Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.

Identifieur interne : 001C64 ( Ncbi/Merge ); précédent : 001C63; suivant : 001C65

Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.

Auteurs : Shiori Haga [Japon] ; Norio Yamamoto ; Chikako Nakai-Murakami ; Yoshiaki Osawa ; Kenzo Tokunaga ; Tetsutaro Sata ; Naoki Yamamoto ; Takehiko Sasazuki ; Yukihito Ishizaka

Source :

RBID : pubmed:18490652

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a high-risk infectious pathogen. In the proposed model of respiratory failure, SARS-CoV down-regulates its receptor, angiotensin-converting enzyme 2 (ACE2), but the mechanism involved is unknown. We found that the spike protein of SARS-CoV (SARS-S) induced TNF-alpha-converting enzyme (TACE)-dependent shedding of the ACE2 ectodomain. The modulation of TACE activity by SARS-S depended on the cytoplasmic domain of ACE2, because deletion mutants of ACE2 lacking the carboxyl-terminal region did not induce ACE2 shedding or TNF-alpha production. In contrast, the spike protein of HNL63-CoV (NL63-S), a CoV that uses ACE2 as a receptor and mainly induces the common cold, caused neither of these cellular responses. Intriguingly, viral infection, judged by real-time RT-PCR analysis of SARS-CoV mRNA expression, was significantly attenuated by deletion of the cytoplasmic tail of ACE2 or knock-down of TACE expression by siRNA. These data suggest that cellular signals triggered by the interaction of SARS-CoV with ACE2 are positively involved in viral entry but lead to tissue damage. These findings may lead to the development of anti-SARS-CoV agents.

