Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods

Identifieur interne : 000590 ( PascalFrancis/Corpus ); précédent : 000589; suivant : 000591

Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods

Auteurs : Linda Chui ; Michael Drebot ; Anton Andonov ; Astrid Petrich ; Martin Glushek ; James Mahony

Source :

RBID : Pascal:05-0463654

Descripteurs français

English descriptors

Abstract

The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0732-8893
A02 01      @0 DMIDDZ
A03   1    @0 Diagn. microbiol. infect. dis.
A05       @2 53
A06       @2 1
A08 01  1  ENG  @1 Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods
A11 01  1    @1 CHUI (Linda)
A11 02  1    @1 DREBOT (Michael)
A11 03  1    @1 ANDONOV (Anton)
A11 04  1    @1 PETRICH (Astrid)
A11 05  1    @1 GLUSHEK (Martin)
A11 06  1    @1 MAHONY (James)
A14 01      @1 Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital @2 Edmonton, Alberta, T6G 2J2 @3 CAN @Z 1 aut. @Z 5 aut.
A14 02      @1 National Microbiology Laboratory @2 Winnipeg, Manitoba, R3E 2R2 @3 CAN @Z 2 aut. @Z 3 aut.
A14 03      @1 St. Joseph's Healthcare, McMaster University @2 Hamilton Ontario, L8N 4A6 @3 CAN @Z 4 aut. @Z 6 aut.
A20       @1 47-55
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 20217 @5 354000132776120080
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 05-0463654
A60       @1 P
A61       @0 A
A64 01  1    @0 Diagnostic microbiology and infectious disease
A66 01      @0 USA
C01 01    ENG  @0 The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.
C02 01  X    @0 002A05C10
C02 02  X    @0 002B05
C03 01  X  FRE  @0 Coronavirus @2 NW @5 01
C03 01  X  ENG  @0 Coronavirus @2 NW @5 01
C03 01  X  SPA  @0 Coronavirus @2 NW @5 01
C03 02  X  FRE  @0 Réaction chaîne polymérase @5 05
C03 02  X  ENG  @0 Polymerase chain reaction @5 05
C03 02  X  SPA  @0 Reacción cadena polimerasa @5 05
C03 03  X  FRE  @0 Détection @5 06
C03 03  X  ENG  @0 Detection @5 06
C03 03  X  SPA  @0 Detección @5 06
C03 04  X  FRE  @0 Méthode @5 07
C03 04  X  ENG  @0 Method @5 07
C03 04  X  SPA  @0 Método @5 07
C03 05  X  FRE  @0 Temps réel @5 08
C03 05  X  ENG  @0 Real time @5 08
C03 05  X  SPA  @0 Tiempo real @5 08
C03 06  X  FRE  @0 Réaction chaîne polymérase RT @5 09
C03 06  X  ENG  @0 Reverse transcription polymerase chain reaction @5 09
C03 06  X  SPA  @0 Reacción cadena polimerasa transcripción inversa @5 09
C03 07  X  FRE  @0 Sensibilité @5 10
C03 07  X  ENG  @0 Sensitivity @5 10
C03 07  X  SPA  @0 Sensibilidad @5 10
C03 08  X  FRE  @0 Spécificité @5 11
C03 08  X  ENG  @0 Specificity @5 11
