Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.

Identifieur interne : 003066 ( Ncbi/Merge ); précédent : 003065; suivant : 003067

Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.

Auteurs : Sarah R. Leist [États-Unis] ; Kara L. Jensen [États-Unis] ; Ralph S. Baric [États-Unis] ; Timothy P. Sheahan [États-Unis]

Source :

RBID : pubmed:31339932

Descripteurs français

English descriptors

Abstract

Newly emerging viral pathogens pose a constant and unpredictable threat to human and animal health. Coronaviruses (CoVs) have a penchant for sudden emergence, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and most recently, swine acute diarrhea syndrome coronavirus (SADS-CoV). Small animal models of emerging viral pathogenesis are crucial to better understand the virus and host factors driving disease progression. However, rodent models are often criticized for their limited translatability to humans. The complete blood count is the most ordered clinical test in the United States serving as the cornerstone of clinical medicine and differential diagnosis. We recently generated a mouse model for MERS-CoV pathogenesis through the humanization of the orthologous entry receptor dipeptidyl peptidase 4 (DPP4). To increase the translatability of this model, we validated and established the use of an automated veterinary hematology analyzer (VetScan HM5) at biosafety level 3 for analysis of peripheral blood. MERS-CoV lung titer peaked 2 days post infection concurrent with lymphopenia and neutrophilia in peripheral blood, two phenomena also observed in MERS-CoV infection of humans. The fluctuations in leukocyte populations measured by Vetscan HM5 were corroborated by standard flow cytometry, thus confirming the utility of this approach. Comparing a sublethal and lethal dose of MERS-CoV in mice, analysis of daily blood draws demonstrates a dose dependent modulation of leukocytes. Major leukocyte populations were modulated before weight loss was observed. Importantly, neutrophil counts on 1dpi were predictive of disease severity with a lethal dose of MERS-CoV highlighting the predictive value of hematology in this model. Taken together, the inclusion of hematological measures in mouse models of emerging viral pathogenesis increases their translatability and should elevate the preclinical evaluation of MERS-CoV therapeutics and vaccines to better mirror the complexity of the human condition.

