Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.

Identifieur interne : 002275 ( Ncbi/Merge ); précédent : 002274; suivant : 002276

Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.

Auteurs : Shuai Chen [Allemagne] ; Felix Jonas ; Can Shen ; Rolf Hilgenfeld ; Rolf Higenfeld

Source :

RBID : pubmed:21203998

Descripteurs français

English descriptors

Abstract

The main protease (M(pro)) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for trans-cleavage activity. However, the auto-processing mechanism of M(pro), i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of "immature" M(pro). Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature M(pro), are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and trans-cleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the "immature" C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of M(pro) appears to require only two "immature" monomers approaching one another to form an "intermediate" dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of M(pro) from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV M(pro).

DOI: 10.1007/s13238-010-0011-4
PubMed: 21203998

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21203998

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.</title>
<author>
<name sortKey="Chen, Shuai" sort="Chen, Shuai" uniqKey="Chen S" first="Shuai" last="Chen">Shuai Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jonas, Felix" sort="Jonas, Felix" uniqKey="Jonas F" first="Felix" last="Jonas">Felix Jonas</name>
</author>
<author>
<name sortKey="Shen, Can" sort="Shen, Can" uniqKey="Shen C" first="Can" last="Shen">Can Shen</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
<author>
<name sortKey="Higenfeld, Rolf" sort="Higenfeld, Rolf" uniqKey="Higenfeld R" first="Rolf" last="Higenfeld">Rolf Higenfeld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21203998</idno>
<idno type="pmid">21203998</idno>
<idno type="doi">10.1007/s13238-010-0011-4</idno>
<idno type="wicri:Area/PubMed/Corpus">001567</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001567</idno>
<idno type="wicri:Area/PubMed/Curation">001567</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001567</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001637</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001637</idno>
<idno type="wicri:Area/Ncbi/Merge">002275</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.</title>
<author>
<name sortKey="Chen, Shuai" sort="Chen, Shuai" uniqKey="Chen S" first="Shuai" last="Chen">Shuai Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck</wicri:regionArea>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
<wicri:noRegion>23538 Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jonas, Felix" sort="Jonas, Felix" uniqKey="Jonas F" first="Felix" last="Jonas">Felix Jonas</name>
</author>
<author>
<name sortKey="Shen, Can" sort="Shen, Can" uniqKey="Shen C" first="Can" last="Shen">Can Shen</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
<author>
<name sortKey="Higenfeld, Rolf" sort="Higenfeld, Rolf" uniqKey="Higenfeld R" first="Rolf" last="Higenfeld">Rolf Higenfeld</name>
</author>
</analytic>
<series>
<title level="j">Protein & cell</title>
<idno type="eISSN">1674-8018</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography</term>
<term>Circular Dichroism</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Mutagenesis, Site-Directed</term>
<term>Polyproteins (chemistry)</term>
<term>Polyproteins (genetics)</term>
<term>Polyproteins (metabolism)</term>
<term>Protein Multimerization</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (enzymology)</term>
<term>SARS Virus (genetics)</term>
<term>Spectrometry, Fluorescence</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (génétique)</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Dichroïsme circulaire</term>
<term>Multimérisation de protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines ()</term>
<term>Polyprotéines (génétique)</term>
<term>Polyprotéines (métabolisme)</term>
<term>Protéines virales ()</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (métabolisme)</term>
<term>Spectrométrie de fluorescence</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Polyproteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Polyproteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Polyproteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography</term>
<term>Circular Dichroism</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Multimerization</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie</term>
<term>Cysteine endopeptidases</term>
<term>Dichroïsme circulaire</term>
<term>Multimérisation de protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
<term>Spectrométrie de fluorescence</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The main protease (M(pro)) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for trans-cleavage activity. However, the auto-processing mechanism of M(pro), i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of "immature" M(pro). Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature M(pro), are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and trans-cleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the "immature" C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of M(pro) appears to require only two "immature" monomers approaching one another to form an "intermediate" dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of M(pro) from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV M(pro).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21203998</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1674-8018</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Protein & cell</Title>
<ISOAbbreviation>Protein Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.</ArticleTitle>
<Pagination>
<MedlinePgn>59-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s13238-010-0011-4</ELocationID>
<Abstract>
<AbstractText>The main protease (M(pro)) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for trans-cleavage activity. However, the auto-processing mechanism of M(pro), i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of "immature" M(pro). Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature M(pro), are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and trans-cleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the "immature" C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of M(pro) appears to require only two "immature" monomers approaching one another to form an "intermediate" dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of M(pro) from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV M(pro).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Shuai</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jonas</LastName>
<ForeName>Felix</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Can</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hilgenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="N">
<LastName>Higenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Protein Cell</MedlineTA>
<NlmUniqueID>101532368</NlmUniqueID>
<ISSNLinking>1674-800X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020815">Polyproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Protein Cell. 2010 Mar;1(3):307</RefSource>
<Note>Higenfeld, Rolf [corrected to Hilgenfeld, Rolf]</Note>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002845" MajorTopicYN="N">Chromatography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020815" MajorTopicYN="N">Polyproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21203998</ArticleId>
<ArticleId IdType="doi">10.1007/s13238-010-0011-4</ArticleId>
<ArticleId IdType="pmc">PMC4875104</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1998 Aug 7;281(1):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Sep 15;2(9):853-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7812718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 12;45(49):14632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Mar;273(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 May 15;580(11):2577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 19;45(50):14908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17154528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Jun 5;388(2):324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Sep 10;574(1-3):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2008 Jun;15(6):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 7;280(1):164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2002 Jan;11(1):46-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2008 Apr;143(4):525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4620-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jan 20;339(3):865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Apr;18(4):839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19319935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Apr 1;472(1):34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 18;354(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2005 Jan 20;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Feb 23;366(3):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(5):2515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Nov 30;43(47):14958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15554703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 4;283(1):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Higenfeld, Rolf" sort="Higenfeld, Rolf" uniqKey="Higenfeld R" first="Rolf" last="Higenfeld">Rolf Higenfeld</name>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
<name sortKey="Jonas, Felix" sort="Jonas, Felix" uniqKey="Jonas F" first="Felix" last="Jonas">Felix Jonas</name>
<name sortKey="Shen, Can" sort="Shen, Can" uniqKey="Shen C" first="Can" last="Shen">Can Shen</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Chen, Shuai" sort="Chen, Shuai" uniqKey="Chen S" first="Shuai" last="Chen">Shuai Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002275 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002275 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:21203998
   |texte=   Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:21203998" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021