proteins encoded in the various genomes can be predicted by homology modeling. The results of the last Critical Assessment of Techniques for Protein Structure Prediction (CASP5) demonstrated that the quality of homology modeling prediction has improved; reaching a level of reliability that biologists can now confidently use homology modeling. With improvements in modeling software and the growing number of known protein structures, homology modeling is becoming a more and more powerful and reliable tool. The present paper discusses the features and roles of homology modeling in structure based drug design, and describes the CHIMERA and FAMS modeling systems as examples. For a sample application, homology modeling of non-structural proteins of the severe acute respiratory syndrome (SARS) coronavirus is discussed. Many biological functions involve formation of protein-protein complexes; in which the protein molecules behave dynamically in the course of binding. Therefore, an understanding of protein-protein interaction will be very important for structure based drug design. To this end, normal mode analysis is useful. The present paper discusses the prediction of protein-protein interaction using normal mode analysis and examples of applications are given.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B02W</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Article synthèse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Review</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Artículo síntesis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Relation structure activité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Structure activity relation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Relación estructura actividad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Prédiction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Prediction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Predicción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estructura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Protein</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Structure secondaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Secondary structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estructura secundaria</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Génomique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Genomics</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Genómica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Interaction moléculaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Molecular interaction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Interacción molecular</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle moléculaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Molecular model</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo molecular</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Homologie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Homology</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Homología</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Syndrome respiratoire aigu sévère</s0>
<s2>NM</s2>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Severe acute respiratory syndrome</s0>
<s2>NM</s2>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Síndrome respiratorio agudo severo</s0>
<s2>NM</s2>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Site actif</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Active site</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Lugar activo</s0>
<s5>24</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Virose</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Viral disease</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Virosis</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Infection</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Infection</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Infección</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fN21>
<s1>292</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0517242
   |texte=   Protein Structure Prediction in Structure based drug design : Protein structure prediction in medicinal chemistry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021