Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.

Identifieur interne : 002382 ( Ncbi/Merge ); précédent : 002381; suivant : 002383

The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.

Auteurs : Christel Schwegmann-Wessels [Allemagne] ; Sandra Bauer ; Christine Winter ; Luis Enjuanes ; Hubert Laude ; Georg Herrler

Source :

RBID : pubmed:21910859

Descripteurs français

English descriptors

Abstract

Transmissible gastroenteritis virus (TGEV) has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity.

DOI: 10.1186/1743-422X-8-435
PubMed: 21910859

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21910859

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.</title>
<author>
<name sortKey="Schwegmann Wessels, Christel" sort="Schwegmann Wessels, Christel" uniqKey="Schwegmann Wessels C" first="Christel" last="Schwegmann-Wessels">Christel Schwegmann-Wessels</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. christel.schwegmann@tiho-hannover.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bauer, Sandra" sort="Bauer, Sandra" uniqKey="Bauer S" first="Sandra" last="Bauer">Sandra Bauer</name>
</author>
<author>
<name sortKey="Winter, Christine" sort="Winter, Christine" uniqKey="Winter C" first="Christine" last="Winter">Christine Winter</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
<author>
<name sortKey="Laude, Hubert" sort="Laude, Hubert" uniqKey="Laude H" first="Hubert" last="Laude">Hubert Laude</name>
</author>
<author>
<name sortKey="Herrler, Georg" sort="Herrler, Georg" uniqKey="Herrler G" first="Georg" last="Herrler">Georg Herrler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21910859</idno>
<idno type="pmid">21910859</idno>
<idno type="doi">10.1186/1743-422X-8-435</idno>
<idno type="wicri:Area/PubMed/Corpus">001474</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001474</idno>
<idno type="wicri:Area/PubMed/Curation">001474</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001474</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001412</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001412</idno>
<idno type="wicri:Area/Ncbi/Merge">002382</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.</title>
<author>
<name sortKey="Schwegmann Wessels, Christel" sort="Schwegmann Wessels, Christel" uniqKey="Schwegmann Wessels C" first="Christel" last="Schwegmann-Wessels">Christel Schwegmann-Wessels</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. christel.schwegmann@tiho-hannover.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bauer, Sandra" sort="Bauer, Sandra" uniqKey="Bauer S" first="Sandra" last="Bauer">Sandra Bauer</name>
</author>
<author>
<name sortKey="Winter, Christine" sort="Winter, Christine" uniqKey="Winter C" first="Christine" last="Winter">Christine Winter</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
<author>
<name sortKey="Laude, Hubert" sort="Laude, Hubert" uniqKey="Laude H" first="Hubert" last="Laude">Hubert Laude</name>
</author>
<author>
<name sortKey="Herrler, Georg" sort="Herrler, Georg" uniqKey="Herrler G" first="Georg" last="Herrler">Georg Herrler</name>
</author>
</analytic>
<series>
<title level="j">Virology journal</title>
<idno type="eISSN">1743-422X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Birds</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Membrane (virology)</term>
<term>Cells, Cultured</term>
<term>Chlorocebus aethiops</term>
<term>Gastroenteritis, Transmissible, of Swine (metabolism)</term>
<term>Gastroenteritis, Transmissible, of Swine (virology)</term>
<term>Infectious bronchitis virus (metabolism)</term>
<term>Male</term>
<term>Membrane Glycoproteins (antagonists & inhibitors)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mucins (pharmacology)</term>
<term>Mutation</term>
<term>Neuraminidase (metabolism)</term>
<term>Neuraminidase (pharmacology)</term>
<term>Protein Binding (drug effects)</term>
<term>Sialic Acids (antagonists & inhibitors)</term>
<term>Sialic Acids (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Swine</term>
<term>Testis (cytology)</term>
<term>Testis (drug effects)</term>
<term>Testis (metabolism)</term>
<term>Testis (virology)</term>
<term>Transmissible gastroenteritis virus (drug effects)</term>
<term>Transmissible gastroenteritis virus (genetics)</term>
<term>Transmissible gastroenteritis virus (metabolism)</term>
<term>Transmissible gastroenteritis virus (pathogenicity)</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (antagonists & inhibitors)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Viral Plaque Assay</term>
<term>Virion (drug effects)</term>
<term>Virion (metabolism)</term>
<term>Virus Attachment (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides sialiques (antagonistes et inhibiteurs)</term>
<term>Acides sialiques (métabolisme)</term>
<term>Animaux</term>
<term>Attachement viral ()</term>
<term>Cellules Vero</term>
<term>Cellules cultivées</term>
<term>Gastroentérite transmissible du porc (métabolisme)</term>
<term>Gastroentérite transmissible du porc (virologie)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires ()</term>
<term>Glycoprotéines membranaires (antagonistes et inhibiteurs)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Liaison aux protéines ()</term>
<term>Membrane cellulaire ()</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Membrane cellulaire (virologie)</term>
<term>Mucines (pharmacologie)</term>
<term>Mutation</term>
<term>Mâle</term>
<term>Méthode des plages virales</term>
<term>Oiseaux</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (antagonistes et inhibiteurs)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Sialidase (métabolisme)</term>
<term>Sialidase (pharmacologie)</term>
<term>Suidae</term>
<term>Testicule ()</term>
<term>Testicule (cytologie)</term>
<term>Testicule (métabolisme)</term>
<term>Testicule (virologie)</term>
<term>Virion ()</term>
<term>Virion (métabolisme)</term>
<term>Virus de la bronchite infectieuse (métabolisme)</term>
<term>Virus de la gastroentérite transmissible ()</term>
<term>Virus de la gastroentérite transmissible (génétique)</term>
<term>Virus de la gastroentérite transmissible (métabolisme)</term>
<term>Virus de la gastroentérite transmissible (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Sialic Acids</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Acides sialiques</term>
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Testis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Protein Binding</term>
<term>Testis</term>
<term>Transmissible gastroenteritis virus</term>
<term>Virion</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Transmissible gastroenteritis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Virus de la gastroentérite transmissible</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Gastroenteritis, Transmissible, of Swine</term>
<term>Infectious bronchitis virus</term>
<term>Membrane Glycoproteins</term>
<term>Neuraminidase</term>
<term>Sialic Acids</term>
<term>Testis</term>
<term>Transmissible gastroenteritis virus</term>
