Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

Identifieur interne : 001F15 ( Ncbi/Merge ); précédent : 001F14; suivant : 001F16

The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

Auteurs : Jinzhi Tan [Allemagne] ; Clemens Vonrhein ; Oliver S. Smart ; Gerard Bricogne ; Michela Bollati ; Yuri Kusov ; Guido Hansen ; Jeroen R. Mesters ; Christian L. Schmidt ; Rolf Hilgenfeld

Source :

RBID : pubmed:19436709

Descripteurs français

English descriptors

Abstract

Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core)") of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively) revealed that SUD(core) forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core) as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed.

DOI: 10.1371/journal.ppat.1000428
PubMed: 19436709

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19436709

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.</title>
<author>
<name sortKey="Tan, Jinzhi" sort="Tan, Jinzhi" uniqKey="Tan J" first="Jinzhi" last="Tan">Jinzhi Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck</wicri:regionArea>
<wicri:noRegion>Lübeck</wicri:noRegion>
<wicri:noRegion>Lübeck</wicri:noRegion>
<wicri:noRegion>Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vonrhein, Clemens" sort="Vonrhein, Clemens" uniqKey="Vonrhein C" first="Clemens" last="Vonrhein">Clemens Vonrhein</name>
</author>
<author>
<name sortKey="Smart, Oliver S" sort="Smart, Oliver S" uniqKey="Smart O" first="Oliver S" last="Smart">Oliver S. Smart</name>
</author>
<author>
<name sortKey="Bricogne, Gerard" sort="Bricogne, Gerard" uniqKey="Bricogne G" first="Gerard" last="Bricogne">Gerard Bricogne</name>
</author>
<author>
<name sortKey="Bollati, Michela" sort="Bollati, Michela" uniqKey="Bollati M" first="Michela" last="Bollati">Michela Bollati</name>
</author>
<author>
<name sortKey="Kusov, Yuri" sort="Kusov, Yuri" uniqKey="Kusov Y" first="Yuri" last="Kusov">Yuri Kusov</name>
</author>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R" last="Mesters">Jeroen R. Mesters</name>
</author>
<author>
<name sortKey="Schmidt, Christian L" sort="Schmidt, Christian L" uniqKey="Schmidt C" first="Christian L" last="Schmidt">Christian L. Schmidt</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19436709</idno>
<idno type="pmid">19436709</idno>
<idno type="doi">10.1371/journal.ppat.1000428</idno>
<idno type="wicri:Area/PubMed/Corpus">001902</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001902</idno>
<idno type="wicri:Area/PubMed/Curation">001902</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001902</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001766</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001766</idno>
<idno type="wicri:Area/Ncbi/Merge">001F15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.</title>
<author>
<name sortKey="Tan, Jinzhi" sort="Tan, Jinzhi" uniqKey="Tan J" first="Jinzhi" last="Tan">Jinzhi Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck</wicri:regionArea>
<wicri:noRegion>Lübeck</wicri:noRegion>
<wicri:noRegion>Lübeck</wicri:noRegion>
<wicri:noRegion>Lübeck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vonrhein, Clemens" sort="Vonrhein, Clemens" uniqKey="Vonrhein C" first="Clemens" last="Vonrhein">Clemens Vonrhein</name>
</author>
<author>
<name sortKey="Smart, Oliver S" sort="Smart, Oliver S" uniqKey="Smart O" first="Oliver S" last="Smart">Oliver S. Smart</name>
</author>
<author>
<name sortKey="Bricogne, Gerard" sort="Bricogne, Gerard" uniqKey="Bricogne G" first="Gerard" last="Bricogne">Gerard Bricogne</name>
</author>
<author>
<name sortKey="Bollati, Michela" sort="Bollati, Michela" uniqKey="Bollati M" first="Michela" last="Bollati">Michela Bollati</name>
</author>
<author>
<name sortKey="Kusov, Yuri" sort="Kusov, Yuri" uniqKey="Kusov Y" first="Yuri" last="Kusov">Yuri Kusov</name>
</author>
<author>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R" last="Mesters">Jeroen R. Mesters</name>
</author>
<author>
<name sortKey="Schmidt, Christian L" sort="Schmidt, Christian L" uniqKey="Schmidt C" first="Christian L" last="Schmidt">Christian L. Schmidt</name>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Diphosphate Ribose (metabolism)</term>
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Electrophoresis</term>
<term>G-Quadruplexes</term>
<term>Genome, Viral</term>
<term>Lysine (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
<term>RNA Replicase (chemistry)</term>
<term>RNA Replicase (genetics)</term>
<term>RNA Replicase (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine diphosphate ribose (métabolisme)</term>
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>G-quadruplexes</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Lysine (métabolisme)</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Pliage des protéines</term>
<term>Protéines virales non structurales ()</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>RNA replicase ()</term>
<term>RNA replicase (génétique)</term>
<term>RNA replicase (métabolisme)</term>
<term>Réplication virale</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (pathogénicité)</term>
<term>Électrophorèse</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Diphosphate Ribose</term>
<term>Lysine</term>
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine diphosphate ribose</term>
<term>Lysine</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Electrophoresis</term>
<term>G-Quadruplexes</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>G-quadruplexes</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Pliage des protéines</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
<term>Réplication virale</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS</term>
<term>Électrophorèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core)") of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively) revealed that SUD(core) forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core) as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19436709</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2009</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.</ArticleTitle>
<Pagination>
<MedlinePgn>e1000428</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1000428</ELocationID>
<Abstract>
<AbstractText>Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core)") of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively) revealed that SUD(core) forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core) as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Jinzhi</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vonrhein</LastName>
