Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.

Identifieur interne : 002059 ( Ncbi/Merge ); précédent : 002058; suivant : 002060

Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.

Auteurs : Yantao Chen [République populaire de Chine] ; Mingliang Wang ; Qianling Zhang ; Jianhong Liu

Source :

RBID : pubmed:20079964

Descripteurs français

English descriptors

Abstract

Due to the complexity of biological membrane, computer simulation of transmembrane protein's folding is challenging. In this paper, an implicit biological membrane environment has been constructed in lattice space, in which the lipid chains and water molecules were represented by the unoccupied lattice sites. The biological membrane was characterized with three features: stronger hydrogen bonding interaction, membrane lateral pressure, and lipophobicity index for the amino acid residues. In addition to the hydrocarbon core spanning region and the water solution, the lipid interface has also been represented in this implicit membrane environment, which was proved to be effective for the transmembrane protein's folding. The associated Monte Carlo simulations have been performed for SARS-CoV E protein and M2 protein segment (residues 18-60) of influenza A virus. It was found that the coil-helix transition of the transmembrane segment occurred earlier than the coil-globule transition of the two terminal domains. The folding process and final orientation of the amphipathic helical block in water solution are obviously influenced by its corresponding hydrophobicity/lipophobicity. Therefore, this implicit membrane environment, though in lattice space, can make an elaborate balance between different driving forces for the membrane protein's folding, thus offering a potential means for the simulation of transmembrane protein oligomers in feasible time.

