Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanism of nucleic acid unwinding by SARS-CoV helicase.

Identifieur interne : 002504 ( Ncbi/Merge ); précédent : 002503; suivant : 002505

Mechanism of nucleic acid unwinding by SARS-CoV helicase.

Auteurs : Adeyemi O. Adedeji [États-Unis] ; Bruno Marchand ; Aartjan J W. Te Velthuis ; Eric J. Snijder ; Susan Weiss ; Robert L. Eoff ; Kamalendra Singh ; Stefan G. Sarafianos

Source :

RBID : pubmed:22615777

Descripteurs français

English descriptors

Abstract

The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.

DOI: 10.1371/journal.pone.0036521
PubMed: 22615777

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22615777

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanism of nucleic acid unwinding by SARS-CoV helicase.</title>
<author>
<name sortKey="Adedeji, Adeyemi O" sort="Adedeji, Adeyemi O" uniqKey="Adedeji A" first="Adeyemi O" last="Adedeji">Adeyemi O. Adedeji</name>
<affiliation wicri:level="2">
<nlm:affiliation>Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marchand, Bruno" sort="Marchand, Bruno" uniqKey="Marchand B" first="Bruno" last="Marchand">Bruno Marchand</name>
</author>
<author>
<name sortKey="Te Velthuis, Aartjan J W" sort="Te Velthuis, Aartjan J W" uniqKey="Te Velthuis A" first="Aartjan J W" last="Te Velthuis">Aartjan J W. Te Velthuis</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
<author>
<name sortKey="Weiss, Susan" sort="Weiss, Susan" uniqKey="Weiss S" first="Susan" last="Weiss">Susan Weiss</name>
</author>
<author>
<name sortKey="Eoff, Robert L" sort="Eoff, Robert L" uniqKey="Eoff R" first="Robert L" last="Eoff">Robert L. Eoff</name>
</author>
<author>
<name sortKey="Singh, Kamalendra" sort="Singh, Kamalendra" uniqKey="Singh K" first="Kamalendra" last="Singh">Kamalendra Singh</name>
</author>
<author>
<name sortKey="Sarafianos, Stefan G" sort="Sarafianos, Stefan G" uniqKey="Sarafianos S" first="Stefan G" last="Sarafianos">Stefan G. Sarafianos</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22615777</idno>
<idno type="pmid">22615777</idno>
<idno type="doi">10.1371/journal.pone.0036521</idno>
<idno type="wicri:Area/PubMed/Corpus">001362</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001362</idno>
<idno type="wicri:Area/PubMed/Curation">001362</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001362</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001327</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001327</idno>
<idno type="wicri:Area/Ncbi/Merge">002504</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanism of nucleic acid unwinding by SARS-CoV helicase.</title>
<author>
<name sortKey="Adedeji, Adeyemi O" sort="Adedeji, Adeyemi O" uniqKey="Adedeji A" first="Adeyemi O" last="Adedeji">Adeyemi O. Adedeji</name>
<affiliation wicri:level="2">
<nlm:affiliation>Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marchand, Bruno" sort="Marchand, Bruno" uniqKey="Marchand B" first="Bruno" last="Marchand">Bruno Marchand</name>
</author>
<author>
<name sortKey="Te Velthuis, Aartjan J W" sort="Te Velthuis, Aartjan J W" uniqKey="Te Velthuis A" first="Aartjan J W" last="Te Velthuis">Aartjan J W. Te Velthuis</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
<author>
<name sortKey="Weiss, Susan" sort="Weiss, Susan" uniqKey="Weiss S" first="Susan" last="Weiss">Susan Weiss</name>
</author>
<author>
<name sortKey="Eoff, Robert L" sort="Eoff, Robert L" uniqKey="Eoff R" first="Robert L" last="Eoff">Robert L. Eoff</name>
</author>
<author>
<name sortKey="Singh, Kamalendra" sort="Singh, Kamalendra" uniqKey="Singh K" first="Kamalendra" last="Singh">Kamalendra Singh</name>
</author>
<author>
<name sortKey="Sarafianos, Stefan G" sort="Sarafianos, Stefan G" uniqKey="Sarafianos S" first="Stefan G" last="Sarafianos">Stefan G. Sarafianos</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA Helicases (metabolism)</term>
<term>Nucleic Acids (metabolism)</term>
<term>SARS Virus (enzymology)</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides nucléiques (métabolisme)</term>
<term>Helicase (métabolisme)</term>
<term>Spécificité du substrat</term>
<term>Virus du SRAS (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Helicases</term>
<term>Nucleic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides nucléiques</term>
<term>Helicase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22615777</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanism of nucleic acid unwinding by SARS-CoV helicase.</ArticleTitle>
<Pagination>
<MedlinePgn>e36521</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0036521</ELocationID>
<Abstract>
<AbstractText>The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adedeji</LastName>
<ForeName>Adeyemi O</ForeName>
<Initials>AO</Initials>
<AffiliationInfo>
<Affiliation>Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marchand</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Te Velthuis</LastName>
<ForeName>Aartjan J W</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weiss</LastName>
<ForeName>Susan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eoff</LastName>
<ForeName>Robert L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Kamalendra</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sarafianos</LastName>
<ForeName>Stefan G</ForeName>
<Initials>SG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI074389</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
<Grant>