C03 08  X  SPA  @0 Especificidad @5 11
C03 09  X  FRE  @0 Microbiologie @5 12
C03 09  X  ENG  @0 Microbiology @5 12
C03 09  X  SPA  @0 Microbiología @5 12
C03 10  X  FRE  @0 Syndrome respiratoire aigu sévère @2 NM @5 14
C03 10  X  ENG  @0 Severe acute respiratory syndrome @2 NM @5 14
C03 10  X  SPA  @0 Síndrome respiratorio agudo severo @2 NM @5 14
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
C07 04  X  FRE  @0 Appareil respiratoire pathologie @5 13
C07 04  X  ENG  @0 Respiratory disease @5 13
C07 04  X  SPA  @0 Aparato respiratorio patología @5 13
C07 05  X  FRE  @0 Virose
C07 05  X  ENG  @0 Viral disease
C07 05  X  SPA  @0 Virosis
C07 06  X  FRE  @0 Infection
C07 06  X  ENG  @0 Infection
C07 06  X  SPA  @0 Infección
C07 07  X  FRE  @0 Poumon pathologie @5 16
C07 07  X  ENG  @0 Lung disease @5 16
C07 07  X  SPA  @0 Pulmón patología @5 16
N21       @1 325
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 05-0463654 INIST
ET : Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods
AU : CHUI (Linda); DREBOT (Michael); ANDONOV (Anton); PETRICH (Astrid); GLUSHEK (Martin); MAHONY (James)
AF : Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital/Edmonton, Alberta, T6G 2J2/Canada (1 aut., 5 aut.); National Microbiology Laboratory/Winnipeg, Manitoba, R3E 2R2/Canada (2 aut., 3 aut.); St. Joseph's Healthcare, McMaster University/Hamilton Ontario, L8N 4A6/Canada (4 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Diagnostic microbiology and infectious disease; ISSN 0732-8893; Coden DMIDDZ; Etats-Unis; Da. 2005; Vol. 53; No. 1; Pp. 47-55; Bibl. 19 ref.
LA : Anglais
EA : The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.
CC : 002A05C10; 002B05
FD : Coronavirus; Réaction chaîne polymérase; Détection; Méthode; Temps réel; Réaction chaîne polymérase RT; Sensibilité; Spécificité; Microbiologie; Syndrome respiratoire aigu sévère
FG : Coronaviridae; Nidovirales; Virus; Appareil respiratoire pathologie; Virose; Infection; Poumon pathologie
ED : Coronavirus; Polymerase chain reaction; Detection; Method; Real time; Reverse transcription polymerase chain reaction; Sensitivity; Specificity; Microbiology; Severe acute respiratory syndrome
EG : Coronaviridae; Nidovirales; Virus; Respiratory disease; Viral disease; Infection; Lung disease
SD : Coronavirus; Reacción cadena polimerasa; Detección; Método; Tiempo real; Reacción cadena polimerasa transcripción inversa; Sensibilidad; Especificidad; Microbiología; Síndrome respiratorio agudo severo
LO : INIST-20217.354000132776120080
ID : 05-0463654

