Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.

Identifieur interne : 003567 ( Ncbi/Merge ); précédent : 003566; suivant : 003568

Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.

Auteurs : S. Ramakrishna [Inde] ; Siladitya Padhi [Inde] ; U Deva Priyakumar [Inde]

Source :

RBID : pubmed:32218650

Abstract

3a is an accessory protein from SARS coronavirus that is known to play a significant role in the proliferation of the virus by forming tetrameric ion channels. Although the monomeric units are known to consist of three transmembrane (TM) domains, there are no solved structures available for the complete monomer. The present study proposes a structural model for the transmembrane region of the monomer by employing our previously tested approach, which predicts potential orientations of TM α-helices by minimizing the unfavorable contact surfaces between the different TM domains. The best model structure comprising all three α-helices has been subjected to MD simulations to examine its quality. The TM bundle was found to form a compact and stable structure with significant intermolecular interactions. The structural features of the proposed model of 3a account for observations from previous experimental investigations on the activity of the protein. Further analysis indicates that residues from the TM2 and TM3 domains are likely to line the pore of the ion channel, which is in good agreement with a recent experimental study. In the absence of an experimental structure for the protein, the proposed structure can serve as a useful model for inferring structure-function relationships about the protein. Graphical AbstractThe structure of the membrane protein 3a from SARS coronavirus is modeled using an approach that minimizes unfavorable contacts between transmembrane domains. A structure for a complete monomeric form of the protein thereby proposed is able to account for the behavior of the protein reported in previous experimental studies.