<GrantID>R33 AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI094715</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI074389</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI076119</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI094715</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI076119</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009696">Nucleic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009696" MajorTopicYN="N">Nucleic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22615777</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0036521</ArticleId>
<ArticleId IdType="pii">PONE-D-11-24742</ArticleId>
<ArticleId IdType="pmc">PMC3352918</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1996 Feb 23;84(4):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8598050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 17;83(4):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7585968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jul 12;271(28):16678-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:169-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 17;275(5298):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Sep;17(1):100-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jan 12;24(1):180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Sep;57(6):1664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 15;367:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Jul;6(7):1056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10917600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:651-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 5;291(5501):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Apr 10;40(14):4459-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11284703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 20;276(16):12598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 29;324(3):409-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Mar;13(3):242-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(5):e459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Aug 22;26(16):3804-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2008;84:445-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 29;47(4):1126-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18179252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 May;9(5):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Nov 4;47(44):11536-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 2;49(4):656-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Mar;38(4):1312-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2010 Jul;51(3):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(21):7626-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(12):e15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2003 Dec;25(12):1168-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14635252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):734-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26005-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jun 16;23(12):2423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15167897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 22;430(6998):476-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15269774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 8;343(1):101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Oct 25;328(2):208-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15464841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1981;50:233-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6267987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:289-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1992 Jan;6(1):5-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Mar 5;267(7):4398-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1537828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Nov 25;20(22):6075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1334262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 5;268(4):2269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Mar;69(3):1720-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7853509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Apr 12;272(5259):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8602509</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Eoff, Robert L" sort="Eoff, Robert L" uniqKey="Eoff R" first="Robert L" last="Eoff">Robert L. Eoff</name>
<name sortKey="Marchand, Bruno" sort="Marchand, Bruno" uniqKey="Marchand B" first="Bruno" last="Marchand">Bruno Marchand</name>
<name sortKey="Sarafianos, Stefan G" sort="Sarafianos, Stefan G" uniqKey="Sarafianos S" first="Stefan G" last="Sarafianos">Stefan G. Sarafianos</name>
<name sortKey="Singh, Kamalendra" sort="Singh, Kamalendra" uniqKey="Singh K" first="Kamalendra" last="Singh">Kamalendra Singh</name>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<name sortKey="Te Velthuis, Aartjan J W" sort="Te Velthuis, Aartjan J W" uniqKey="Te Velthuis A" first="Aartjan J W" last="Te Velthuis">Aartjan J W. Te Velthuis</name>
<name sortKey="Weiss, Susan" sort="Weiss, Susan" uniqKey="Weiss S" first="Susan" last="Weiss">Susan Weiss</name>
</noCountry>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Adedeji, Adeyemi O" sort="Adedeji, Adeyemi O" uniqKey="Adedeji A" first="Adeyemi O" last="Adedeji">Adeyemi O. Adedeji</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:22615777
   |texte=   Mechanism of nucleic acid unwinding by SARS-CoV helicase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:22615777" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021