Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis

Identifieur interne : 000186 ( PascalFrancis/Corpus ); précédent : 000185; suivant : 000187

Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis

Auteurs : Shutoku Matsuyama ; Fumihiro Taguchi

Source :

RBID : Pascal:09-0437515

Descripteurs français

English descriptors

Abstract

The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-538X
A03   1    @0 J. virol.
A05       @2 83
A06       @2 21
A08 01  1  ENG  @1 Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis
A11 01  1    @1 MATSUYAMA (Shutoku)
A11 02  1    @1 TAGUCHI (Fumihiro)
A14 01      @1 Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen @2 Musashi-Murayama, Tokyo 208-0011 @3 JPN @Z 1 aut. @Z 2 aut.
A20       @1 11133-11141
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 13592 @5 354000170071970260
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 09-0437515
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of virology
A66 01      @0 USA
C01 01    ENG  @0 The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.
C02 01  X    @0 002A05C10
C03 01  X  FRE  @0 Coronavirus @2 NW @5 01
C03 01  X  ENG  @0 Coronavirus @2 NW @5 01
C03 01  X  SPA  @0 Coronavirus @2 NW @5 01
C03 02  X  FRE  @0 Conformation @5 05
C03 02  X  ENG  @0 Conformation @5 05
C03 02  X  SPA  @0 Conformación @5 05
C03 03  X  FRE  @0 Glycoprotéine @5 06
C03 03  X  ENG  @0 Glycoprotein @5 06
C03 03  X  SPA  @0 Glicoproteína @5 06
C03 04  X  FRE  @0 Récepteur biologique @5 07
C03 04  X  ENG  @0 Biological receptor @5 07
C03 04  X  SPA  @0 Receptor biológico @5 07
C03 05  X  FRE  @0 Protéolyse @5 08
C03 05  X  ENG  @0 Proteolysis @5 08
C03 05  X  SPA  @0 Proteolisis @5 08
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
N21       @1 313
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0437515 INIST
ET : Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis
AU : MATSUYAMA (Shutoku); TAGUCHI (Fumihiro)
AF : Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen/Musashi-Murayama, Tokyo 208-0011/Japon (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of virology; ISSN 0022-538X; Etats-Unis; Da. 2009; Vol. 83; No. 21; Pp. 11133-11141; Bibl. 28 ref.
LA : Anglais
EA : The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.
CC : 002A05C10
FD : Coronavirus; Conformation; Glycoprotéine; Récepteur biologique; Protéolyse
FG : Coronaviridae; Nidovirales; Virus
ED : Coronavirus; Conformation; Glycoprotein; Biological receptor; Proteolysis
EG : Coronaviridae; Nidovirales; Virus
SD : Coronavirus; Conformación; Glicoproteína; Receptor biológico; Proteolisis
LO : INIST-13592.354000170071970260
ID : 09-0437515

Links to Exploration step

Pascal:09-0437515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen</s1>
<s2>Musashi-Murayama, Tokyo 208-0011</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen</s1>
<s2>Musashi-Murayama, Tokyo 208-0011</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0437515</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0437515 INIST</idno>
<idno type="RBID">Pascal:09-0437515</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis</title>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen</s1>
<s2>Musashi-Murayama, Tokyo 208-0011</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen</s1>
<s2>Musashi-Murayama, Tokyo 208-0011</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of virology</title>
<title level="j" type="abbreviated">J. virol.</title>
<idno type="ISSN">0022-538X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological receptor</term>
<term>Conformation</term>
<term>Coronavirus</term>
<term>Glycoprotein</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coronavirus</term>
<term>Conformation</term>
<term>Glycoprotéine</term>
<term>Récepteur biologique</term>
<term>Protéolyse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-538X</s0>
</fA01>
<fA03 i2="1">
<s0>J. virol.</s0>
</fA03>
<fA05>
<s2>83</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MATSUYAMA (Shutoku)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TAGUCHI (Fumihiro)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen</s1>
<s2>Musashi-Murayama, Tokyo 208-0011</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>11133-11141</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13592</s2>
<s5>354000170071970260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0437515</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of virology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Conformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Conformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Conformación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Glycoprotéine</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Glycoprotein</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Glicoproteína</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Récepteur biologique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Biological receptor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Receptor biológico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Protéolyse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Proteolysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Proteolisis</s0>
<s5>08</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>313</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0437515 INIST</NO>
<ET>Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis</ET>
<AU>MATSUYAMA (Shutoku); TAGUCHI (Fumihiro)</AU>
<AF>Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen/Musashi-Murayama, Tokyo 208-0011/Japon (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of virology; ISSN 0022-538X; Etats-Unis; Da. 2009; Vol. 83; No. 21; Pp. 11133-11141; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.</EA>
<CC>002A05C10</CC>
<FD>Coronavirus; Conformation; Glycoprotéine; Récepteur biologique; Protéolyse</FD>
<FG>Coronaviridae; Nidovirales; Virus</FG>
<ED>Coronavirus; Conformation; Glycoprotein; Biological receptor; Proteolysis</ED>
<EG>Coronaviridae; Nidovirales; Virus</EG>
<SD>Coronavirus; Conformación; Glicoproteína; Receptor biológico; Proteolisis</SD>
<LO>INIST-13592.354000170071970260</LO>
<ID>09-0437515</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0437515
   |texte=   Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021