Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols

Identifieur interne : 000041 ( PascalFrancis/Corpus ); précédent : 000040; suivant : 000042

Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols

Auteurs : FANGXIA SHEN ; MIAOMIAO TAN ; ZHENXING WANG ; MAOSHENG YAO ; ZHENQIANG XU ; YAN WU ; JINDONG WANG ; XUEFENG GUO ; TONG ZHU

Source :

RBID : Pascal:12-0430651

Descripteurs français

English descriptors

Abstract

Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0013-936X
A02 01      @0 ESTHAG
A03   1    @0 Environ. sci. technol.
A05       @2 45
A06       @2 17
A08 01  1  ENG  @1 Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols
A11 01  1    @1 FANGXIA SHEN
A11 02  1    @1 MIAOMIAO TAN
A11 03  1    @1 ZHENXING WANG
A11 04  1    @1 MAOSHENG YAO
A11 05  1    @1 ZHENQIANG XU
A11 06  1    @1 YAN WU
A11 07  1    @1 JINDONG WANG
A11 08  1    @1 XUEFENG GUO
A11 09  1    @1 TONG ZHU
A14 01      @1 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University @2 Beijing 100871 @3 CHN @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 9 aut.
A14 02      @1 Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University @2 Beijing 100871 @3 CHN @Z 3 aut. @Z 7 aut. @Z 8 aut.
A20       @1 7473-7480
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 13615 @5 354000508985690540
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 12-0430651
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental science & technology
A66 01      @0 USA
C01 01    ENG  @0 Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.
C02 01  X    @0 001D16
C03 01  X  FRE  @0 Transistor effet champ @5 02
C03 01  X  ENG  @0 Field effect transistor @5 02
C03 01  X  SPA  @0 Transistor efecto campo @5 02
C03 02  X  FRE  @0 Microfluidique @5 03
C03 02  X  ENG  @0 Microfluidics @5 03
C03 02  X  SPA  @0 Microfluidic @5 03
C03 03  X  FRE  @0 Echantillonnage @5 05
C03 03  X  ENG  @0 Sampling @5 05
C03 03  X  SPA  @0 Muestreo @5 05
C03 04  X  FRE  @0 Prélèvement @5 06
C03 04  X  ENG  @0 Samplings @5 06
C03 04  X  SPA  @0 Toma de muestra @5 06
C03 05  X  FRE  @0 Système temps réel @5 08
C03 05  X  ENG  @0 Real time system @5 08
C03 05  X  SPA  @0 Sistema tiempo real @5 08
C03 06  X  FRE  @0 Surveillance biologique @5 11
C03 06  X  ENG  @0 Biological monitoring @5 11
C03 06  X  SPA  @0 Vigilancia biológica @5 11
C03 07  X  FRE  @0 Mesure air ambiant @5 12
C03 07  X  ENG  @0 Ambient air measurement @5 12
C03 07  X  SPA  @0 Medida aire ambiental @5 12
C03 08  X  FRE  @0 Bioaérosol @5 16
C03 08  X  ENG  @0 Bioaerosol @5 16
C03 08  X  SPA  @0 Bioaerosol @5 16
C03 09  X  FRE  @0 Influenzavirus A(H1N1) @4 INC @5 86
C03 10  X  FRE  @0 Nanomatériau @4 CD @5 96
C03 10  X  ENG  @0 Nanostructured materials @4 CD @5 96
C07 01  X  FRE  @0 Mécanique fluide
C07 01  X  ENG  @0 Fluid mechanics
C07 01  X  SPA  @0 Mecánica flúido
N21       @1 331

Format Inist (serveur)

NO : PASCAL 12-0430651 INIST
ET : Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols
AU : FANGXIA SHEN; MIAOMIAO TAN; ZHENXING WANG; MAOSHENG YAO; ZHENQIANG XU; YAN WU; JINDONG WANG; XUEFENG GUO; TONG ZHU
AF : State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University/Beijing 100871/Chine (1 aut., 2 aut., 4 aut., 5 aut., 6 aut., 9 aut.); Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University/Beijing 100871/Chine (3 aut., 7 aut., 8 aut.)
DT : Publication en série; Niveau analytique
SO : Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2011; Vol. 45; No. 17; Pp. 7473-7480; Bibl. 21 ref.
LA : Anglais
EA : Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.
CC : 001D16
FD : Transistor effet champ; Microfluidique; Echantillonnage; Prélèvement; Système temps réel; Surveillance biologique; Mesure air ambiant; Bioaérosol; Influenzavirus A(H1N1); Nanomatériau
FG : Mécanique fluide
ED : Field effect transistor; Microfluidics; Sampling; Samplings; Real time system; Biological monitoring; Ambient air measurement; Bioaerosol; Nanostructured materials
EG : Fluid mechanics
SD : Transistor efecto campo; Microfluidic; Muestreo; Toma de muestra; Sistema tiempo real; Vigilancia biológica; Medida aire ambiental; Bioaerosol
LO : INIST-13615.354000508985690540
ID : 12-0430651

