Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.

Identifieur interne : 002305 ( Ncbi/Merge ); précédent : 002304; suivant : 002306

The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.

Auteurs : Chul Won Lee [États-Unis] ; Lichun Li ; David P. Giedroc

Source :

RBID : pubmed:21382373

Descripteurs français

English descriptors

Abstract

The transcription and replication of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is regulated by specific viral genome sequences within 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). Here we report the solution structure of 5'-UTR derived stem-loop 2 (SL2) of SARS-CoV determined by NMR spectroscopy. The highly conserved pentaloop of SL2 is stacked on 5-bp stem and adopts a canonical CUYG tetraloop fold with the 3' nucleotide (U51) flipped out of the stack. The significance of this structure in the context of a previous mutagenesis analysis of SL2 function in replication of the related group 2 coronavirus, mouse hepatitis virus, is discussed.

DOI: 10.1016/j.febslet.2011.03.002
PubMed: 21382373

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21382373

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.</title>
<author>
<name sortKey="Lee, Chul Won" sort="Lee, Chul Won" uniqKey="Lee C" first="Chul Won" last="Lee">Chul Won Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Indiana University, Bloomington, IN 47405</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Lichun" sort="Li, Lichun" uniqKey="Li L" first="Lichun" last="Li">Lichun Li</name>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21382373</idno>
<idno type="pmid">21382373</idno>
<idno type="doi">10.1016/j.febslet.2011.03.002</idno>
<idno type="wicri:Area/PubMed/Corpus">001540</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001540</idno>
<idno type="wicri:Area/PubMed/Curation">001540</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001540</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001411</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001411</idno>
<idno type="wicri:Area/Ncbi/Merge">002305</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.</title>
<author>
<name sortKey="Lee, Chul Won" sort="Lee, Chul Won" uniqKey="Lee C" first="Chul Won" last="Lee">Chul Won Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Indiana University, Bloomington, IN 47405</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Lichun" sort="Li, Lichun" uniqKey="Li L" first="Lichun" last="Li">Lichun Li</name>
</author>
<author>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>5' Untranslated Regions (genetics)</term>
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Inverted Repeat Sequences (genetics)</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>RNA, Viral (chemistry)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Solutions</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral ()</term>
<term>ARN viral (génétique)</term>
<term>Appariement de bases</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Relation structure-activité</term>
<term>Régions 5' non traduites (génétique)</term>
<term>Solutions</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées inversées (génétique)</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>5' Untranslated Regions</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Inverted Repeat Sequences</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Régions 5' non traduites</term>
<term>Séquences répétées inversées</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pairing</term>
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Solutions</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Appariement de bases</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Relation structure-activité</term>
<term>Solutions</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transcription and replication of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is regulated by specific viral genome sequences within 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). Here we report the solution structure of 5'-UTR derived stem-loop 2 (SL2) of SARS-CoV determined by NMR spectroscopy. The highly conserved pentaloop of SL2 is stacked on 5-bp stem and adopts a canonical CUYG tetraloop fold with the 3' nucleotide (U51) flipped out of the stack. The significance of this structure in the context of a previous mutagenesis analysis of SL2 function in replication of the related group 2 coronavirus, mouse hepatitis virus, is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21382373</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>585</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett.</ISOAbbreviation>
</Journal>
<ArticleTitle>The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.</ArticleTitle>
<Pagination>
<MedlinePgn>1049-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.febslet.2011.03.002</ELocationID>
<Abstract>
<AbstractText>The transcription and replication of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is regulated by specific viral genome sequences within 5'- and 3'-untranslated regions (5'-UTR and 3'-UTR). Here we report the solution structure of 5'-UTR derived stem-loop 2 (SL2) of SARS-CoV determined by NMR spectroscopy. The highly conserved pentaloop of SL2 is stacked on 5-bp stem and adopts a canonical CUYG tetraloop fold with the 3' nucleotide (U51) flipped out of the stack. The significance of this structure in the context of a previous mutagenesis analysis of SL2 function in replication of the related group 2 coronavirus, mouse hepatitis virus, is discussed.</AbstractText>
<CopyrightInformation>Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Chul Won</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Lichun</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giedroc</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI067416</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI067416-02</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI067416-03</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI067416</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020121">5' Untranslated Regions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020121" MajorTopicYN="N">5' Untranslated Regions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055029" MajorTopicYN="N">Inverted Repeat Sequences</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21382373</ArticleId>
<ArticleId IdType="pii">S0014-5793(11)00152-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.febslet.2011.03.002</ArticleId>
<ArticleId IdType="pmc">PMC3086565</ArticleId>
<ArticleId IdType="mid">NIHMS281967</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Mar;53(3):834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2983094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2006 Mar 10;34(5):1481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Dec;83(23):12084-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19759148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2010 Oct 26;49(42):9058-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20843054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):1175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1274-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Feb;13(2):160-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16429156</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2010 May 25;401(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2002 May 24;319(1):209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051947</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2007 May;13(5):763-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17353353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1994 Sep;4(5):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10600-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2008 Mar 28;377(3):790-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2008;3(7):1213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18600227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Oct;79(19):12434-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2005 Mar 22;44(11):4157-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15766243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chembiochem. 2003 Oct 6;4(10):936-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523911</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3429-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1214-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2003 Feb 12;125(6):1518-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12568611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Jun;77(12):6720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12767992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2004;278:353-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Magn Reson. 2003 Jan;160(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12565051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):340-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Giedroc, David P" sort="Giedroc, David P" uniqKey="Giedroc D" first="David P" last="Giedroc">David P. Giedroc</name>
<name sortKey="Li, Lichun" sort="Li, Lichun" uniqKey="Li L" first="Lichun" last="Li">Lichun Li</name>
</noCountry>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Lee, Chul Won" sort="Lee, Chul Won" uniqKey="Lee C" first="Chul Won" last="Lee">Chul Won Lee</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002305 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002305 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21382373
   |texte=   The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21382373" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021