Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity

Identifieur interne : 000756 ( PascalFrancis/Corpus ); précédent : 000755; suivant : 000757

Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity

Auteurs : Brian H. Harcourt ; Dalia Jukneliene ; Amornrat Kanjanahaluethai ; John Bechill ; Kari M. Severson ; Catherine M. Smith ; Paul A. Rota ; Susan C. Baker

Source :

RBID : Pascal:05-0016080

Descripteurs français

English descriptors

Abstract

Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-538X
A03   1    @0 J. virol.
A05       @2 78
A06       @2 24
A08 01  1  ENG  @1 Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity
A11 01  1    @1 HARCOURT (Brian H.)
A11 02  1    @1 JUKNELIENE (Dalia)
A11 03  1    @1 KANJANAHALUETHAI (Amornrat)
A11 04  1    @1 BECHILL (John)
A11 05  1    @1 SEVERSON (Kari M.)
A11 06  1    @1 SMITH (Catherine M.)
A11 07  1    @1 ROTA (Paul A.)
A11 08  1    @1 BAKER (Susan C.)
A14 01      @1 Centers for Disease Control and Prevention @2 Atlanta, Georgia @3 USA @Z 1 aut. @Z 7 aut.
A14 02      @1 Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago @2 Maywood, Illinois @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 8 aut.
A14 03      @1 Department of Microbiology, Faculty of Medicine, Chiang Mai University @2 Chiang Mai @3 THA @Z 3 aut.
A20       @1 13600-13612
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 13592 @5 354000122800130220
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 35 ref.
A47 01  1    @0 05-0016080
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of virology
A66 01      @0 USA
C01 01    ENG  @0 Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.
C02 01  X    @0 002A05C10
C03 01  X  FRE  @0 Coronavirus @2 NW @5 01
C03 01  X  ENG  @0 Coronavirus @2 NW @5 01
C03 01  X  SPA  @0 Coronavirus @2 NW @5 01
C03 02  X  FRE  @0 Identification @5 05
C03 02  X  ENG  @0 Identification @5 05
C03 02  X  SPA  @0 Identificación @5 05
C03 03  X  FRE  @0 Grave @5 06
C03 03  X  ENG  @0 Severe @5 06
C03 03  X  SPA  @0 Grave @5 06
C03 04  X  FRE  @0 Malade état grave @5 07
C03 04  X  ENG  @0 Critically ill @5 07
C03 04  X  SPA  @0 Enfermo estado grave @5 07
C03 05  X  FRE  @0 Aigu @5 08
C03 05  X  ENG  @0 Acute @5 08
C03 05  X  SPA  @0 Agudo @5 08
C03 06  X  FRE  @0 Voie respiratoire @5 09
C03 06  X  ENG  @0 Respiratory tract @5 09
C03 06  X  SPA  @0 Vía respiratoria @5 09
C03 07  X  FRE  @0 RNA-directed RNA polymerase @2 FE @5 10
C03 07  X  ENG  @0 RNA-directed RNA polymerase @2 FE @5 10
C03 07  X  SPA  @0 RNA-directed RNA polymerase @2 FE @5 10
C03 08  X  FRE  @0 Caractérisation @5 11
C03 08  X  ENG  @0 Characterization @5 11
C03 08  X  SPA  @0 Caracterización @5 11
C03 09  X  FRE  @0 Papain @2 FE @5 12
C03 09  X  ENG  @0 Papain @2 FE @5 12
C03 09  X  SPA  @0 Papain @2 FE @5 12
C03 10  X  FRE  @0 Syndrome respiratoire aigu sévère @2 NM @5 14
C03 10  X  ENG  @0 Severe acute respiratory syndrome @2 NM @5 14
C03 10  X  SPA  @0 Síndrome respiratorio agudo severo @2 NM @5 14
C03 11  X  FRE  @0 Microbiologie @5 68
C03 11  X  ENG  @0 Microbiology @5 68
C03 11  X  SPA  @0 Microbiología @5 68
C03 12  X  FRE  @0 Virologie @5 69
C03 12  X  ENG  @0 Virology @5 69
C03 12  X  SPA  @0 Virología @5 69
C03 13  X  FRE  @0 Forme grave @4 INC @5 79
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