DOI: 10.1007/s12039-015-0982-z
PubMed: 32218650

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32218650

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.</title>
<author>
<name sortKey="Ramakrishna, S" sort="Ramakrishna, S" uniqKey="Ramakrishna S" first="S" last="Ramakrishna">S. Ramakrishna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Padhi, Siladitya" sort="Padhi, Siladitya" uniqKey="Padhi S" first="Siladitya" last="Padhi">Siladitya Padhi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Priyakumar, U Deva" sort="Priyakumar, U Deva" uniqKey="Priyakumar U" first="U Deva" last="Priyakumar">U Deva Priyakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:32218650</idno>
<idno type="pmid">32218650</idno>
<idno type="doi">10.1007/s12039-015-0982-z</idno>
<idno type="wicri:Area/PubMed/Corpus">000E84</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E84</idno>
<idno type="wicri:Area/PubMed/Curation">000E84</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E84</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D88</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D88</idno>
<idno type="wicri:Area/Ncbi/Merge">003567</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.</title>
<author>
<name sortKey="Ramakrishna, S" sort="Ramakrishna, S" uniqKey="Ramakrishna S" first="S" last="Ramakrishna">S. Ramakrishna</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Padhi, Siladitya" sort="Padhi, Siladitya" uniqKey="Padhi S" first="Siladitya" last="Padhi">Siladitya Padhi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Priyakumar, U Deva" sort="Priyakumar, U Deva" uniqKey="Priyakumar U" first="U Deva" last="Priyakumar">U Deva Priyakumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad</wicri:regionArea>
<wicri:noRegion>Hyderabad</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical sciences (Bangalore, India)</title>
<idno type="ISSN">0974-3626</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">3a is an accessory protein from SARS coronavirus that is known to play a significant role in the proliferation of the virus by forming tetrameric ion channels. Although the monomeric units are known to consist of three transmembrane (TM) domains, there are no solved structures available for the complete monomer. The present study proposes a structural model for the transmembrane region of the monomer by employing our previously tested approach, which predicts potential orientations of TM
<i>α</i>
-helices by minimizing the unfavorable contact surfaces between the different TM domains. The best model structure comprising all three
<i>α</i>
-helices has been subjected to MD simulations to examine its quality. The TM bundle was found to form a compact and stable structure with significant intermolecular interactions. The structural features of the proposed model of 3a account for observations from previous experimental investigations on the activity of the protein. Further analysis indicates that residues from the TM2 and TM3 domains are likely to line the pore of the ion channel, which is in good agreement with a recent experimental study. In the absence of an experimental structure for the protein, the proposed structure can serve as a useful model for inferring structure-function relationships about the protein. Graphical AbstractThe structure of the membrane protein 3a from SARS coronavirus is modeled using an approach that minimizes unfavorable contacts between transmembrane domains. A structure for a complete monomeric form of the protein thereby proposed is able to account for the behavior of the protein reported in previous experimental studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32218650</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0974-3626</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>127</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Journal of chemical sciences (Bangalore, India)</Title>
<ISOAbbreviation>J Chem Sci (Bangalore)</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.</ArticleTitle>
<Pagination>
<MedlinePgn>2159-2169</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12039-015-0982-z</ELocationID>
<Abstract>
<AbstractText>3a is an accessory protein from SARS coronavirus that is known to play a significant role in the proliferation of the virus by forming tetrameric ion channels. Although the monomeric units are known to consist of three transmembrane (TM) domains, there are no solved structures available for the complete monomer. The present study proposes a structural model for the transmembrane region of the monomer by employing our previously tested approach, which predicts potential orientations of TM
<i>α</i>
-helices by minimizing the unfavorable contact surfaces between the different TM domains. The best model structure comprising all three
<i>α</i>
-helices has been subjected to MD simulations to examine its quality. The TM bundle was found to form a compact and stable structure with significant intermolecular interactions. The structural features of the proposed model of 3a account for observations from previous experimental investigations on the activity of the protein. Further analysis indicates that residues from the TM2 and TM3 domains are likely to line the pore of the ion channel, which is in good agreement with a recent experimental study. In the absence of an experimental structure for the protein, the proposed structure can serve as a useful model for inferring structure-function relationships about the protein. Graphical AbstractThe structure of the membrane protein 3a from SARS coronavirus is modeled using an approach that minimizes unfavorable contacts between transmembrane domains. A structure for a complete monomeric form of the protein thereby proposed is able to account for the behavior of the protein reported in previous experimental studies.</AbstractText>
<AbstractText Label="Electronic Supplementary Material" NlmCategory="UNASSIGNED">The online version of this article (doi:10.1007/s12039-015-0982-z) contains supplementary material, which is available to authorized users.</AbstractText>
<CopyrightInformation>© Indian Academy of Sciences 2015.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ramakrishna</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</Affiliation>
<Identifier Source="GRID">grid.419361.8</Identifier>
<Identifier Source="ISNI">0000000417597632</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Padhi</LastName>
<ForeName>Siladitya</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</Affiliation>
<Identifier Source="GRID">grid.419361.8</Identifier>
<Identifier Source="ISNI">0000000417597632</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Priyakumar</LastName>
<ForeName>U Deva</ForeName>
<Initials>UD</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500 032 India.</Affiliation>
<Identifier Source="GRID">grid.419361.8</Identifier>
<Identifier Source="ISNI">0000000417597632</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>India</Country>
<MedlineTA>J Chem Sci (Bangalore)</MedlineTA>
<NlmUniqueID>101609750</NlmUniqueID>
<ISSNLinking>0253-4134</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Membrane protein modeling</Keyword>
<Keyword MajorTopicYN="N">SARS 3a.</Keyword>
<Keyword MajorTopicYN="N">ion channel</Keyword>
<Keyword MajorTopicYN="N">molecular dynamics</Keyword>
<Keyword MajorTopicYN="N">transmembrane helices</Keyword>
<Keyword MajorTopicYN="N">viroporin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32218650</ArticleId>
<ArticleId IdType="doi">10.1007/s12039-015-0982-z</ArticleId>
<ArticleId IdType="pii">982</ArticleId>
<ArticleId IdType="pmc">PMC7090505</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2000 Apr;10(2):174-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753807</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Physiol. 1943 Sep 20;27(1):37-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19873371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Physiol. 2007 May;129(5):371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438118</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph Model. 2004 May;22(5):359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15099832</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:881-922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Model. 2012 Feb;18(2):501-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21541740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2005 Jun 1;59(4):783-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15828005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Med Chem. 2004 Sep;11(18):2421-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15379706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2008 May 1;94(9):3393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212019</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys Chem. 1999 Feb 22;76(3):161-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2003 Nov 15;24(14):1691-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12964188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Dec 15;91(12):4450-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012325</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2004 Aug;14(4):465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2004 Aug;25(11):1400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Protein Chem. 2003;66:159-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2004 Nov;87(5):3421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2003 Nov;85(5):2900-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14581194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2009 Sep 8;5(9):2503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2003 Apr 16;125(15):4434-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12683809</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2007 Dec 7;249(3):445-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 2013 Sep;99(9):628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23483519</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1990 May 1;29(17):4031-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1694455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1995-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2009 Jul 30;30(10):1545-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 1999;28:319-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10410805</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1377-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775826</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Physiol. 1949 Mar 1;108(1):37-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18128147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2015 Mar 30;36(8):539-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25565454</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Aug;18(4):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18406600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Ramakrishna, S" sort="Ramakrishna, S" uniqKey="Ramakrishna S" first="S" last="Ramakrishna">S. Ramakrishna</name>
</noRegion>
<name sortKey="Padhi, Siladitya" sort="Padhi, Siladitya" uniqKey="Padhi S" first="Siladitya" last="Padhi">Siladitya Padhi</name>
<name sortKey="Priyakumar, U Deva" sort="Priyakumar, U Deva" uniqKey="Priyakumar U" first="U Deva" last="Priyakumar">U Deva Priyakumar</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:32218650
   |texte=   Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:32218650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021