DOI: 10.1371/journal.pone.0220126
PubMed: 31339932

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31339932

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.</title>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Kara L" sort="Jensen, Kara L" uniqKey="Jensen K" first="Kara L" last="Jensen">Kara L. Jensen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31339932</idno>
<idno type="pmid">31339932</idno>
<idno type="doi">10.1371/journal.pone.0220126</idno>
<idno type="wicri:Area/PubMed/Corpus">000887</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000887</idno>
<idno type="wicri:Area/PubMed/Curation">000887</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000887</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000886</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000886</idno>
<idno type="wicri:Area/Ncbi/Merge">003066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.</title>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Kara L" sort="Jensen, Kara L" uniqKey="Jensen K" first="Kara L" last="Jensen">Kara L. Jensen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Monitoring (methods)</term>
<term>Blood Chemical Analysis (veterinary)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (blood)</term>
<term>Coronavirus Infections (pathology)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Disease Models, Animal</term>
<term>Disease Progression</term>
<term>Female</term>
<term>Hematologic Tests (veterinary)</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Middle East Respiratory Syndrome Coronavirus (isolation & purification)</term>
<term>Middle East Respiratory Syndrome Coronavirus (pathogenicity)</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse chimique du sang (médecine vétérinaire)</term>
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Cinétique</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (isolement et purification)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (pathogénicité)</term>
<term>Femelle</term>
<term>Humains</term>
<term>Infections à coronavirus (anatomopathologie)</term>
<term>Infections à coronavirus (médecine vétérinaire)</term>
<term>Infections à coronavirus (sang)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Tests hématologiques (médecine vétérinaire)</term>
<term>Évolution de la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biological Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Analyse chimique du sang</term>
<term>Infections à coronavirus</term>
<term>Tests hématologiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Blood Chemical Analysis</term>
<term>Coronavirus Infections</term>
<term>Hematologic Tests</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Disease Models, Animal</term>
<term>Disease Progression</term>
<term>Female</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Cinétique</term>
<term>Femelle</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Évolution de la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Newly emerging viral pathogens pose a constant and unpredictable threat to human and animal health. Coronaviruses (CoVs) have a penchant for sudden emergence, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and most recently, swine acute diarrhea syndrome coronavirus (SADS-CoV). Small animal models of emerging viral pathogenesis are crucial to better understand the virus and host factors driving disease progression. However, rodent models are often criticized for their limited translatability to humans. The complete blood count is the most ordered clinical test in the United States serving as the cornerstone of clinical medicine and differential diagnosis. We recently generated a mouse model for MERS-CoV pathogenesis through the humanization of the orthologous entry receptor dipeptidyl peptidase 4 (DPP4). To increase the translatability of this model, we validated and established the use of an automated veterinary hematology analyzer (VetScan HM5) at biosafety level 3 for analysis of peripheral blood. MERS-CoV lung titer peaked 2 days post infection concurrent with lymphopenia and neutrophilia in peripheral blood, two phenomena also observed in MERS-CoV infection of humans. The fluctuations in leukocyte populations measured by Vetscan HM5 were corroborated by standard flow cytometry, thus confirming the utility of this approach. Comparing a sublethal and lethal dose of MERS-CoV in mice, analysis of daily blood draws demonstrates a dose dependent modulation of leukocytes. Major leukocyte populations were modulated before weight loss was observed. Importantly, neutrophil counts on 1dpi were predictive of disease severity with a lethal dose of MERS-CoV highlighting the predictive value of hematology in this model. Taken together, the inclusion of hematological measures in mouse models of emerging viral pathogenesis increases their translatability and should elevate the preclinical evaluation of MERS-CoV therapeutics and vaccines to better mirror the complexity of the human condition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31339932</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>e0220126</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0220126</ELocationID>
<Abstract>
<AbstractText>Newly emerging viral pathogens pose a constant and unpredictable threat to human and animal health. Coronaviruses (CoVs) have a penchant for sudden emergence, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and most recently, swine acute diarrhea syndrome coronavirus (SADS-CoV). Small animal models of emerging viral pathogenesis are crucial to better understand the virus and host factors driving disease progression. However, rodent models are often criticized for their limited translatability to humans. The complete blood count is the most ordered clinical test in the United States serving as the cornerstone of clinical medicine and differential diagnosis. We recently generated a mouse model for MERS-CoV pathogenesis through the humanization of the orthologous entry receptor dipeptidyl peptidase 4 (DPP4). To increase the translatability of this model, we validated and established the use of an automated veterinary hematology analyzer (VetScan HM5) at biosafety level 3 for analysis of peripheral blood. MERS-CoV lung titer peaked 2 days post infection concurrent with lymphopenia and neutrophilia in peripheral blood, two phenomena also observed in MERS-CoV infection of humans. The fluctuations in leukocyte populations measured by Vetscan HM5 were corroborated by standard flow cytometry, thus confirming the utility of this approach. Comparing a sublethal and lethal dose of MERS-CoV in mice, analysis of daily blood draws demonstrates a dose dependent modulation of leukocytes. Major leukocyte populations were modulated before weight loss was observed. Importantly, neutrophil counts on 1dpi were predictive of disease severity with a lethal dose of MERS-CoV highlighting the predictive value of hematology in this model. Taken together, the inclusion of hematological measures in mouse models of emerging viral pathogenesis increases their translatability and should elevate the preclinical evaluation of MERS-CoV therapeutics and vaccines to better mirror the complexity of the human condition.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leist</LastName>
<ForeName>Sarah R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Kara L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheahan</LastName>
<ForeName>Timothy P</ForeName>
<Initials>TP</Initials>
<Identifier Source="ORCID">0000-0001-9181-2183</Identifier>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI132178</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI109680</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI142759</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI110700</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000079687" MajorTopicYN="N">Biological Monitoring</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001774" MajorTopicYN="N">Blood Chemical Analysis</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018450" MajorTopicYN="N">Disease Progression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006403" MajorTopicYN="Y">Hematologic Tests</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="Y">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31339932</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0220126</ArticleId>
<ArticleId IdType="pii">PONE-D-19-08017</ArticleId>
<ArticleId IdType="pmc">PMC6655769</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2018 Apr;517:98-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2013 Jun 29;381(9885):2265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Cell Biol. 1997 Oct;75(5):430-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9429890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Microbiol. 2016 Nov 28;2:16226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol Methods. 2013 Apr 30;390(1-2):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21466808</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2013 Apr 11;153(2):362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23582326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Rev. 2007 Dec;220:169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979846</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hematology. 2005 Apr;10(2):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16019455</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Sep;13(9):752-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Jun 26;10(6):e0131451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26115403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3119-E3128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Hematol. 2016 Feb;44(2):132-137.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26644183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Transl Med. 2014 Sep 10;6(253):253ps10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25210060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2015 Dec 22;12:221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689940</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
</region>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<name sortKey="Jensen, Kara L" sort="Jensen, Kara L" uniqKey="Jensen K" first="Kara L" last="Jensen">Kara L. Jensen</name>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:31339932
   |texte=   Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:31339932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021