<term>Viral Envelope Proteins</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides sialiques</term>
<term>Gastroentérite transmissible du porc</term>
<term>Glycoprotéines membranaires</term>
<term>Membrane cellulaire</term>
<term>Protéines de l'enveloppe virale</term>
<term>Sialidase</term>
<term>Testicule</term>
<term>Virion</term>
<term>Virus de la bronchite infectieuse</term>
<term>Virus de la gastroentérite transmissible</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Transmissible gastroenteritis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de la gastroentérite transmissible</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Mucines</term>
<term>Sialidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Mucins</term>
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Gastroentérite transmissible du porc</term>
<term>Membrane cellulaire</term>
<term>Testicule</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Cell Membrane</term>
<term>Gastroenteritis, Transmissible, of Swine</term>
<term>Testis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Birds</term>
<term>Cells, Cultured</term>
<term>Chlorocebus aethiops</term>
<term>Male</term>
<term>Mutation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Swine</term>
<term>Vero Cells</term>
<term>Viral Plaque Assay</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules Vero</term>
<term>Cellules cultivées</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Liaison aux protéines</term>
<term>Membrane cellulaire</term>
<term>Mutation</term>
<term>Mâle</term>
<term>Méthode des plages virales</term>
<term>Oiseaux</term>
<term>Protéines de l'enveloppe virale</term>
<term>Suidae</term>
<term>Testicule</term>
<term>Virion</term>
<term>Virus de la gastroentérite transmissible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transmissible gastroenteritis virus (TGEV) has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21910859</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-422X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Virology journal</Title>
<ISOAbbreviation>Virol. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>435</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1743-422X-8-435</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Transmissible gastroenteritis virus (TGEV) has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3) deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schwegmann-Wessels</LastName>
<ForeName>Christel</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute for Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. christel.schwegmann@tiho-hannover.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bauer</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Winter</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Enjuanes</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laude</LastName>
<ForeName>Hubert</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrler</LastName>
<ForeName>Georg</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Virol J</MedlineTA>
<NlmUniqueID>101231645</NlmUniqueID>
<ISSNLinking>1743-422X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009077">Mucins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012794">Sialic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001717" MajorTopicYN="N">Birds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005761" MajorTopicYN="N">Gastroenteritis, Transmissible, of Swine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009077" MajorTopicYN="N">Mucins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012794" MajorTopicYN="N">Sialic Acids</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013737" MajorTopicYN="N">Testis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005760" MajorTopicYN="N">Transmissible gastroenteritis virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010948" MajorTopicYN="N">Viral Plaque Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21910859</ArticleId>
<ArticleId IdType="pii">1743-422X-8-435</ArticleId>
<ArticleId IdType="doi">10.1186/1743-422X-8-435</ArticleId>
<ArticleId IdType="pmc">PMC3184106</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Feb;81(Pt 2):489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2009 Feb;38(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19156578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(12):6037-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Nov;77(21):11846-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1972 Sep;6(3):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4629259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Jun;85(12):4526-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3380803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Feb;174(2):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):417-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1992 Apr;73 ( Pt 4):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Sep;190(1):92-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1326823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 1993;24(2):125-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1995 Sep;76 ( Pt 9):2235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7561760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Aug;70(8):5634-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8764078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3285-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 2006 Feb;23(1-2):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16575522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 May;87(Pt 5):1209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2008 Apr;10(4):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2001 May;75(1):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11311429</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Hanovre</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bauer, Sandra" sort="Bauer, Sandra" uniqKey="Bauer S" first="Sandra" last="Bauer">Sandra Bauer</name>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
<name sortKey="Herrler, Georg" sort="Herrler, Georg" uniqKey="Herrler G" first="Georg" last="Herrler">Georg Herrler</name>
<name sortKey="Laude, Hubert" sort="Laude, Hubert" uniqKey="Laude H" first="Hubert" last="Laude">Hubert Laude</name>
<name sortKey="Winter, Christine" sort="Winter, Christine" uniqKey="Winter C" first="Christine" last="Winter">Christine Winter</name>
</noCountry>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Schwegmann Wessels, Christel" sort="Schwegmann Wessels, Christel" uniqKey="Schwegmann Wessels C" first="Christel" last="Schwegmann-Wessels">Christel Schwegmann-Wessels</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002382 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002382 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21910859
   |texte=   The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21910859" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021