Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.

Identifieur interne : 002667 ( Ncbi/Merge ); précédent : 002666; suivant : 002668

Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.

Auteurs : Che-Pei Cho [République populaire de Chine] ; Szu-Chieh Lin ; Ming-Yuan Chou ; Hsiu-Ting Hsu ; Kung-Yao Chang

Source :

RBID : pubmed:23638024

Descripteurs français

English descriptors

Abstract

RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.

DOI: 10.1371/journal.pone.0062283
PubMed: 23638024

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23638024

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.</title>
<author>
<name sortKey="Cho, Che Pei" sort="Cho, Che Pei" uniqKey="Cho C" first="Che-Pei" last="Cho">Che-Pei Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Szu Chieh" sort="Lin, Szu Chieh" uniqKey="Lin S" first="Szu-Chieh" last="Lin">Szu-Chieh Lin</name>
</author>
<author>
<name sortKey="Chou, Ming Yuan" sort="Chou, Ming Yuan" uniqKey="Chou M" first="Ming-Yuan" last="Chou">Ming-Yuan Chou</name>
</author>
<author>
<name sortKey="Hsu, Hsiu Ting" sort="Hsu, Hsiu Ting" uniqKey="Hsu H" first="Hsiu-Ting" last="Hsu">Hsiu-Ting Hsu</name>
</author>
<author>
<name sortKey="Chang, Kung Yao" sort="Chang, Kung Yao" uniqKey="Chang K" first="Kung-Yao" last="Chang">Kung-Yao Chang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23638024</idno>
<idno type="pmid">23638024</idno>
<idno type="doi">10.1371/journal.pone.0062283</idno>
<idno type="wicri:Area/PubMed/Corpus">001205</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001205</idno>
<idno type="wicri:Area/PubMed/Curation">001205</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001205</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001113</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001113</idno>
<idno type="wicri:Area/Ncbi/Merge">002667</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.</title>
<author>
<name sortKey="Cho, Che Pei" sort="Cho, Che Pei" uniqKey="Cho C" first="Che-Pei" last="Cho">Che-Pei Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, Szu Chieh" sort="Lin, Szu Chieh" uniqKey="Lin S" first="Szu-Chieh" last="Lin">Szu-Chieh Lin</name>
</author>
<author>
<name sortKey="Chou, Ming Yuan" sort="Chou, Ming Yuan" uniqKey="Chou M" first="Ming-Yuan" last="Chou">Ming-Yuan Chou</name>
</author>
<author>
<name sortKey="Hsu, Hsiu Ting" sort="Hsu, Hsiu Ting" uniqKey="Hsu H" first="Hsiu-Ting" last="Hsu">Hsiu-Ting Hsu</name>
</author>
<author>
<name sortKey="Chang, Kung Yao" sort="Chang, Kung Yao" uniqKey="Chang K" first="Kung-Yao" last="Chang">Kung-Yao Chang</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Frameshifting, Ribosomal</term>
<term>Inverted Repeat Sequences</term>
<term>Nucleotide Motifs</term>
<term>RNA Stability</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral ()</term>
<term>ARN viral (génétique)</term>
<term>Appariement de bases</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Motifs nucléotidiques</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stabilité de l'ARN</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées inversées</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Saccharomyces cerevisiae</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Frameshifting, Ribosomal</term>
<term>Inverted Repeat Sequences</term>
<term>Nucleotide Motifs</term>
<term>RNA Stability</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Appariement de bases</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Motifs nucléotidiques</term>
<term>Stabilité de l'ARN</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées inversées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23638024</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.</ArticleTitle>
<Pagination>
<MedlinePgn>e62283</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0062283</ELocationID>
<Abstract>
<AbstractText>RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Che-Pei</ForeName>
<Initials>CP</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Szu-Chieh</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chou</LastName>
<ForeName>Ming-Yuan</ForeName>
<Initials>MY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Hsiu-Ting</ForeName>
<Initials>HT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Kung-Yao</ForeName>
<Initials>KY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="Y">Base Pairing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018965" MajorTopicYN="Y">Frameshifting, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055029" MajorTopicYN="Y">Inverted Repeat Sequences</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="N">Nucleotide Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="N">RNA Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23638024</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0062283</ArticleId>
<ArticleId IdType="pii">PONE-D-12-40191</ArticleId>
<ArticleId IdType="pmc">PMC3639245</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2011 Jul 7;475(7354):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 May;17(5):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Mar 1;29(5):1125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Apr;27(4):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Feb;9(2):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):1019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Feb;10(2):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14730021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jul 9;118(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Aug 20;118(4):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1969 Dec 6;224(5223):957-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5360547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Jul 27;62(2):339-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1309954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Jul 25;22(14):2784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Nov;176(22):6842-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1996 Mar;60(1):103-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8852897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Jun;72(6):4819-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 14;120(1):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(13):4265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16688178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):391-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17051149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Dec;13(12):1092-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2007 Sep;99(9):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Sep;13(9):1483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(16):5581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17704133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Mar 21;132(6):971-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18358810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Feb;139(2):193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Jul;20(13):3025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Mar;38(5):1676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Sep 2;467(7311):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811459</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chang, Kung Yao" sort="Chang, Kung Yao" uniqKey="Chang K" first="Kung-Yao" last="Chang">Kung-Yao Chang</name>
<name sortKey="Chou, Ming Yuan" sort="Chou, Ming Yuan" uniqKey="Chou M" first="Ming-Yuan" last="Chou">Ming-Yuan Chou</name>
<name sortKey="Hsu, Hsiu Ting" sort="Hsu, Hsiu Ting" uniqKey="Hsu H" first="Hsiu-Ting" last="Hsu">Hsiu-Ting Hsu</name>
<name sortKey="Lin, Szu Chieh" sort="Lin, Szu Chieh" uniqKey="Lin S" first="Szu-Chieh" last="Lin">Szu-Chieh Lin</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cho, Che Pei" sort="Cho, Che Pei" uniqKey="Cho C" first="Che-Pei" last="Cho">Che-Pei Cho</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002667 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002667 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:23638024
   |texte=   Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23638024" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021