Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.

Identifieur interne : 002014 ( Ncbi/Merge ); précédent : 002013; suivant : 002015

Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.

Auteurs : Susanna Mcreynolds [États-Unis] ; Shaokai Jiang ; Lijun Rong ; Michael Caffrey

Source :

RBID : pubmed:19819173

Descripteurs français

English descriptors

Abstract

The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR (15)N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.

DOI: 10.1016/j.jmr.2009.09.012
PubMed: 19819173

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19819173

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.</title>
<author>
<name sortKey="Mcreynolds, Susanna" sort="Mcreynolds, Susanna" uniqKey="Mcreynolds S" first="Susanna" last="Mcreynolds">Susanna Mcreynolds</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
<settlement type="city">Chicago</settlement>
</placeName>
<orgName type="university">Université de l'Illinois à Chicago</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Shaokai" sort="Jiang, Shaokai" uniqKey="Jiang S" first="Shaokai" last="Jiang">Shaokai Jiang</name>
</author>
<author>
<name sortKey="Rong, Lijun" sort="Rong, Lijun" uniqKey="Rong L" first="Lijun" last="Rong">Lijun Rong</name>
</author>
<author>
<name sortKey="Caffrey, Michael" sort="Caffrey, Michael" uniqKey="Caffrey M" first="Michael" last="Caffrey">Michael Caffrey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19819173</idno>
<idno type="pmid">19819173</idno>
<idno type="doi">10.1016/j.jmr.2009.09.012</idno>
<idno type="wicri:Area/PubMed/Corpus">001813</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001813</idno>
<idno type="wicri:Area/PubMed/Curation">001813</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001813</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001891</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001891</idno>
<idno type="wicri:Area/Ncbi/Merge">002014</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.</title>
<author>
<name sortKey="Mcreynolds, Susanna" sort="Mcreynolds, Susanna" uniqKey="Mcreynolds S" first="Susanna" last="Mcreynolds">Susanna Mcreynolds</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
<settlement type="city">Chicago</settlement>
</placeName>
<orgName type="university">Université de l'Illinois à Chicago</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Shaokai" sort="Jiang, Shaokai" uniqKey="Jiang S" first="Shaokai" last="Jiang">Shaokai Jiang</name>
</author>
<author>
<name sortKey="Rong, Lijun" sort="Rong, Lijun" uniqKey="Rong L" first="Lijun" last="Rong">Lijun Rong</name>
</author>
<author>
<name sortKey="Caffrey, Michael" sort="Caffrey, Michael" uniqKey="Caffrey M" first="Michael" last="Caffrey">Michael Caffrey</name>
</author>
</analytic>
<series>
<title level="j">Journal of magnetic resonance (San Diego, Calif. : 1997)</title>
<idno type="eISSN">1096-0856</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Kinetics</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Phase Transition</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (chemistry)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique</term>
<term>Conformation des protéines</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (ultrastructure)</term>
<term>Spectroscopie par résonance magnétique ()</term>
<term>Structure tertiaire des protéines</term>
<term>Transition de phase</term>
<term>Virus du SRAS ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Phase Transition</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Conformation des protéines</term>
<term>Protéines de l'enveloppe virale</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure tertiaire des protéines</term>
<term>Transition de phase</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR (15)N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19819173</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0856</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>201</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of magnetic resonance (San Diego, Calif. : 1997)</Title>
<ISOAbbreviation>J. Magn. Reson.</ISOAbbreviation>
</Journal>
<ArticleTitle>Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.</ArticleTitle>
<Pagination>
<MedlinePgn>218-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmr.2009.09.012</ELocationID>
<Abstract>
<AbstractText>The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR (15)N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McReynolds</LastName>
<ForeName>Susanna</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Shaokai</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rong</LastName>
<ForeName>Lijun</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Caffrey</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 AI082151</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI047674-05</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AI070698</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI047674</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AI070698-02</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 AI082151-017116</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Magn Reson</MedlineTA>
<NlmUniqueID>9707935</NlmUniqueID>
<ISSNLinking>1090-7807</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044367" MajorTopicYN="N">Phase Transition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19819173</ArticleId>
<ArticleId IdType="pii">S1090-7807(09)00268-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmr.2009.09.012</ArticleId>
<ArticleId IdType="pmc">PMC2794128</ArticleId>
<ArticleId IdType="mid">NIHMS152369</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Structure. 2006 May;14(5):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1981 Jan 29;289(5796):366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7464906</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 1998 Nov;2(5):605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2004 Oct;12(10):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381196</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jan 28;295(4):963-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Jan 5;439(7072):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314216</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2001;70:777-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Sep;6(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1998 Aug 17;17(16):4572-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2001;30:129-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340055</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 Feb 5;285(5):2133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2006 May;106(5):1624-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Sep 1;371(6492):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8072525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 2002 Jul 1;18(10):685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1995 Dec;4(12):2605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8580852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964978</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2003 Aug 5;42(30):8999-9006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885232</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Jul 1;47(26):6802-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18540634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
<settlement>
<li>Chicago</li>
</settlement>
<orgName>
<li>Université de l'Illinois à Chicago</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Caffrey, Michael" sort="Caffrey, Michael" uniqKey="Caffrey M" first="Michael" last="Caffrey">Michael Caffrey</name>
<name sortKey="Jiang, Shaokai" sort="Jiang, Shaokai" uniqKey="Jiang S" first="Shaokai" last="Jiang">Shaokai Jiang</name>
<name sortKey="Rong, Lijun" sort="Rong, Lijun" uniqKey="Rong L" first="Lijun" last="Rong">Lijun Rong</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Mcreynolds, Susanna" sort="Mcreynolds, Susanna" uniqKey="Mcreynolds S" first="Susanna" last="Mcreynolds">Susanna Mcreynolds</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002014 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002014 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19819173
   |texte=   Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19819173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021