<ForeName>Clemens</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smart</LastName>
<ForeName>Oliver S</ForeName>
<Initials>OS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bricogne</LastName>
<ForeName>Gerard</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bollati</LastName>
<ForeName>Michela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kusov</LastName>
<ForeName>Yuri</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hansen</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mesters</LastName>
<ForeName>Jeroen R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Christian L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hilgenfeld</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20762-30-5</RegistryNumber>
<NameOfSubstance UI="D000246">Adenosine Diphosphate Ribose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="C510959">nonstructural protein 3, SARS coronovirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000246" MajorTopicYN="N">Adenosine Diphosphate Ribose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004586" MajorTopicYN="N">Electrophoresis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054856" MajorTopicYN="Y">G-Quadruplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>04</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19436709</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1000428</ArticleId>
<ArticleId IdType="pmc">PMC2674928</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Retrovirology. 2008;5:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18577210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Oct 1;466(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(20):12721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Jul;12(7):624-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15965484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 1;307(3):431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Apr;79(7):4550-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:3046-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Nov;13(11):1665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1823-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Jan;18(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19177346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2007 Dec;1(2):191-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19636862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:37-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:93-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2004 Apr;15(2):237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15209384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 4;257(5075):1398-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1529340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1968 Apr 28;33(2):491-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5700707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Nov 28;383(5):1081-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(18):5133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18225958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Sep;272(18):4576-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16156780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2008 Jan;237(1):209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18069692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Dec 1;24(54):7976-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16091745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):1083-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jul;62(Pt 7):725-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Jul;7(7):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Jun;72(6):4918-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Dec 28;364(4):877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 9;385(1):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Mar 15;197(6):812-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(2):650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2008 Apr 18;3(4):214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18338862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Sep;25(17):7616-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 18;354(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Nov 1;116(Pt 21):4391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 1;20(23):3324-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Nov 11;16(21):10099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2000-2001;56(3):123-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11745109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intervirology. 2008;51(5):342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19023218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jul;11(7):815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2007 Apr;1102:86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2028-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bollati, Michela" sort="Bollati, Michela" uniqKey="Bollati M" first="Michela" last="Bollati">Michela Bollati</name>
<name sortKey="Bricogne, Gerard" sort="Bricogne, Gerard" uniqKey="Bricogne G" first="Gerard" last="Bricogne">Gerard Bricogne</name>
<name sortKey="Hansen, Guido" sort="Hansen, Guido" uniqKey="Hansen G" first="Guido" last="Hansen">Guido Hansen</name>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
<name sortKey="Kusov, Yuri" sort="Kusov, Yuri" uniqKey="Kusov Y" first="Yuri" last="Kusov">Yuri Kusov</name>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R" last="Mesters">Jeroen R. Mesters</name>
<name sortKey="Schmidt, Christian L" sort="Schmidt, Christian L" uniqKey="Schmidt C" first="Christian L" last="Schmidt">Christian L. Schmidt</name>
<name sortKey="Smart, Oliver S" sort="Smart, Oliver S" uniqKey="Smart O" first="Oliver S" last="Smart">Oliver S. Smart</name>
<name sortKey="Vonrhein, Clemens" sort="Vonrhein, Clemens" uniqKey="Vonrhein C" first="Clemens" last="Vonrhein">Clemens Vonrhein</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Tan, Jinzhi" sort="Tan, Jinzhi" uniqKey="Tan J" first="Jinzhi" last="Tan">Jinzhi Tan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001F15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19436709
   |texte=   The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19436709" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021