Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.

Identifieur interne : 002568 ( Ncbi/Merge ); précédent : 002567; suivant : 002569

Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.

Auteurs : Carly Page [États-Unis] ; Lindsay Goicochea ; Krystal Matthews ; Yong Zhang ; Peter Klover ; Michael J. Holtzman ; Lothar Hennighausen ; Matthew Frieman

Source :

RBID : pubmed:23015710

Descripteurs français

English descriptors

Abstract

Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA macrophages by STAT1 is critical to regulating immune pathologies and for protection from long-term progression to fibrotic lung disease in a mouse model of SARS-CoV infection.

DOI: 10.1128/JVI.01689-12
PubMed: 23015710

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23015710

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.</title>
<author>
<name sortKey="Page, Carly" sort="Page, Carly" uniqKey="Page C" first="Carly" last="Page">Carly Page</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goicochea, Lindsay" sort="Goicochea, Lindsay" uniqKey="Goicochea L" first="Lindsay" last="Goicochea">Lindsay Goicochea</name>
</author>
<author>
<name sortKey="Matthews, Krystal" sort="Matthews, Krystal" uniqKey="Matthews K" first="Krystal" last="Matthews">Krystal Matthews</name>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</author>
<author>
<name sortKey="Klover, Peter" sort="Klover, Peter" uniqKey="Klover P" first="Peter" last="Klover">Peter Klover</name>
</author>
<author>
<name sortKey="Holtzman, Michael J" sort="Holtzman, Michael J" uniqKey="Holtzman M" first="Michael J" last="Holtzman">Michael J. Holtzman</name>
</author>
<author>
<name sortKey="Hennighausen, Lothar" sort="Hennighausen, Lothar" uniqKey="Hennighausen L" first="Lothar" last="Hennighausen">Lothar Hennighausen</name>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23015710</idno>
<idno type="pmid">23015710</idno>
<idno type="doi">10.1128/JVI.01689-12</idno>
<idno type="wicri:Area/PubMed/Corpus">001301</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001301</idno>
<idno type="wicri:Area/PubMed/Curation">001301</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001301</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001334</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001334</idno>
<idno type="wicri:Area/Ncbi/Merge">002568</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.</title>
<author>
<name sortKey="Page, Carly" sort="Page, Carly" uniqKey="Page C" first="Carly" last="Page">Carly Page</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goicochea, Lindsay" sort="Goicochea, Lindsay" uniqKey="Goicochea L" first="Lindsay" last="Goicochea">Lindsay Goicochea</name>
</author>
<author>
<name sortKey="Matthews, Krystal" sort="Matthews, Krystal" uniqKey="Matthews K" first="Krystal" last="Matthews">Krystal Matthews</name>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</author>
<author>
<name sortKey="Klover, Peter" sort="Klover, Peter" uniqKey="Klover P" first="Peter" last="Klover">Peter Klover</name>
</author>
<author>
<name sortKey="Holtzman, Michael J" sort="Holtzman, Michael J" uniqKey="Holtzman M" first="Michael J" last="Holtzman">Michael J. Holtzman</name>
</author>
<author>
<name sortKey="Hennighausen, Lothar" sort="Hennighausen, Lothar" uniqKey="Hennighausen L" first="Lothar" last="Hennighausen">Lothar Hennighausen</name>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA Primers</term>
<term>Immunohistochemistry</term>
<term>Macrophage Activation</term>
<term>Macrophages, Peritoneal (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>SARS Virus (isolation & purification)</term>
<term>STAT1 Transcription Factor (genetics)</term>
<term>STAT1 Transcription Factor (physiology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des macrophages</term>
<term>Amorces ADN</term>
<term>Animaux</term>
<term>Facteur de transcription STAT-1 (génétique)</term>
<term>Facteur de transcription STAT-1 (physiologie)</term>
<term>Immunohistochimie</term>
<term>Macrophages péritonéaux (immunologie)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence nucléotidique</term>
<term>Virus du SRAS (isolement et purification)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>STAT1 Transcription Factor</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>STAT1 Transcription Factor</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur de transcription STAT-1</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Macrophages péritonéaux</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Macrophages, Peritoneal</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteur de transcription STAT-1</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Immunohistochemistry</term>
<term>Macrophage Activation</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des macrophages</term>
<term>Amorces ADN</term>
<term>Animaux</term>
<term>Immunohistochimie</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA macrophages by STAT1 is critical to regulating immune pathologies and for protection from long-term progression to fibrotic lung disease in a mouse model of SARS-CoV infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23015710</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>13334-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01689-12</ELocationID>
<Abstract>
<AbstractText>Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA macrophages by STAT1 is critical to regulating immune pathologies and for protection from long-term progression to fibrotic lung disease in a mouse model of SARS-CoV infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Carly</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goicochea</LastName>
<ForeName>Lindsay</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Krystal</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yong</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Klover</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holtzman</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hennighausen</LastName>
<ForeName>Lothar</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI095569</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007540</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI095569-01</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32AI007540</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050794">STAT1 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494080">Stat1 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008262" MajorTopicYN="Y">Macrophage Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017737" MajorTopicYN="N">Macrophages, Peritoneal</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050794" MajorTopicYN="N">STAT1 Transcription Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23015710</ArticleId>
<ArticleId IdType="pii">JVI.01689-12</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01689-12</ArticleId>