C07 04  X  FRE  @0 Nucleotidyltransferases @2 FE
C07 04  X  ENG  @0 Nucleotidyltransferases @2 FE
C07 04  X  SPA  @0 Nucleotidyltransferases @2 FE
C07 05  X  FRE  @0 Transferases @2 FE
C07 05  X  ENG  @0 Transferases @2 FE
C07 05  X  SPA  @0 Transferases @2 FE
C07 06  X  FRE  @0 Enzyme @2 FE
C07 06  X  ENG  @0 Enzyme @2 FE
C07 06  X  SPA  @0 Enzima @2 FE
C07 07  X  FRE  @0 Cysteine endopeptidases @2 FE
C07 07  X  ENG  @0 Cysteine endopeptidases @2 FE
C07 07  X  SPA  @0 Cysteine endopeptidases @2 FE
C07 08  X  FRE  @0 Peptidases @2 FE
C07 08  X  ENG  @0 Peptidases @2 FE
C07 08  X  SPA  @0 Peptidases @2 FE
C07 09  X  FRE  @0 Hydrolases @2 FE
C07 09  X  ENG  @0 Hydrolases @2 FE
C07 09  X  SPA  @0 Hydrolases @2 FE
C07 10  X  FRE  @0 Virose @2 NM
C07 10  X  ENG  @0 Viral disease @2 NM
C07 10  X  SPA  @0 Virosis @2 NM
C07 11  X  FRE  @0 Infection @2 NM
C07 11  X  ENG  @0 Infection @2 NM
C07 11  X  SPA  @0 Infección @2 NM
C07 12  X  FRE  @0 Appareil respiratoire pathologie @5 19
C07 12  X  ENG  @0 Respiratory disease @5 19
C07 12  X  SPA  @0 Aparato respiratorio patología @5 19
C07 13  X  FRE  @0 Poumon pathologie @5 20
C07 13  X  ENG  @0 Lung disease @5 20
C07 13  X  SPA  @0 Pulmón patología @5 20
C07 14  X  FRE  @0 Appareil respiratoire @5 22
C07 14  X  ENG  @0 Respiratory system @5 22
C07 14  X  SPA  @0 Aparato respiratorio @5 22
N21       @1 004
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 05-0016080 INIST
ET : Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity
AU : HARCOURT (Brian H.); JUKNELIENE (Dalia); KANJANAHALUETHAI (Amornrat); BECHILL (John); SEVERSON (Kari M.); SMITH (Catherine M.); ROTA (Paul A.); BAKER (Susan C.)
AF : Centers for Disease Control and Prevention/Atlanta, Georgia/Etats-Unis (1 aut., 7 aut.); Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago/Maywood, Illinois/Etats-Unis (2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 8 aut.); Department of Microbiology, Faculty of Medicine, Chiang Mai University/Chiang Mai/Thaïlande (3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of virology; ISSN 0022-538X; Etats-Unis; Da. 2004; Vol. 78; No. 24; Pp. 13600-13612; Bibl. 35 ref.
LA : Anglais
EA : Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.
CC : 002A05C10
FD : Coronavirus; Identification; Grave; Malade état grave; Aigu; Voie respiratoire; RNA-directed RNA polymerase; Caractérisation; Papain; Syndrome respiratoire aigu sévère; Microbiologie; Virologie; Forme grave
FG : Coronaviridae; Nidovirales; Virus; Nucleotidyltransferases; Transferases; Enzyme; Cysteine endopeptidases; Peptidases; Hydrolases; Virose; Infection; Appareil respiratoire pathologie; Poumon pathologie; Appareil respiratoire
ED : Coronavirus; Identification; Severe; Critically ill; Acute; Respiratory tract; RNA-directed RNA polymerase; Characterization; Papain; Severe acute respiratory syndrome; Microbiology; Virology
EG : Coronaviridae; Nidovirales; Virus; Nucleotidyltransferases; Transferases; Enzyme; Cysteine endopeptidases; Peptidases; Hydrolases; Viral disease; Infection; Respiratory disease; Lung disease; Respiratory system
SD : Coronavirus; Identificación; Grave; Enfermo estado grave; Agudo; Vía respiratoria; RNA-directed RNA polymerase; Caracterización; Papain; Síndrome respiratorio agudo severo; Microbiología; Virología
LO : INIST-13592.354000122800130220
ID : 05-0016080