Links to Exploration step

Pascal:12-0430651

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols</title>
<author>
<name sortKey="Fangxia Shen" sort="Fangxia Shen" uniqKey="Fangxia Shen" last="Fangxia Shen">FANGXIA SHEN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Miaomiao Tan" sort="Miaomiao Tan" uniqKey="Miaomiao Tan" last="Miaomiao Tan">MIAOMIAO TAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenxing Wang" sort="Zhenxing Wang" uniqKey="Zhenxing Wang" last="Zhenxing Wang">ZHENXING WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maosheng Yao" sort="Maosheng Yao" uniqKey="Maosheng Yao" last="Maosheng Yao">MAOSHENG YAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenqiang Xu" sort="Zhenqiang Xu" uniqKey="Zhenqiang Xu" last="Zhenqiang Xu">ZHENQIANG XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yan Wu" sort="Yan Wu" uniqKey="Yan Wu" last="Yan Wu">YAN WU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jindong Wang" sort="Jindong Wang" uniqKey="Jindong Wang" last="Jindong Wang">JINDONG WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuefeng Guo" sort="Xuefeng Guo" uniqKey="Xuefeng Guo" last="Xuefeng Guo">XUEFENG GUO</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tong Zhu" sort="Tong Zhu" uniqKey="Tong Zhu" last="Tong Zhu">TONG ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0430651</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0430651 INIST</idno>
<idno type="RBID">Pascal:12-0430651</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols</title>
<author>
<name sortKey="Fangxia Shen" sort="Fangxia Shen" uniqKey="Fangxia Shen" last="Fangxia Shen">FANGXIA SHEN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Miaomiao Tan" sort="Miaomiao Tan" uniqKey="Miaomiao Tan" last="Miaomiao Tan">MIAOMIAO TAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenxing Wang" sort="Zhenxing Wang" uniqKey="Zhenxing Wang" last="Zhenxing Wang">ZHENXING WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maosheng Yao" sort="Maosheng Yao" uniqKey="Maosheng Yao" last="Maosheng Yao">MAOSHENG YAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenqiang Xu" sort="Zhenqiang Xu" uniqKey="Zhenqiang Xu" last="Zhenqiang Xu">ZHENQIANG XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yan Wu" sort="Yan Wu" uniqKey="Yan Wu" last="Yan Wu">YAN WU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jindong Wang" sort="Jindong Wang" uniqKey="Jindong Wang" last="Jindong Wang">JINDONG WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuefeng Guo" sort="Xuefeng Guo" uniqKey="Xuefeng Guo" last="Xuefeng Guo">XUEFENG GUO</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tong Zhu" sort="Tong Zhu" uniqKey="Tong Zhu" last="Tong Zhu">TONG ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient air measurement</term>
<term>Bioaerosol</term>
<term>Biological monitoring</term>
<term>Field effect transistor</term>
<term>Microfluidics</term>
<term>Nanostructured materials</term>
<term>Real time system</term>
<term>Sampling</term>
<term>Samplings</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transistor effet champ</term>
<term>Microfluidique</term>
<term>Echantillonnage</term>
<term>Prélèvement</term>
<term>Système temps réel</term>
<term>Surveillance biologique</term>
<term>Mesure air ambiant</term>
<term>Bioaérosol</term>
<term>Influenzavirus A(H1N1)</term>
<term>Nanomatériau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-936X</s0>
</fA01>
<fA02 i1="01">
<s0>ESTHAG</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FANGXIA SHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIAOMIAO TAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHENXING WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAOSHENG YAO</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHENQIANG XU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YAN WU</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JINDONG WANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>XUEFENG GUO</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>TONG ZHU</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>7473-7480</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13615</s2>
<s5>354000508985690540</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0430651</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental science & technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transistor effet champ</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Field effect transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transistor efecto campo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Microfluidique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microfluidics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Microfluidic</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Echantillonnage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sampling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Muestreo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Prélèvement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Samplings</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Toma de muestra</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Système temps réel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Real time system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sistema tiempo real</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Surveillance biologique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Biological monitoring</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Vigilancia biológica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mesure air ambiant</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ambient air measurement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Medida aire ambiental</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Bioaérosol</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Bioaerosol</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Bioaerosol</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Influenzavirus A(H1N1)</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nanomatériau</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nanostructured materials</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Mécanique fluide</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fluid mechanics</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Mecánica flúido</s0>
</fC07>
<fN21>
<s1>331</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0430651 INIST</NO>
<ET>Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols</ET>
<AU>FANGXIA SHEN; MIAOMIAO TAN; ZHENXING WANG; MAOSHENG YAO; ZHENQIANG XU; YAN WU; JINDONG WANG; XUEFENG GUO; TONG ZHU</AU>
<AF>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University/Beijing 100871/Chine (1 aut., 2 aut., 4 aut., 5 aut., 6 aut., 9 aut.); Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University/Beijing 100871/Chine (3 aut., 7 aut., 8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Environmental science & technology; ISSN 0013-936X; Coden ESTHAG; Etats-Unis; Da. 2011; Vol. 45; No. 17; Pp. 7473-7480; Bibl. 21 ref.</SO>
<LA>Anglais</LA>
<EA>Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.</EA>
<CC>001D16</CC>
<FD>Transistor effet champ; Microfluidique; Echantillonnage; Prélèvement; Système temps réel; Surveillance biologique; Mesure air ambiant; Bioaérosol; Influenzavirus A(H1N1); Nanomatériau</FD>
<FG>Mécanique fluide</FG>
<ED>Field effect transistor; Microfluidics; Sampling; Samplings; Real time system; Biological monitoring; Ambient air measurement; Bioaerosol; Nanostructured materials</ED>
<EG>Fluid mechanics</EG>
<SD>Transistor efecto campo; Microfluidic; Muestreo; Toma de muestra; Sistema tiempo real; Vigilancia biológica; Medida aire ambiental; Bioaerosol</SD>
<LO>INIST-13615.354000508985690540</LO>
<ID>12-0430651</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000041 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000041 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0430651
   |texte=   Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021