Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical prediction in infection

Identifieur interne : 003F23 ( Ncbi/Merge ); précédent : 003F22; suivant : 003F24

Mathematical prediction in infection

Auteurs : Neil M. Ferguson

Source :

RBID : PMC:7129438

Abstract

It is now increasingly common for infectious disease epidemics to be analysed with mathematical models. Modelling is possible because epidemics involve relatively simple processes occurring within large populations of individuals. Modelling aims to explain and predict trends in disease incidence, prevalence, morbidity or mortality. Models give important insight into the development of epidemics. Following disease establishment, epidemic growth is approximately exponential. The rate of growth in this phase is primarily determined by the basic reproduction number (R0), the number of secondary cases per primary case when the population is susceptible. R0 also determines the ease with which control policies can control epidemics. Once a significant proportion of the population has been infected, not all contacts of an infected individual will be with susceptible people. Infection can now continue only because new births replenish the susceptible population. Eventually, an endemic equilibrium is reached whereby every infected person infects one other individual on average. Heterogeneity in host susceptibility, infectiousness, human contact patterns and the genetic composition of pathogen populations introduces substantial additional complexity into the models required to model real diseases realistically. The contribution concludes with a brief review of the recent application of mathematical models to emerging human and animal epidemics, notably the spread of HIV in Africa, the variant Creutzfeldt-Jakob disease epidemic in the UK and its relationship to bovine spongiform encephalitis in cattle, the 2001 foot and mouth epidemic in UK livestock, bioterrorism threats such as smallpox, and the SARS epidemics in 2003.


Url:
DOI: 10.1383/medc.33.3.1.61124
PubMed: NONE
PubMed Central: 7129438

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:7129438

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical prediction in infection</title>
<author>
<name sortKey="Ferguson, Neil M" sort="Ferguson, Neil M" uniqKey="Ferguson N" first="Neil M" last="Ferguson">Neil M. Ferguson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">7129438</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7129438</idno>
<idno type="RBID">PMC:7129438</idno>
<idno type="doi">10.1383/medc.33.3.1.61124</idno>
<idno type="pmid">NONE</idno>
<date when="2005">2005</date>
<idno type="wicri:Area/Pmc/Corpus">001285</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001285</idno>
<idno type="wicri:Area/Pmc/Curation">001285</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001285</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001303</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">001303</idno>
<idno type="wicri:Area/Ncbi/Merge">003F23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mathematical prediction in infection</title>
<author>
<name sortKey="Ferguson, Neil M" sort="Ferguson, Neil M" uniqKey="Ferguson N" first="Neil M" last="Ferguson">Neil M. Ferguson</name>
</author>
</analytic>
<series>
<title level="j">Medicine (Abingdon, England : UK Ed.)</title>
<idno type="ISSN">1357-3039</idno>
<idno type="eISSN">1878-9390</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>It is now increasingly common for infectious disease epidemics to be analysed with mathematical models. Modelling is possible because epidemics involve relatively simple processes occurring within large populations of individuals. Modelling aims to explain and predict trends in disease incidence, prevalence, morbidity or mortality. Models give important insight into the development of epidemics. Following disease establishment, epidemic growth is approximately exponential. The rate of growth in this phase is primarily determined by the basic reproduction number (R0), the number of secondary cases per primary case when the population is susceptible. R0 also determines the ease with which control policies can control epidemics. Once a significant proportion of the population has been infected, not all contacts of an infected individual will be with susceptible people. Infection can now continue only because new births replenish the susceptible population. Eventually, an endemic equilibrium is reached whereby every infected person infects one other individual on average. Heterogeneity in host susceptibility, infectiousness, human contact patterns and the genetic composition of pathogen populations introduces substantial additional complexity into the models required to model real diseases realistically. The contribution concludes with a brief review of the recent application of mathematical models to emerging human and animal epidemics, notably the spread of HIV in Africa, the variant Creutzfeldt-Jakob disease epidemic in the UK and its relationship to bovine spongiform encephalitis in cattle, the 2001 foot and mouth epidemic in UK livestock, bioterrorism threats such as smallpox, and the SARS epidemics in 2003.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
<author>
<name sortKey="May, Rm" uniqKey="May R">RM May</name>
</author>
<author>
<name sortKey="Boily, Mc" uniqKey="Boily M">MC Boily</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kao, Rr" uniqKey="Kao R">RR Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Keeling, Mj" uniqKey="Keeling M">MJ Keeling</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Medicine (Abingdon)</journal-id>
<journal-id journal-id-type="iso-abbrev">Medicine (Abingdon)</journal-id>
<journal-title-group>
<journal-title>Medicine (Abingdon, England : UK Ed.)</journal-title>
</journal-title-group>
<issn pub-type="ppub">1357-3039</issn>
<issn pub-type="epub">1878-9390</issn>
<publisher>
<publisher-name>Elsevier Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">7129438</article-id>
<article-id pub-id-type="publisher-id">S1357-3039(06)00176-9</article-id>
<article-id pub-id-type="doi">10.1383/medc.33.3.1.61124</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mathematical prediction in infection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ferguson</surname>
<given-names>Neil M</given-names>
</name>
</contrib>
</contrib-group>
<aff>
<bold>Neil M Ferguson</bold>
is Professor of Mathematical Biology in the Department of Infectious Disease Epidemiology at Imperial College London, UK</aff>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>10</month>
<year>2006</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>1</day>
<month>3</month>
<year>2005</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>10</month>
<year>2006</year>
</pub-date>
<volume>33</volume>
<issue>3</issue>
<fpage>1</fpage>
<lpage>2</lpage>
<permissions>
<copyright-statement>Copyright © 2005 Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2005</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract>
<p>It is now increasingly common for infectious disease epidemics to be analysed with mathematical models. Modelling is possible because epidemics involve relatively simple processes occurring within large populations of individuals. Modelling aims to explain and predict trends in disease incidence, prevalence, morbidity or mortality. Models give important insight into the development of epidemics. Following disease establishment, epidemic growth is approximately exponential. The rate of growth in this phase is primarily determined by the basic reproduction number (R0), the number of secondary cases per primary case when the population is susceptible. R0 also determines the ease with which control policies can control epidemics. Once a significant proportion of the population has been infected, not all contacts of an infected individual will be with susceptible people. Infection can now continue only because new births replenish the susceptible population. Eventually, an endemic equilibrium is reached whereby every infected person infects one other individual on average. Heterogeneity in host susceptibility, infectiousness, human contact patterns and the genetic composition of pathogen populations introduces substantial additional complexity into the models required to model real diseases realistically. The contribution concludes with a brief review of the recent application of mathematical models to emerging human and animal epidemics, notably the spread of HIV in Africa, the variant Creutzfeldt-Jakob disease epidemic in the UK and its relationship to bovine spongiform encephalitis in cattle, the 2001 foot and mouth epidemic in UK livestock, bioterrorism threats such as smallpox, and the SARS epidemics in 2003.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>infections</kwd>
<kwd>defence against infection</kwd>
<kwd>mathematical model</kwd>
<kwd>epidemics</kwd>
<kwd>basic reproduction number</kwd>
<kwd>emerging infections</kwd>
<kwd>HIV</kwd>
<kwd>smallpox</kwd>
<kwd>SARS</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ferguson, Neil M" sort="Ferguson, Neil M" uniqKey="Ferguson N" first="Neil M" last="Ferguson">Neil M. Ferguson</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003F23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:7129438
   |texte=   Mathematical prediction in infection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:NONE" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021