Links to Exploration step

Pascal:05-0016080

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity</title>
<author>
<name sortKey="Harcourt, Brian H" sort="Harcourt, Brian H" uniqKey="Harcourt B" first="Brian H." last="Harcourt">Brian H. Harcourt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jukneliene, Dalia" sort="Jukneliene, Dalia" uniqKey="Jukneliene D" first="Dalia" last="Jukneliene">Dalia Jukneliene</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kanjanahaluethai, Amornrat" sort="Kanjanahaluethai, Amornrat" uniqKey="Kanjanahaluethai A" first="Amornrat" last="Kanjanahaluethai">Amornrat Kanjanahaluethai</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Microbiology, Faculty of Medicine, Chiang Mai University</s1>
<s2>Chiang Mai</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bechill, John" sort="Bechill, John" uniqKey="Bechill J" first="John" last="Bechill">John Bechill</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Severson, Kari M" sort="Severson, Kari M" uniqKey="Severson K" first="Kari M." last="Severson">Kari M. Severson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smith, Catherine M" sort="Smith, Catherine M" uniqKey="Smith C" first="Catherine M." last="Smith">Catherine M. Smith</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rota, Paul A" sort="Rota, Paul A" uniqKey="Rota P" first="Paul A." last="Rota">Paul A. Rota</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C." last="Baker">Susan C. Baker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0016080</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0016080 INIST</idno>
<idno type="RBID">Pascal:05-0016080</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000756</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity</title>
<author>
<name sortKey="Harcourt, Brian H" sort="Harcourt, Brian H" uniqKey="Harcourt B" first="Brian H." last="Harcourt">Brian H. Harcourt</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jukneliene, Dalia" sort="Jukneliene, Dalia" uniqKey="Jukneliene D" first="Dalia" last="Jukneliene">Dalia Jukneliene</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kanjanahaluethai, Amornrat" sort="Kanjanahaluethai, Amornrat" uniqKey="Kanjanahaluethai A" first="Amornrat" last="Kanjanahaluethai">Amornrat Kanjanahaluethai</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Microbiology, Faculty of Medicine, Chiang Mai University</s1>
<s2>Chiang Mai</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bechill, John" sort="Bechill, John" uniqKey="Bechill J" first="John" last="Bechill">John Bechill</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Severson, Kari M" sort="Severson, Kari M" uniqKey="Severson K" first="Kari M." last="Severson">Kari M. Severson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smith, Catherine M" sort="Smith, Catherine M" uniqKey="Smith C" first="Catherine M." last="Smith">Catherine M. Smith</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rota, Paul A" sort="Rota, Paul A" uniqKey="Rota P" first="Paul A." last="Rota">Paul A. Rota</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C." last="Baker">Susan C. Baker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acute</term>
<term>Characterization</term>
<term>Coronavirus</term>
<term>Critically ill</term>
<term>Identification</term>
<term>Microbiology</term>
<term>Papain</term>
<term>RNA-directed RNA polymerase</term>
<term>Respiratory tract</term>
<term>Severe</term>
<term>Severe acute respiratory syndrome</term>
<term>Virology</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coronavirus</term>
<term>Identification</term>
<term>Grave</term>
<term>Malade état grave</term>
<term>Aigu</term>
<term>Voie respiratoire</term>
<term>RNA-directed RNA polymerase</term>
<term>Caractérisation</term>
<term>Papain</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Microbiologie</term>
<term>Virologie</term>
<term>Forme grave</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-538X</s0>
</fA01>
<fA03 i2="1">
<s0>J. virol.</s0>
</fA03>
<fA05>
<s2>78</s2>
</fA05>
<fA06>
<s2>24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HARCOURT (Brian H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JUKNELIENE (Dalia)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KANJANAHALUETHAI (Amornrat)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BECHILL (John)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SEVERSON (Kari M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SMITH (Catherine M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ROTA (Paul A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BAKER (Susan C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centers for Disease Control and Prevention</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago</s1>
<s2>Maywood, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Microbiology, Faculty of Medicine, Chiang Mai University</s1>
<s2>Chiang Mai</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>13600-13612</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13592</s2>