<ArticleId IdType="pmc">PMC3503056</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2011 Mar;300(3):L341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jul;82(14):7212-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18448520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Jul;70(7):3656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2001 Aug 16;345(7):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11519507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1995 Jan 5;332(1):27-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7646623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Mar;83(5):2368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2006;7:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Tradit Chin Med. 2003 Sep;23(3):214-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14535196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jan 18;445(7125):319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17230189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 2011 Sep;140(3):768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 2011 Jun;31(6):485-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21631355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19735874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 7;272(45):28779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2985</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2011 Jan;132(1):66-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20840631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2006 Oct;35(4):466-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2010 Jan 1;181(1):72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Jul;116(7):2044-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 May;36(5):515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 May 15;20(10):2508-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11350940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Mar 1;180(5):3319-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2010 Oct;137(1):89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2005 Nov;167(5):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1997 May;155(5):1763-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9154889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008;4(8):e1000115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2007 Mar;117(3):530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Jun;14(6):633-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Aug 15;183(4):2793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Jul;43(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20587775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Apr 15;164(8):4220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10754318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Mar;74(3):1471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16495517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Immunol. 2011 Apr;Chapter 14:Unit14.22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21462164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer J. 2001 Mar-Apr;7(2):132-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11324766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2003 Aug 1;102(3):1078-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12689929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroimmunol. 2011 Mar;232(1-2):26-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21051093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2006 Sep 15;43(6):748-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Sep 1;171(5):2684-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2011;27:493-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21639799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Feb 9;84(3):443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(20):11520-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17670827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2010 Jan;87(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20052800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2003 Jul;200(3):282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Respir Med. 2010 Apr;4(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Surg Oncol. 2007 Apr;14(4):1405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17195908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2010 Nov;12(11):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21076615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2007;23:69-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17474876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1999 Aug;8(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10621974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2007 Oct 1;176(7):636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1714-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14755057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2011;7(9):1273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2001 Jun-Sep;12(2-3):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1995;64:621-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Jun 1;174(11):6561; author reply 6561-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 Apr;170(4):1152-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2002 Apr;71(4):597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2005 Aug;17(4):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2003 Jan;3(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Feb 9;84(3):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Immunol. 2011;12:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19841166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2008 Jan;214(2):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18161745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1992 Jul 1;176(1):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1613462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2000 Jul;184(1):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10825242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med Res. 2012 Feb;4(1):7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<name sortKey="Goicochea, Lindsay" sort="Goicochea, Lindsay" uniqKey="Goicochea L" first="Lindsay" last="Goicochea">Lindsay Goicochea</name>
<name sortKey="Hennighausen, Lothar" sort="Hennighausen, Lothar" uniqKey="Hennighausen L" first="Lothar" last="Hennighausen">Lothar Hennighausen</name>
<name sortKey="Holtzman, Michael J" sort="Holtzman, Michael J" uniqKey="Holtzman M" first="Michael J" last="Holtzman">Michael J. Holtzman</name>
<name sortKey="Klover, Peter" sort="Klover, Peter" uniqKey="Klover P" first="Peter" last="Klover">Peter Klover</name>
<name sortKey="Matthews, Krystal" sort="Matthews, Krystal" uniqKey="Matthews K" first="Krystal" last="Matthews">Krystal Matthews</name>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Page, Carly" sort="Page, Carly" uniqKey="Page C" first="Carly" last="Page">Carly Page</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002568 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002568 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:23015710
   |texte=   Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23015710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021