Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronavirus NSP6 restricts autophagosome expansion.

Identifieur interne : 002913 ( Ncbi/Merge ); précédent : 002912; suivant : 002914

Coronavirus NSP6 restricts autophagosome expansion.

Auteurs : Eleanor M. Cottam ; Matthew C. Whelband ; Thomas Wileman

Source :

RBID : pubmed:24991833

Descripteurs français

English descriptors

Abstract

Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation.

DOI: 10.4161/auto.29309
PubMed: 24991833

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24991833

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronavirus NSP6 restricts autophagosome expansion.</title>
<author>
<name sortKey="Cottam, Eleanor M" sort="Cottam, Eleanor M" uniqKey="Cottam E" first="Eleanor M" last="Cottam">Eleanor M. Cottam</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Whelband, Matthew C" sort="Whelband, Matthew C" uniqKey="Whelband M" first="Matthew C" last="Whelband">Matthew C. Whelband</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wileman, Thomas" sort="Wileman, Thomas" uniqKey="Wileman T" first="Thomas" last="Wileman">Thomas Wileman</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24991833</idno>
<idno type="pmid">24991833</idno>
<idno type="doi">10.4161/auto.29309</idno>
<idno type="wicri:Area/PubMed/Corpus">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F73</idno>
<idno type="wicri:Area/PubMed/Curation">000F73</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F73</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001029</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001029</idno>
<idno type="wicri:Area/Ncbi/Merge">002913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronavirus NSP6 restricts autophagosome expansion.</title>
<author>
<name sortKey="Cottam, Eleanor M" sort="Cottam, Eleanor M" uniqKey="Cottam E" first="Eleanor M" last="Cottam">Eleanor M. Cottam</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Whelband, Matthew C" sort="Whelband, Matthew C" uniqKey="Whelband M" first="Matthew C" last="Whelband">Matthew C. Whelband</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wileman, Thomas" sort="Wileman, Thomas" uniqKey="Wileman T" first="Thomas" last="Wileman">Thomas Wileman</name>
<affiliation>
<nlm:affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</nlm:affiliation>
<wicri:noCountry code="no comma">Norwich Medical School; University of East Anglia; Norwich UK.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Animals</term>
<term>Autophagy</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus (metabolism)</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Lysosomes (metabolism)</term>
<term>Phagosomes (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Time Factors</term>
<term>Vero Cells</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Autophagie</term>
<term>Cellules Vero</term>
<term>Coronavirus (métabolisme)</term>
<term>Facteurs temps</term>
<term>Lysosomes (métabolisme)</term>
<term>Phagosomes (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines virales (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Virus de la bronchite infectieuse (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus</term>
<term>Lysosomes</term>
<term>Phagosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Coronavirus</term>
<term>Lysosomes</term>
<term>Phagosomes</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines virales</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Autophagy</term>
<term>Chlorocebus aethiops</term>
<term>Time Factors</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Autophagie</term>
<term>Cellules Vero</term>
<term>Facteurs temps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24991833</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronavirus NSP6 restricts autophagosome expansion.</ArticleTitle>
<Pagination>
<MedlinePgn>1426-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/auto.29309</ELocationID>
<Abstract>
<AbstractText>Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cottam</LastName>
<ForeName>Eleanor M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whelband</LastName>
<ForeName>Matthew C</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wileman</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Norwich Medical School; University of East Anglia; Norwich UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/E018521/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010588" MajorTopicYN="N">Phagosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MHV</Keyword>
<Keyword MajorTopicYN="N">SARS</Keyword>
<Keyword MajorTopicYN="N">autophagosome quantification</Keyword>
<Keyword MajorTopicYN="N">autophagy</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">nonstructural proteins</Keyword>
<Keyword MajorTopicYN="N">omegasome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24991833</ArticleId>
<ArticleId IdType="pii">29309</ArticleId>
<ArticleId IdType="doi">10.4161/auto.29309</ArticleId>
<ArticleId IdType="pmc">PMC4203519</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):8953-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Apr;9(4):496-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23328491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Dec 16;23(58):9314-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 28;120(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 May;3(5):e156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2006 Feb;7(2):129-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16420522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 12;312(5775):875-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2007 Mar-Apr;38(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17296157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):24131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17580304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17700057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Mar 15;1(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Aug 25;182(4):685-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Apr;11(4):468-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Apr 17;30(4):588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 May;10(5):480-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19515765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Oct;5(7):1062-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Feb 18;7(2):115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1302-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20138172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jun 25;7(6):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 17;465(7300):942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20526321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Aug 23;190(4):511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Oct;85(20):10561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Nov;7(11):1335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21799305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(5):2474-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2012 Oct;8(10):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22739997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Feb 1;9(2):164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23182945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 1;288(5):3571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23233667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 May;6(4):506-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20505359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 21;495(7441):389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23455425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2003 Mar-Apr;9(3-4):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Cottam, Eleanor M" sort="Cottam, Eleanor M" uniqKey="Cottam E" first="Eleanor M" last="Cottam">Eleanor M. Cottam</name>
<name sortKey="Whelband, Matthew C" sort="Whelband, Matthew C" uniqKey="Whelband M" first="Matthew C" last="Whelband">Matthew C. Whelband</name>
<name sortKey="Wileman, Thomas" sort="Wileman, Thomas" uniqKey="Wileman T" first="Thomas" last="Wileman">Thomas Wileman</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24991833
   |texte=   Coronavirus NSP6 restricts autophagosome expansion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24991833" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021