DOI: 10.1073/pnas.0711241105
PubMed: 18490652

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18490652

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.</title>
<author>
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Intractable Diseases, International Medical Center of Japan, 162-8655 Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Intractable Diseases, International Medical Center of Japan, 162-8655 Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</author>
<author>
<name sortKey="Nakai Murakami, Chikako" sort="Nakai Murakami, Chikako" uniqKey="Nakai Murakami C" first="Chikako" last="Nakai-Murakami">Chikako Nakai-Murakami</name>
</author>
<author>
<name sortKey="Osawa, Yoshiaki" sort="Osawa, Yoshiaki" uniqKey="Osawa Y" first="Yoshiaki" last="Osawa">Yoshiaki Osawa</name>
</author>
<author>
<name sortKey="Tokunaga, Kenzo" sort="Tokunaga, Kenzo" uniqKey="Tokunaga K" first="Kenzo" last="Tokunaga">Kenzo Tokunaga</name>
</author>
<author>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
</author>
<author>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18490652</idno>
<idno type="pmid">18490652</idno>
<idno type="doi">10.1073/pnas.0711241105</idno>
<idno type="wicri:Area/PubMed/Corpus">001B36</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B36</idno>
<idno type="wicri:Area/PubMed/Curation">001B36</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001B36</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A89</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001A89</idno>
<idno type="wicri:Area/Ncbi/Merge">001C64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.</title>
<author>
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Intractable Diseases, International Medical Center of Japan, 162-8655 Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Intractable Diseases, International Medical Center of Japan, 162-8655 Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</author>
<author>
<name sortKey="Nakai Murakami, Chikako" sort="Nakai Murakami, Chikako" uniqKey="Nakai Murakami C" first="Chikako" last="Nakai-Murakami">Chikako Nakai-Murakami</name>
</author>
<author>
<name sortKey="Osawa, Yoshiaki" sort="Osawa, Yoshiaki" uniqKey="Osawa Y" first="Yoshiaki" last="Osawa">Yoshiaki Osawa</name>
</author>
<author>
<name sortKey="Tokunaga, Kenzo" sort="Tokunaga, Kenzo" uniqKey="Tokunaga K" first="Kenzo" last="Tokunaga">Kenzo Tokunaga</name>
</author>
<author>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
</author>
<author>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ADAM Proteins (metabolism)</term>
<term>ADAM17 Protein</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Protein Structure, Tertiary (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (physiology)</term>
<term>Sequence Deletion</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Tumor Necrosis Factor-alpha (metabolism)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Animaux</term>
<term>Délétion de séquence</term>
<term>Facteur de nécrose tumorale alpha (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Peptidyl-Dipeptidase A (génétique)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Protéine ADAM17</term>
<term>Protéines ADAM (métabolisme)</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Pénétration virale</term>
<term>Souris</term>
<term>Structure tertiaire des protéines (génétique)</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ADAM Proteins</term>
<term>Membrane Glycoproteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>RNA, Messenger</term>
<term>Tumor Necrosis Factor-alpha</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>ADAM17 Protein</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Protein Structure, Tertiary</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
<term>Petit ARN interférent</term>
<term>Structure tertiaire des protéines</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Facteur de nécrose tumorale alpha</term>
<term>Glycoprotéines membranaires</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protéines ADAM</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Mice</term>
<term>Sequence Deletion</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Délétion de séquence</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Protéine ADAM17</term>
<term>Pénétration virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) is a high-risk infectious pathogen. In the proposed model of respiratory failure, SARS-CoV down-regulates its receptor, angiotensin-converting enzyme 2 (ACE2), but the mechanism involved is unknown. We found that the spike protein of SARS-CoV (SARS-S) induced TNF-alpha-converting enzyme (TACE)-dependent shedding of the ACE2 ectodomain. The modulation of TACE activity by SARS-S depended on the cytoplasmic domain of ACE2, because deletion mutants of ACE2 lacking the carboxyl-terminal region did not induce ACE2 shedding or TNF-alpha production. In contrast, the spike protein of HNL63-CoV (NL63-S), a CoV that uses ACE2 as a receptor and mainly induces the common cold, caused neither of these cellular responses. Intriguingly, viral infection, judged by real-time RT-PCR analysis of SARS-CoV mRNA expression, was significantly attenuated by deletion of the cytoplasmic tail of ACE2 or knock-down of TACE expression by siRNA. These data suggest that cellular signals triggered by the interaction of SARS-CoV with ACE2 are positively involved in viral entry but lead to tissue damage. These findings may lead to the development of anti-SARS-CoV agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18490652</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.</ArticleTitle>
<Pagination>
<MedlinePgn>7809-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0711241105</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) is a high-risk infectious pathogen. In the proposed model of respiratory failure, SARS-CoV down-regulates its receptor, angiotensin-converting enzyme 2 (ACE2), but the mechanism involved is unknown. We found that the spike protein of SARS-CoV (SARS-S) induced TNF-alpha-converting enzyme (TACE)-dependent shedding of the ACE2 ectodomain. The modulation of TACE activity by SARS-S depended on the cytoplasmic domain of ACE2, because deletion mutants of ACE2 lacking the carboxyl-terminal region did not induce ACE2 shedding or TNF-alpha production. In contrast, the spike protein of HNL63-CoV (NL63-S), a CoV that uses ACE2 as a receptor and mainly induces the common cold, caused neither of these cellular responses. Intriguingly, viral infection, judged by real-time RT-PCR analysis of SARS-CoV mRNA expression, was significantly attenuated by deletion of the cytoplasmic tail of ACE2 or knock-down of TACE expression by siRNA. These data suggest that cellular signals triggered by the interaction of SARS-CoV with ACE2 are positively involved in viral entry but lead to tissue damage. These findings may lead to the development of anti-SARS-CoV agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Haga</LastName>
<ForeName>Shiori</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Intractable Diseases, International Medical Center of Japan, 162-8655 Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Norio</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nakai-Murakami</LastName>
<ForeName>Chikako</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Osawa</LastName>
<ForeName>Yoshiaki</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tokunaga</LastName>
<ForeName>Kenzo</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sata</LastName>
<ForeName>Tetsutaro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yamamoto</LastName>
<ForeName>Naoki</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sasazuki</LastName>
<ForeName>Takehiko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ishizaka</LastName>
<ForeName>Yukihito</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014409">Tumor Necrosis Factor-alpha</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.-</RegistryNumber>
<NameOfSubstance UI="D051722">ADAM Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="D000072198">ADAM17 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="C000606462">ADAM17 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.86</RegistryNumber>
<NameOfSubstance UI="C000606463">Adam17 protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051722" MajorTopicYN="N">ADAM Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072198" MajorTopicYN="N">ADAM17 Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="N">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014409" MajorTopicYN="N">Tumor Necrosis Factor-alpha</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18490652</ArticleId>
<ArticleId IdType="pii">0711241105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0711241105</ArticleId>
<ArticleId IdType="pmc">PMC2409424</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 9;319(4):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):420-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1994 Feb 28;199(1):93-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8123051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jul 21;370(6486):218-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8028669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Feb 20;385(6618):729-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2004 Oct;14(5):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):821-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jan 15;66(2):627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2006 Sep;30(5):760-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16911043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8639-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2007 Jan 25;26(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8722-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14608-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jan 1;17(1):7-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
<name sortKey="Nakai Murakami, Chikako" sort="Nakai Murakami, Chikako" uniqKey="Nakai Murakami C" first="Chikako" last="Nakai-Murakami">Chikako Nakai-Murakami</name>
<name sortKey="Osawa, Yoshiaki" sort="Osawa, Yoshiaki" uniqKey="Osawa Y" first="Yoshiaki" last="Osawa">Yoshiaki Osawa</name>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
<name sortKey="Sata, Tetsutaro" sort="Sata, Tetsutaro" uniqKey="Sata T" first="Tetsutaro" last="Sata">Tetsutaro Sata</name>
<name sortKey="Tokunaga, Kenzo" sort="Tokunaga, Kenzo" uniqKey="Tokunaga K" first="Kenzo" last="Tokunaga">Kenzo Tokunaga</name>
<name sortKey="Yamamoto, Naoki" sort="Yamamoto, Naoki" uniqKey="Yamamoto N" first="Naoki" last="Yamamoto">Naoki Yamamoto</name>
<name sortKey="Yamamoto, Norio" sort="Yamamoto, Norio" uniqKey="Yamamoto N" first="Norio" last="Yamamoto">Norio Yamamoto</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Haga, Shiori" sort="Haga, Shiori" uniqKey="Haga S" first="Shiori" last="Haga">Shiori Haga</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001C64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:18490652
   |texte=   Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:18490652" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021