Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

Identifieur interne : 001E32 ( Ncbi/Merge ); précédent : 001E31; suivant : 001E33

A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

Auteurs : Xiaoxing Huang [République populaire de Chine] ; Bin Lu ; Wenbo Yu ; Qing Fang ; Li Liu ; Ke Zhuang ; Tingting Shen ; Haibo Wang ; Po Tian ; Linqi Zhang ; Zhiwei Chen

Source :

RBID : pubmed:19159014

Descripteurs français

English descriptors

Abstract

Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

DOI: 10.1371/journal.pone.0004180
PubMed: 19159014

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19159014

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.</title>
<author>
<name sortKey="Huang, Xiaoxing" sort="Huang, Xiaoxing" uniqKey="Huang X" first="Xiaoxing" last="Huang">Xiaoxing Huang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei</wicri:regionArea>
<orgName type="university">Université de Wuhan</orgName>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Bin" sort="Lu, Bin" uniqKey="Lu B" first="Bin" last="Lu">Bin Lu</name>
</author>
<author>
<name sortKey="Yu, Wenbo" sort="Yu, Wenbo" uniqKey="Yu W" first="Wenbo" last="Yu">Wenbo Yu</name>
</author>
<author>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
</author>
<author>
<name sortKey="Liu, Li" sort="Liu, Li" uniqKey="Liu L" first="Li" last="Liu">Li Liu</name>
</author>
<author>
<name sortKey="Zhuang, Ke" sort="Zhuang, Ke" uniqKey="Zhuang K" first="Ke" last="Zhuang">Ke Zhuang</name>
</author>
<author>
<name sortKey="Shen, Tingting" sort="Shen, Tingting" uniqKey="Shen T" first="Tingting" last="Shen">Tingting Shen</name>
</author>
<author>
<name sortKey="Wang, Haibo" sort="Wang, Haibo" uniqKey="Wang H" first="Haibo" last="Wang">Haibo Wang</name>
</author>
<author>
<name sortKey="Tian, Po" sort="Tian, Po" uniqKey="Tian P" first="Po" last="Tian">Po Tian</name>
</author>
<author>
<name sortKey="Zhang, Linqi" sort="Zhang, Linqi" uniqKey="Zhang L" first="Linqi" last="Zhang">Linqi Zhang</name>
</author>
<author>
<name sortKey="Chen, Zhiwei" sort="Chen, Zhiwei" uniqKey="Chen Z" first="Zhiwei" last="Chen">Zhiwei Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19159014</idno>
<idno type="pmid">19159014</idno>
<idno type="doi">10.1371/journal.pone.0004180</idno>
<idno type="wicri:Area/PubMed/Corpus">001976</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001976</idno>
<idno type="wicri:Area/PubMed/Curation">001976</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001976</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001954</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001954</idno>
<idno type="wicri:Area/Ncbi/Merge">001E32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.</title>
<author>
<name sortKey="Huang, Xiaoxing" sort="Huang, Xiaoxing" uniqKey="Huang X" first="Xiaoxing" last="Huang">Xiaoxing Huang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei</wicri:regionArea>
<orgName type="university">Université de Wuhan</orgName>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="province">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Bin" sort="Lu, Bin" uniqKey="Lu B" first="Bin" last="Lu">Bin Lu</name>
</author>
<author>
<name sortKey="Yu, Wenbo" sort="Yu, Wenbo" uniqKey="Yu W" first="Wenbo" last="Yu">Wenbo Yu</name>
</author>
<author>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
</author>
<author>
<name sortKey="Liu, Li" sort="Liu, Li" uniqKey="Liu L" first="Li" last="Liu">Li Liu</name>
</author>
<author>
<name sortKey="Zhuang, Ke" sort="Zhuang, Ke" uniqKey="Zhuang K" first="Ke" last="Zhuang">Ke Zhuang</name>
</author>
<author>
<name sortKey="Shen, Tingting" sort="Shen, Tingting" uniqKey="Shen T" first="Tingting" last="Shen">Tingting Shen</name>
</author>
<author>
<name sortKey="Wang, Haibo" sort="Wang, Haibo" uniqKey="Wang H" first="Haibo" last="Wang">Haibo Wang</name>
</author>
<author>
<name sortKey="Tian, Po" sort="Tian, Po" uniqKey="Tian P" first="Po" last="Tian">Po Tian</name>
</author>
<author>
<name sortKey="Zhang, Linqi" sort="Zhang, Linqi" uniqKey="Zhang L" first="Linqi" last="Zhang">Linqi Zhang</name>
</author>
<author>
<name sortKey="Chen, Zhiwei" sort="Chen, Zhiwei" uniqKey="Chen Z" first="Zhiwei" last="Chen">Zhiwei Chen</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Viral (chemistry)</term>
<term>Female</term>
<term>Genetic Vectors</term>
<term>Genomics</term>
<term>Immune System</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Neutralization Tests</term>
<term>SARS Virus (metabolism)</term>
<term>Smallpox Vaccine (chemistry)</term>
<term>Vaccination</term>
<term>Vaccines</term>
<term>Vaccines, Attenuated (genetics)</term>
<term>Vaccinia virus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux ()</term>
<term>Femelle</term>
<term>Génomique</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Système immunitaire</term>
<term>Tests de neutralisation</term>
<term>Vaccin antivariolique ()</term>
<term>Vaccination</term>
<term>Vaccins</term>
<term>Vaccins atténués (génétique)</term>
<term>Vecteurs génétiques</term>
<term>Virus de la vaccine (génétique)</term>
<term>Virus du SRAS (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Smallpox Vaccine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Vaccinia virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Vaccins atténués</term>
<term>Virus de la vaccine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Genetic Vectors</term>
<term>Genomics</term>
<term>Immune System</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Neutralization Tests</term>
<term>Vaccination</term>
<term>Vaccines</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux</term>
<term>Femelle</term>
<term>Génomique</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Système immunitaire</term>
<term>Tests de neutralisation</term>
<term>Vaccin antivariolique</term>
<term>Vaccination</term>
<term>Vaccins</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19159014</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.</ArticleTitle>
<Pagination>
<MedlinePgn>e4180</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0004180</ELocationID>
<Abstract>