Links to Exploration step

Pascal:05-0463654

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods</title>
<author>
<name sortKey="Chui, Linda" sort="Chui, Linda" uniqKey="Chui L" first="Linda" last="Chui">Linda Chui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital</s1>
<s2>Edmonton, Alberta, T6G 2J2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Drebot, Michael" sort="Drebot, Michael" uniqKey="Drebot M" first="Michael" last="Drebot">Michael Drebot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Microbiology Laboratory</s1>
<s2>Winnipeg, Manitoba, R3E 2R2</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Microbiology Laboratory</s1>
<s2>Winnipeg, Manitoba, R3E 2R2</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petrich, Astrid" sort="Petrich, Astrid" uniqKey="Petrich A" first="Astrid" last="Petrich">Astrid Petrich</name>
<affiliation>
<inist:fA14 i1="03">
<s1>St. Joseph's Healthcare, McMaster University</s1>
<s2>Hamilton Ontario, L8N 4A6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glushek, Martin" sort="Glushek, Martin" uniqKey="Glushek M" first="Martin" last="Glushek">Martin Glushek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital</s1>
<s2>Edmonton, Alberta, T6G 2J2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahony, James" sort="Mahony, James" uniqKey="Mahony J" first="James" last="Mahony">James Mahony</name>
<affiliation>
<inist:fA14 i1="03">
<s1>St. Joseph's Healthcare, McMaster University</s1>
<s2>Hamilton Ontario, L8N 4A6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0463654</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0463654 INIST</idno>
<idno type="RBID">Pascal:05-0463654</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000590</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods</title>
<author>
<name sortKey="Chui, Linda" sort="Chui, Linda" uniqKey="Chui L" first="Linda" last="Chui">Linda Chui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital</s1>
<s2>Edmonton, Alberta, T6G 2J2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Drebot, Michael" sort="Drebot, Michael" uniqKey="Drebot M" first="Michael" last="Drebot">Michael Drebot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Microbiology Laboratory</s1>
<s2>Winnipeg, Manitoba, R3E 2R2</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Microbiology Laboratory</s1>
<s2>Winnipeg, Manitoba, R3E 2R2</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petrich, Astrid" sort="Petrich, Astrid" uniqKey="Petrich A" first="Astrid" last="Petrich">Astrid Petrich</name>
<affiliation>
<inist:fA14 i1="03">
<s1>St. Joseph's Healthcare, McMaster University</s1>
<s2>Hamilton Ontario, L8N 4A6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Glushek, Martin" sort="Glushek, Martin" uniqKey="Glushek M" first="Martin" last="Glushek">Martin Glushek</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital</s1>
<s2>Edmonton, Alberta, T6G 2J2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mahony, James" sort="Mahony, James" uniqKey="Mahony J" first="James" last="Mahony">James Mahony</name>
<affiliation>
<inist:fA14 i1="03">
<s1>St. Joseph's Healthcare, McMaster University</s1>
<s2>Hamilton Ontario, L8N 4A6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Diagnostic microbiology and infectious disease</title>
<title level="j" type="abbreviated">Diagn. microbiol. infect. dis.</title>
<idno type="ISSN">0732-8893</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Diagnostic microbiology and infectious disease</title>
<title level="j" type="abbreviated">Diagn. microbiol. infect. dis.</title>
<idno type="ISSN">0732-8893</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronavirus</term>
<term>Detection</term>
<term>Method</term>
<term>Microbiology</term>
<term>Polymerase chain reaction</term>
<term>Real time</term>
<term>Reverse transcription polymerase chain reaction</term>
<term>Sensitivity</term>
<term>Severe acute respiratory syndrome</term>
<term>Specificity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coronavirus</term>
<term>Réaction chaîne polymérase</term>
<term>Détection</term>
<term>Méthode</term>
<term>Temps réel</term>
<term>Réaction chaîne polymérase RT</term>
<term>Sensibilité</term>
<term>Spécificité</term>
<term>Microbiologie</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0732-8893</s0>
</fA01>
<fA02 i1="01">
<s0>DMIDDZ</s0>
</fA02>
<fA03 i2="1">
<s0>Diagn. microbiol. infect. dis.</s0>
</fA03>
<fA05>
<s2>53</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHUI (Linda)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DREBOT (Michael)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANDONOV (Anton)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PETRICH (Astrid)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GLUSHEK (Martin)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MAHONY (James)</s1>
</fA11>
<fA14 i1="01">
<s1>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital</s1>
<s2>Edmonton, Alberta, T6G 2J2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Microbiology Laboratory</s1>
<s2>Winnipeg, Manitoba, R3E 2R2</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>St. Joseph's Healthcare, McMaster University</s1>
<s2>Hamilton Ontario, L8N 4A6</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>47-55</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20217</s2>
