Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.

Identifieur interne : 002043 ( Ncbi/Merge ); précédent : 002042; suivant : 002044

TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.

Auteurs : Shiori Haga [Japon] ; Noriyo Nagata ; Tadashi Okamura ; Norio Yamamoto ; Tetsutaro Sata ; Naoki Yamamoto ; Takehiko Sasazuki ; Yukihito Ishizaka

Source :

RBID : pubmed:19995578

Descripteurs français

English descriptors

Abstract

Because outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) might reemerge, identifying antiviral compounds is of key importance. Previously, we showed that the cellular factor TNF-alpha converting enzyme (TACE), activated by the spike protein of SARS-CoV (SARS-S protein), was positively involved in viral entry, implying that TACE is a possible target for developing antiviral compounds. To demonstrate this possibility, we here tested the effects of TACE inhibitors on viral entry. In vitro and in vivo data revealed that the TACE inhibitor TAPI-2 attenuated entry of both pseudotyped virus expressing the SARS-S protein in a lentiviral vector backbone and infectious SARS-CoV. TAPI-2 blocked both the SARS-S protein-induced shedding of angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV, and TNF-alpha production in lung tissues. Since the downregulation of ACE2 by SARS-S protein was proposed as an etiological event in the severe clinical manifestations, our data suggest that TACE antagonists block SARS-CoV infection and also attenuate its severe clinical outcome.

DOI: 10.1016/j.antiviral.2009.12.001
PubMed: 19995578

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19995578

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.</title>
<author>
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
</author>
<author>
<name sortKey="Okamura, Tadashi" sort="Okamura, Tadashi" uniqKey="Okamura T" first="Tadashi" last="Okamura">Tadashi Okamura</name>
</author>
<author>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</author>
<author>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
</author>
<author>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19995578</idno>
<idno type="pmid">19995578</idno>
<idno type="doi">10.1016/j.antiviral.2009.12.001</idno>
<idno type="wicri:Area/PubMed/Corpus">001783</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001783</idno>
<idno type="wicri:Area/PubMed/Curation">001783</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001783</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001577</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001577</idno>
<idno type="wicri:Area/Ncbi/Merge">002043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.</title>
<author>
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
</author>
<author>
<name sortKey="Okamura, Tadashi" sort="Okamura, Tadashi" uniqKey="Okamura T" first="Tadashi" last="Okamura">Tadashi Okamura</name>
</author>
<author>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</author>
<author>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
</author>
<author>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
</analytic>
<series>
<title level="j">Antiviral research</title>
<idno type="eISSN">1872-9096</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ADAM Proteins (antagonists & inhibitors)</term>
<term>ADAM Proteins (biosynthesis)</term>
<term>ADAM17 Protein</term>
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Cell Line</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Humans</term>
<term>Hydroxamic Acids (pharmacology)</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Receptors, Virus (metabolism)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides hydroxamiques (pharmacologie)</term>
<term>Animaux</term>
<term>Antienzymes (pharmacologie)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (virologie)</term>
<term>Protéine ADAM17</term>
<term>Protéines ADAM (antagonistes et inhibiteurs)</term>
<term>Protéines ADAM (biosynthèse)</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Pénétration virale</term>
<term>Récepteurs viraux (métabolisme)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>ADAM Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>ADAM Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Enzyme Inhibitors</term>
<term>Hydroxamic Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>ADAM17 Protein</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines ADAM</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines ADAM</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides hydroxamiques</term>
<term>Antienzymes</term>
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Protéine ADAM17</term>
<term>Pénétration virale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Because outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) might reemerge, identifying antiviral compounds is of key importance. Previously, we showed that the cellular factor TNF-alpha converting enzyme (TACE), activated by the spike protein of SARS-CoV (SARS-S protein), was positively involved in viral entry, implying that TACE is a possible target for developing antiviral compounds. To demonstrate this possibility, we here tested the effects of TACE inhibitors on viral entry. In vitro and in vivo data revealed that the TACE inhibitor TAPI-2 attenuated entry of both pseudotyped virus expressing the SARS-S protein in a lentiviral vector backbone and infectious SARS-CoV. TAPI-2 blocked both the SARS-S protein-induced shedding of angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV, and TNF-alpha production in lung tissues. Since the downregulation of ACE2 by SARS-S protein was proposed as an etiological event in the severe clinical manifestations, our data suggest that TACE antagonists block SARS-CoV infection and also attenuate its severe clinical outcome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19995578</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-9096</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Antiviral research</Title>
<ISOAbbreviation>Antiviral Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.</ArticleTitle>
<Pagination>
<MedlinePgn>551-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.antiviral.2009.12.001</ELocationID>
<Abstract>
<AbstractText>Because outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) might reemerge, identifying antiviral compounds is of key importance. Previously, we showed that the cellular factor TNF-alpha converting enzyme (TACE), activated by the spike protein of SARS-CoV (SARS-S protein), was positively involved in viral entry, implying that TACE is a possible target for developing antiviral compounds. To demonstrate this possibility, we here tested the effects of TACE inhibitors on viral entry. In vitro and in vivo data revealed that the TACE inhibitor TAPI-2 attenuated entry of both pseudotyped virus expressing the SARS-S protein in a lentiviral vector backbone and infectious SARS-CoV. TAPI-2 blocked both the SARS-S protein-induced shedding of angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV, and TNF-alpha production in lung tissues. Since the downregulation of ACE2 by SARS-S protein was proposed as an etiological event in the severe clinical manifestations, our data suggest that TACE antagonists block SARS-CoV infection and also attenuate its severe clinical outcome.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Haga</LastName>
<ForeName>Shiori</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Intractable Diseases, International Medical Center of Japan, 1-21-1 Toyama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nagata</LastName>
<ForeName>Noriyo</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okamura</LastName>
<ForeName>Tadashi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Norio</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sata</LastName>
<ForeName>Tetsutaro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Naoki</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sasazuki</LastName>
<ForeName>Takehiko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ishizaka</LastName>
<ForeName>Yukihito</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Antiviral Res</MedlineTA>
<NlmUniqueID>8109699</NlmUniqueID>
<ISSNLinking>0166-3542</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006877">Hydroxamic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099410">TAPI-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.-</RegistryNumber>
<NameOfSubstance UI="D051722">ADAM Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="D000072198">ADAM17 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="C000606462">ADAM17 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="C000606463">Adam17 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051722" MajorTopicYN="N">ADAM Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072198" MajorTopicYN="N">ADAM17 Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006877" MajorTopicYN="N">Hydroxamic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19995578</ArticleId>
<ArticleId IdType="pii">S0166-3542(09)00540-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.antiviral.2009.12.001</ArticleId>
<ArticleId IdType="pmc">PMC7114272</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Jul 21;370(6486):218-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8028669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2008 Mar 15;18(6):1958-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715238</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2008 Jun;172(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antivir Ther. 2007;12(4 Pt B):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1997 Feb 20;385(6618):729-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2003 Jan 1;17(1):7-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
<name sortKey="Nagata, Noriyo" sort="Nagata, Noriyo" uniqKey="Nagata N" first="Noriyo" last="Nagata">Noriyo Nagata</name>
<name sortKey="Okamura, Tadashi" sort="Okamura, Tadashi" uniqKey="Okamura T" first="Tadashi" last="Okamura">Tadashi Okamura</name>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19995578
   |texte=   TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19995578" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021