<AbstractText>Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Xiaoxing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Wenbo</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhuang</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Tingting</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Haibo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Po</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Linqi</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Zhiwei</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>01</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012900">Smallpox Vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014612">Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007107" MajorTopicYN="N">Immune System</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009500" MajorTopicYN="N">Neutralization Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012900" MajorTopicYN="N">Smallpox Vaccine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014612" MajorTopicYN="N">Vaccines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014616" MajorTopicYN="N">Vaccinia virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19159014</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0004180</ArticleId>
<ArticleId IdType="pmc">PMC2613559</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):8264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 2004 Jun;20(6):645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol Stand. 1995;84:159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7796949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2004 Nov 25;23(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 6;292(5514):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11393868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 May 22;25(21):4213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2007;13(19):2015-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17627535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2003 Sep;41(9):4068-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 1976 Oct;235(4):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">788150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 1992;158:25-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1582244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2007;51(2):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 May 10;335(2):242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10684-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Apr 12;25(15):2863-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17113200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 2004 Dec;20(12):1335-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Acquir Immune Defic Syndr. 2008 Apr 1;47(4):412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18209682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Dec 19-26;354(6354):520-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1758494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China B. 1990 Feb;33(2):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2111142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Jan;88(Pt 1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):2678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Nov;86(Pt 11):2925-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Apr 10-16;320(6062):537-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3008002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology. 1992;24:495-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1422060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Immunol. 2005 Mar 01;4(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15740619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Aug;76(15):7713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1992 Dec 15;52(24):6917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1458480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Jun 15;38(12):1749-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15227622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Oct;76(5):1131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 May;7(10):1678-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1985 Aug;66 ( Pt 8):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2991446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Dec 17;25(52):8874-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18061316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Sep 1;339(2):164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15993917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jun 15;25(25):4818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2007 Sep;144(1-2):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17459491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1987 Oct;68 ( Pt 10):2587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2822841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1989 Dec;7(6):484-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2609722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2003 Sep;9(9):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Mar 11;428(6979):182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2002 Aug 29;347(9):689-90; author reply 689-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Chin Acad Med Sci Peking Union Med Coll. 1989;4(4):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2631120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Jan;88(Pt 1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Jun 1;195(11):1598-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17471429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2004 Oct;8 Suppl 2:S15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491871</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Hubei</li>
</region>
<settlement>
<li>Wuhan</li>
</settlement>
<orgName>
<li>Université de Wuhan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Zhiwei" sort="Chen, Zhiwei" uniqKey="Chen Z" first="Zhiwei" last="Chen">Zhiwei Chen</name>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
<name sortKey="Liu, Li" sort="Liu, Li" uniqKey="Liu L" first="Li" last="Liu">Li Liu</name>
<name sortKey="Lu, Bin" sort="Lu, Bin" uniqKey="Lu B" first="Bin" last="Lu">Bin Lu</name>
<name sortKey="Shen, Tingting" sort="Shen, Tingting" uniqKey="Shen T" first="Tingting" last="Shen">Tingting Shen</name>
<name sortKey="Tian, Po" sort="Tian, Po" uniqKey="Tian P" first="Po" last="Tian">Po Tian</name>
<name sortKey="Wang, Haibo" sort="Wang, Haibo" uniqKey="Wang H" first="Haibo" last="Wang">Haibo Wang</name>
<name sortKey="Yu, Wenbo" sort="Yu, Wenbo" uniqKey="Yu W" first="Wenbo" last="Yu">Wenbo Yu</name>
<name sortKey="Zhang, Linqi" sort="Zhang, Linqi" uniqKey="Zhang L" first="Linqi" last="Zhang">Linqi Zhang</name>
<name sortKey="Zhuang, Ke" sort="Zhuang, Ke" uniqKey="Zhuang K" first="Ke" last="Zhuang">Ke Zhuang</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Hubei">
<name sortKey="Huang, Xiaoxing" sort="Huang, Xiaoxing" uniqKey="Huang X" first="Xiaoxing" last="Huang">Xiaoxing Huang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001E32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19159014
   |texte=   A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19159014" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021