Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Receptor-independent infection of murine coronavirus: analysis by spinoculation.

Identifieur interne : 001477 ( Ncbi/Merge ); précédent : 001476; suivant : 001478

Receptor-independent infection of murine coronavirus: analysis by spinoculation.

Auteurs : Rie Watanabe [Japon] ; Shutoku Matsuyama ; Fumihiro Taguchi

Source :

RBID : pubmed:16641281

Descripteurs français

English descriptors

Abstract

A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.

DOI: 10.1128/JVI.80.10.4901-4908.2006
PubMed: 16641281

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16641281

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Receptor-independent infection of murine coronavirus: analysis by spinoculation.</title>
<author>
<name sortKey="Watanabe, Rie" sort="Watanabe, Rie" uniqKey="Watanabe R" first="Rie" last="Watanabe">Rie Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16641281</idno>
<idno type="pmid">16641281</idno>
<idno type="doi">10.1128/JVI.80.10.4901-4908.2006</idno>
<idno type="wicri:Area/PubMed/Corpus">002259</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002259</idno>
<idno type="wicri:Area/PubMed/Curation">002259</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002259</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002040</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002040</idno>
<idno type="wicri:Area/Ncbi/Merge">001477</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Receptor-independent infection of murine coronavirus: analysis by spinoculation.</title>
<author>
<name sortKey="Watanabe, Rie" sort="Watanabe, Rie" uniqKey="Watanabe R" first="Rie" last="Watanabe">Rie Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Adhesion Molecules</term>
<term>Cell Line</term>
<term>Cell Membrane (metabolism)</term>
<term>Centrifugation (methods)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cricetinae</term>
<term>Glycoproteins (deficiency)</term>
<term>Glycoproteins (genetics)</term>
<term>Glycoproteins (physiology)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Murine hepatitis virus (genetics)</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Receptors, Virus (deficiency)</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (physiology)</term>
<term>Solubility</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Centrifugation ()</term>
<term>Cricetinae</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines (déficit)</term>
<term>Glycoprotéines (génétique)</term>
<term>Glycoprotéines (physiologie)</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Humains</term>
<term>Infections à coronavirus (métabolisme)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Lignée cellulaire</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Molécules d'adhérence cellulaire</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Récepteurs viraux (déficit)</term>
<term>Récepteurs viraux (génétique)</term>
<term>Récepteurs viraux (physiologie)</term>
<term>Solubilité</term>
<term>Souris</term>
<term>Virus de l'hépatite murine (génétique)</term>
<term>Virus de l'hépatite murine (pathogénicité)</term>
<term>Virus de l'hépatite murine (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glycoproteins</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycoproteins</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glycoproteins</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cell Adhesion Molecules</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glycoprotéines</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéines</term>
<term>Récepteurs viraux</term>
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Centrifugation</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Infections à coronavirus</term>
<term>Membrane cellulaire</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines</term>
<term>Récepteurs viraux</term>
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Cricetinae</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Solubility</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Centrifugation</term>
<term>Cricetinae</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Molécules d'adhérence cellulaire</term>
<term>Solubilité</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16641281</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>80</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2006</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Receptor-independent infection of murine coronavirus: analysis by spinoculation.</ArticleTitle>
<Pagination>
<MedlinePgn>4901-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Rie</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsuyama</LastName>
<ForeName>Shutoku</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taguchi</LastName>
<ForeName>Fumihiro</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087701">Ceacam2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015815">Cell Adhesion Molecules</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015815" MajorTopicYN="N">Cell Adhesion Molecules</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002498" MajorTopicYN="N">Centrifugation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16641281</ArticleId>
<ArticleId IdType="pii">80/10/4901</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.80.10.4901-4908.2006</ArticleId>
<ArticleId IdType="pmc">PMC1472070</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Jul 20;273(1):80-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 24;406(6798):893-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10972291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(21):10074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1999;144(10):2041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Immunol. 1999;43(12):1077-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jul;74(14):6469-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1999 Nov 1;252(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11501563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2001;70:777-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2002 May;5(5 Pt 1):538-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11991744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jul;76(13):6743-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12050387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Aug 1;299(2):155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Mar;78(6):2682-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1983 Aug 11;11(15):5045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6308569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 20-1985 Jan 2;312(5996):763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1984 Dec 20-1985 Jan 2;312(5996):767-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6083454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 May;54(2):429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Aug 20;196(4):963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3681988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Apr;163(2):276-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1871126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1716-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1993 Jul;74 ( Pt 7):1421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Nov;69(11):7260-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7474149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Apr;70(4):2632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 1996 Jul;60(2):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8844623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9024-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 May 29;93(5):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Jan;73(1):638-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):14451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Jan;65(1):254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1985201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Watanabe, Rie" sort="Watanabe, Rie" uniqKey="Watanabe R" first="Rie" last="Watanabe">Rie Watanabe</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001477 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001477 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:16641281
   |texte=   Receptor-independent infection of murine coronavirus: analysis by spinoculation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:16641281" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021