DOI: 10.1016/j.bpc.2009.12.008
PubMed: 20079964

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20079964

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.</title>
<author>
<name sortKey="Chen, Yantao" sort="Chen, Yantao" uniqKey="Chen Y" first="Yantao" last="Chen">Yantao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China. ytchen@szu.edu.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mingliang" sort="Wang, Mingliang" uniqKey="Wang M" first="Mingliang" last="Wang">Mingliang Wang</name>
</author>
<author>
<name sortKey="Zhang, Qianling" sort="Zhang, Qianling" uniqKey="Zhang Q" first="Qianling" last="Zhang">Qianling Zhang</name>
</author>
<author>
<name sortKey="Liu, Jianhong" sort="Liu, Jianhong" uniqKey="Liu J" first="Jianhong" last="Liu">Jianhong Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20079964</idno>
<idno type="pmid">20079964</idno>
<idno type="doi">10.1016/j.bpc.2009.12.008</idno>
<idno type="wicri:Area/PubMed/Corpus">001767</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001767</idno>
<idno type="wicri:Area/PubMed/Curation">001767</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001767</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001698</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001698</idno>
<idno type="wicri:Area/Ncbi/Merge">002059</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.</title>
<author>
<name sortKey="Chen, Yantao" sort="Chen, Yantao" uniqKey="Chen Y" first="Yantao" last="Chen">Yantao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China. ytchen@szu.edu.cn</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mingliang" sort="Wang, Mingliang" uniqKey="Wang M" first="Mingliang" last="Wang">Mingliang Wang</name>
</author>
<author>
<name sortKey="Zhang, Qianling" sort="Zhang, Qianling" uniqKey="Zhang Q" first="Qianling" last="Zhang">Qianling Zhang</name>
</author>
<author>
<name sortKey="Liu, Jianhong" sort="Liu, Jianhong" uniqKey="Liu J" first="Jianhong" last="Liu">Jianhong Liu</name>
</author>
</analytic>
<series>
<title level="j">Biophysical chemistry</title>
<idno type="eISSN">1873-4200</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Hydrogen Bonding</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Membrane Lipids (chemistry)</term>
<term>Membrane Proteins (chemistry)</term>
<term>Membranes, Artificial</term>
<term>Models, Molecular</term>
<term>Monte Carlo Method</term>
<term>Protein Folding</term>
<term>Thermodynamics</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Matrix Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Interactions hydrophobes et hydrophiles</term>
<term>Liaison hydrogène</term>
<term>Lipides membranaires ()</term>
<term>Membrane artificielle</term>
<term>Modèles moléculaires</term>
<term>Méthode de Monte-Carlo</term>
<term>Pliage des protéines</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de la matrice virale ()</term>
<term>Protéines membranaires ()</term>
<term>Simulation numérique</term>
<term>Thermodynamique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Lipids</term>
<term>Membrane Proteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Hydrogen Bonding</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Membranes, Artificial</term>
<term>Models, Molecular</term>
<term>Monte Carlo Method</term>
<term>Protein Folding</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hydrophobes et hydrophiles</term>
<term>Liaison hydrogène</term>
<term>Lipides membranaires</term>
<term>Membrane artificielle</term>
<term>Modèles moléculaires</term>
<term>Méthode de Monte-Carlo</term>
<term>Pliage des protéines</term>
<term>Protéines de l'enveloppe virale</term>
<term>Protéines de la matrice virale</term>
<term>Protéines membranaires</term>
<term>Simulation numérique</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Due to the complexity of biological membrane, computer simulation of transmembrane protein's folding is challenging. In this paper, an implicit biological membrane environment has been constructed in lattice space, in which the lipid chains and water molecules were represented by the unoccupied lattice sites. The biological membrane was characterized with three features: stronger hydrogen bonding interaction, membrane lateral pressure, and lipophobicity index for the amino acid residues. In addition to the hydrocarbon core spanning region and the water solution, the lipid interface has also been represented in this implicit membrane environment, which was proved to be effective for the transmembrane protein's folding. The associated Monte Carlo simulations have been performed for SARS-CoV E protein and M2 protein segment (residues 18-60) of influenza A virus. It was found that the coil-helix transition of the transmembrane segment occurred earlier than the coil-globule transition of the two terminal domains. The folding process and final orientation of the amphipathic helical block in water solution are obviously influenced by its corresponding hydrophobicity/lipophobicity. Therefore, this implicit membrane environment, though in lattice space, can make an elaborate balance between different driving forces for the membrane protein's folding, thus offering a potential means for the simulation of transmembrane protein oligomers in feasible time.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20079964</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4200</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>147</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Biophysical chemistry</Title>
<ISOAbbreviation>Biophys. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.</ArticleTitle>
<Pagination>
<MedlinePgn>35-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bpc.2009.12.008</ELocationID>
<Abstract>
<AbstractText>Due to the complexity of biological membrane, computer simulation of transmembrane protein's folding is challenging. In this paper, an implicit biological membrane environment has been constructed in lattice space, in which the lipid chains and water molecules were represented by the unoccupied lattice sites. The biological membrane was characterized with three features: stronger hydrogen bonding interaction, membrane lateral pressure, and lipophobicity index for the amino acid residues. In addition to the hydrocarbon core spanning region and the water solution, the lipid interface has also been represented in this implicit membrane environment, which was proved to be effective for the transmembrane protein's folding. The associated Monte Carlo simulations have been performed for SARS-CoV E protein and M2 protein segment (residues 18-60) of influenza A virus. It was found that the coil-helix transition of the transmembrane segment occurred earlier than the coil-globule transition of the two terminal domains. The folding process and final orientation of the amphipathic helical block in water solution are obviously influenced by its corresponding hydrophobicity/lipophobicity. Therefore, this implicit membrane environment, though in lattice space, can make an elaborate balance between different driving forces for the membrane protein's folding, thus offering a potential means for the simulation of transmembrane protein oligomers in feasible time.</AbstractText>
<CopyrightInformation>Copyright 2009 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yantao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Shenzhen Key Laboratory of Functional Polymer, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China. ytchen@szu.edu.cn</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Mingliang</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qianling</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianhong</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biophys Chem</MedlineTA>
<NlmUniqueID>0403171</NlmUniqueID>
<ISSNLinking>0301-4622</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488937">M2 protein, Influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008563">Membrane Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008567">Membranes, Artificial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008563" MajorTopicYN="N">Membrane Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008567" MajorTopicYN="N">Membranes, Artificial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009010" MajorTopicYN="N">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20079964</ArticleId>
<ArticleId IdType="pii">S0301-4622(09)00244-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.bpc.2009.12.008</ArticleId>
<ArticleId IdType="pmc">PMC7117040</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2008 Jan 31;451(7178):591-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235503</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2003 Mar;84(3):1902-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609892</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys Chem. 2005 Apr 1;115(2-3):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Feb;88(2):1283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2007 Oct 1;69(1):58-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596846</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Oct 10;272(5):780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Sep 14;38(37):11905-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2008 Jan 31;451(7178):596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235504</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2009 Apr 16;113(15):5318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19354309</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Phys Lipids. 2006 Jun;141(1-2):2-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16620797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2009 Apr;19(2):138-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr HIV Res. 2004 Jan;2(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2008;443:181-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18446288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2007 Apr 1;92(7):2338-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218457</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2006 Jul;15(7):1723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys Chem. 2008 Mar;133(1-3):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Aug;64(16):2043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530462</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2003 Nov;85(5):2900-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14581194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 7;281(14):8997-9000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph Model. 2004 May;22(5):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15099839</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2007 Mar;157(3):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17116404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Mar 1;90(5):1650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 3;1666(1-2):158-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519314</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 1999;28:319-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10410805</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2007;76:125-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579561</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 May 21;459(7245):344-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Apr;15(2):144-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol Struct Dyn. 2006 Apr;23(5):485-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Dec;73(12):9695-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 1983 Dec;22(12):2577-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6667333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1998 Apr;7(4):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2009 Jan;74(1):32-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18561171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2007 Jul 12;111(27):7812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569554</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
</region>
<settlement>
<li>Shenzhen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Jianhong" sort="Liu, Jianhong" uniqKey="Liu J" first="Jianhong" last="Liu">Jianhong Liu</name>
<name sortKey="Wang, Mingliang" sort="Wang, Mingliang" uniqKey="Wang M" first="Mingliang" last="Wang">Mingliang Wang</name>
<name sortKey="Zhang, Qianling" sort="Zhang, Qianling" uniqKey="Zhang Q" first="Qianling" last="Zhang">Qianling Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Guangdong">
<name sortKey="Chen, Yantao" sort="Chen, Yantao" uniqKey="Chen Y" first="Yantao" last="Chen">Yantao Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:20079964
   |texte=   Construction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:20079964" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021