<s5>354000132776120080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0463654</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Diagnostic microbiology and infectious disease</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Réaction chaîne polymérase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Polymerase chain reaction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reacción cadena polimerasa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Détection</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Detection</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Detección</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Real time</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Réaction chaîne polymérase RT</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reverse transcription polymerase chain reaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Reacción cadena polimerasa transcripción inversa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sensibilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Sensitivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sensibilidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spécificité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Specificity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Especificidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microbiologie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Microbiology</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microbiología</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Syndrome respiratoire aigu sévère</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Severe acute respiratory syndrome</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Síndrome respiratorio agudo severo</s0>
<s2>NM</s2>
<s5>14</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Appareil respiratoire pathologie</s0>
<s5>13</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Respiratory disease</s0>
<s5>13</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Aparato respiratorio patología</s0>
<s5>13</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Infection</s0>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Infection</s0>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Infección</s0>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Poumon pathologie</s0>
<s5>16</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Lung disease</s0>
<s5>16</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Pulmón patología</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>325</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0463654 INIST</NO>
<ET>Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods</ET>
<AU>CHUI (Linda); DREBOT (Michael); ANDONOV (Anton); PETRICH (Astrid); GLUSHEK (Martin); MAHONY (James)</AU>
<AF>Provincial Laboratory for Public Health (Microbiology), University of Alberta Hospital/Edmonton, Alberta, T6G 2J2/Canada (1 aut., 5 aut.); National Microbiology Laboratory/Winnipeg, Manitoba, R3E 2R2/Canada (2 aut., 3 aut.); St. Joseph's Healthcare, McMaster University/Hamilton Ontario, L8N 4A6/Canada (4 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Diagnostic microbiology and infectious disease; ISSN 0732-8893; Coden DMIDDZ; Etats-Unis; Da. 2005; Vol. 53; No. 1; Pp. 47-55; Bibl. 19 ref.</SO>
<LA>Anglais</LA>
<EA>The sensitivity and specificity of various severe acute respiratory syndrome coronavirus (SARS-CoV) PCR primer and probe sets were evaluated through the use of commercial kits and in-house amplification formats. Conventional and real-time PCR assays were performed using a heat-block thermocycler ABI 9600, the Roche LightCycler version 1.2, or the ABI 7000 Sequence Detection System. The sensitivity of all primers was between 0.0004 and 0.04 PFU with viral cell lysate and between 0.004 and 0.4 PFU in spiked stool specimen per PCR assay. The primer sets for real-time PCR assays were at one least 1 log more sensitive than the primer sets used in the conventional PCR. A panel of viruses including swine gastroenteritis virus, bovine coronavirus, avian bronchitis virus (Connecticut strain), avian bronchitis virus (Massachusetts strain), human coronaviruses 229E and OC43, parainfluenza virus (type III), human metapneumovirus, adenovirus, respiratory syncytial virus, and influenza A were tested by all assays. All real-time PCR assays used probe-based detection, and no cross-reactivity was observed. With conventional PCR, analysis was performed using agarose gel electrophoresis and multiple nonspecific bands were observed. Two commercial extraction methods, magnetic particle capture and silica-based procedure were evaluated and the results were comparable. The former was less laborious with shorter time for completion and can easily be adapted to an automated system such as the MagNa Pure-LC, which can extract nucleic acid from clinical samples and load it into the sample capillaries of the LightCycler. As exemplified by this study, the continued refinement and evaluation of PCR procedures will greatly benefit the diagnostic laboratory during an outbreak of SARS.</EA>
<CC>002A05C10; 002B05</CC>
<FD>Coronavirus; Réaction chaîne polymérase; Détection; Méthode; Temps réel; Réaction chaîne polymérase RT; Sensibilité; Spécificité; Microbiologie; Syndrome respiratoire aigu sévère</FD>
<FG>Coronaviridae; Nidovirales; Virus; Appareil respiratoire pathologie; Virose; Infection; Poumon pathologie</FG>
<ED>Coronavirus; Polymerase chain reaction; Detection; Method; Real time; Reverse transcription polymerase chain reaction; Sensitivity; Specificity; Microbiology; Severe acute respiratory syndrome</ED>
<EG>Coronaviridae; Nidovirales; Virus; Respiratory disease; Viral disease; Infection; Lung disease</EG>
<SD>Coronavirus; Reacción cadena polimerasa; Detección; Método; Tiempo real; Reacción cadena polimerasa transcripción inversa; Sensibilidad; Especificidad; Microbiología; Síndrome respiratorio agudo severo</SD>
<LO>INIST-20217.354000132776120080</LO>
<ID>05-0463654</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000590 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000590 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0463654
   |texte=   Comparison of 9 different PCR primers for the rapid detection of severe acute respiratory syndrome coronavirus using 2 RNA extraction methods
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021