<s5>354000122800130220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0016080</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of virology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Identification</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Identification</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Identificación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Grave</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Severe</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Grave</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Malade état grave</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Critically ill</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Enfermo estado grave</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Aigu</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Acute</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Agudo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Voie respiratoire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Respiratory tract</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Vía respiratoria</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>RNA-directed RNA polymerase</s0>
<s2>FE</s2>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Papain</s0>
<s2>FE</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Papain</s0>
<s2>FE</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Papain</s0>
<s2>FE</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Syndrome respiratoire aigu sévère</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Severe acute respiratory syndrome</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Síndrome respiratorio agudo severo</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Microbiologie</s0>
<s5>68</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Microbiology</s0>
<s5>68</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Microbiología</s0>
<s5>68</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Virologie</s0>
<s5>69</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Virology</s0>
<s5>69</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Virología</s0>
<s5>69</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Forme grave</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Nucleotidyltransferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Transferases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Cysteine endopeptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Cysteine endopeptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Cysteine endopeptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Peptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Peptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Peptidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Virose</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Viral disease</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Virosis</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Infection</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Infection</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Infección</s0>
<s2>NM</s2>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Appareil respiratoire pathologie</s0>
<s5>19</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Respiratory disease</s0>
<s5>19</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Aparato respiratorio patología</s0>
<s5>19</s5>
</fC07>
<fC07 i1="13" i2="X" l="FRE">
<s0>Poumon pathologie</s0>
<s5>20</s5>
</fC07>
<fC07 i1="13" i2="X" l="ENG">
<s0>Lung disease</s0>
<s5>20</s5>
</fC07>
<fC07 i1="13" i2="X" l="SPA">
<s0>Pulmón patología</s0>
<s5>20</s5>
</fC07>
<fC07 i1="14" i2="X" l="FRE">
<s0>Appareil respiratoire</s0>
<s5>22</s5>
</fC07>
<fC07 i1="14" i2="X" l="ENG">
<s0>Respiratory system</s0>
<s5>22</s5>
</fC07>
<fC07 i1="14" i2="X" l="SPA">
<s0>Aparato respiratorio</s0>
<s5>22</s5>
</fC07>
<fN21>
<s1>004</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0016080 INIST</NO>
<ET>Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity</ET>
<AU>HARCOURT (Brian H.); JUKNELIENE (Dalia); KANJANAHALUETHAI (Amornrat); BECHILL (John); SEVERSON (Kari M.); SMITH (Catherine M.); ROTA (Paul A.); BAKER (Susan C.)</AU>
<AF>Centers for Disease Control and Prevention/Atlanta, Georgia/Etats-Unis (1 aut., 7 aut.); Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago/Maywood, Illinois/Etats-Unis (2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 8 aut.); Department of Microbiology, Faculty of Medicine, Chiang Mai University/Chiang Mai/Thaïlande (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of virology; ISSN 0022-538X; Etats-Unis; Da. 2004; Vol. 78; No. 24; Pp. 13600-13612; Bibl. 35 ref.</SO>
<LA>Anglais</LA>
<EA>Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nspl, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nspl (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nspl/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.</EA>
<CC>002A05C10</CC>
<FD>Coronavirus; Identification; Grave; Malade état grave; Aigu; Voie respiratoire; RNA-directed RNA polymerase; Caractérisation; Papain; Syndrome respiratoire aigu sévère; Microbiologie; Virologie; Forme grave</FD>
<FG>Coronaviridae; Nidovirales; Virus; Nucleotidyltransferases; Transferases; Enzyme; Cysteine endopeptidases; Peptidases; Hydrolases; Virose; Infection; Appareil respiratoire pathologie; Poumon pathologie; Appareil respiratoire</FG>
<ED>Coronavirus; Identification; Severe; Critically ill; Acute; Respiratory tract; RNA-directed RNA polymerase; Characterization; Papain; Severe acute respiratory syndrome; Microbiology; Virology</ED>
<EG>Coronaviridae; Nidovirales; Virus; Nucleotidyltransferases; Transferases; Enzyme; Cysteine endopeptidases; Peptidases; Hydrolases; Viral disease; Infection; Respiratory disease; Lung disease; Respiratory system</EG>
<SD>Coronavirus; Identificación; Grave; Enfermo estado grave; Agudo; Vía respiratoria; RNA-directed RNA polymerase; Caracterización; Papain; Síndrome respiratorio agudo severo; Microbiología; Virología</SD>
<LO>INIST-13592.354000122800130220</LO>
<ID>05-0016080</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0016080
   |texte=   Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021