Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.

Identifieur interne : 001393 ( Ncbi/Merge ); précédent : 001392; suivant : 001394

Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.

Auteurs : Ewan P. Plant [États-Unis] ; Jonathan D. Dinman

Source :

RBID : pubmed:16497657

Descripteurs français

English descriptors

Abstract

Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.

DOI: 10.1261/rna.2225206
PubMed: 16497657

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16497657

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.</title>
<author>
<name sortKey="Plant, Ewan P" sort="Plant, Ewan P" uniqKey="Plant E" first="Ewan P" last="Plant">Ewan P. Plant</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16497657</idno>
<idno type="pmid">16497657</idno>
<idno type="doi">10.1261/rna.2225206</idno>
<idno type="wicri:Area/PubMed/Corpus">002333</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002333</idno>
<idno type="wicri:Area/PubMed/Curation">002333</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002333</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002254</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002254</idno>
<idno type="wicri:Area/Ncbi/Merge">001393</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.</title>
<author>
<name sortKey="Plant, Ewan P" sort="Plant, Ewan P" uniqKey="Plant E" first="Ewan P" last="Plant">Ewan P. Plant</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="ISSN">1355-8382</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Line</term>
<term>Codon</term>
<term>Escherichia coli (genetics)</term>
<term>Frameshifting, Ribosomal</term>
<term>HIV-1</term>
<term>Humans</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oligonucleotides</term>
<term>Plasmids</term>
<term>T-Lymphocytes (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Codon</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Escherichia coli (génétique)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lymphocytes T (métabolisme)</term>
<term>Mutagenèse dirigée</term>
<term>Oligonucléotides</term>
<term>Plasmides</term>
<term>Séquence nucléotidique</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Codon</term>
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lymphocytes T</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Line</term>
<term>Frameshifting, Ribosomal</term>
<term>HIV-1</term>
<term>Humans</term>
<term>Mutagenesis, Site-Directed</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Codon</term>
<term>Décalage ribosomique du cadre de lecture</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Mutagenèse dirigée</term>
<term>Oligonucléotides</term>
<term>Plasmides</term>
<term>Séquence nucléotidique</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16497657</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1355-8382</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.</ArticleTitle>
<Pagination>
<MedlinePgn>666-73</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plant</LastName>
<ForeName>Ewan P</ForeName>
<Initials>EP</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology and Molecular Genetics, Microbiology Building, Room 2135, University of Maryland, College Park, Maryland 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dinman</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI064307</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM058859</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM58859</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018965" MajorTopicYN="Y">Frameshifting, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015497" MajorTopicYN="N">HIV-1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16497657</ArticleId>
<ArticleId IdType="pii">rna.2225206</ArticleId>
<ArticleId IdType="doi">10.1261/rna.2225206</ArticleId>
<ArticleId IdType="pmc">PMC1421095</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2000 Jan 14;295(2):179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10623518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:129-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2000 Feb 29;10(1):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10774757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2001 Aug;7(8):1084-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11497428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2002 Oct;8(10):1189-232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):327-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Apr;92(2):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12686425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Jun;9(6):760-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):1019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Aug 1;22(15):3941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(1):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Aug;10(8):1225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Aug 20;118(4):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jan 21;331(6153):280-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2447506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Nov 30;96(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2265755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1986362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Biol. 1989 Nov;1(2):159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2562219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Mar;6(3):511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Jun;66(6):3669-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1583726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Sep 20;227(2):463-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1404364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Feb 11;21(3):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7680118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Jan;136(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8138178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1994 Jan;11(2):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8170392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Dec;14(12):8107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 May 11;23(9):1487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Mar 15;15(6):1360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8635469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Oct 25;263(2):140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8913297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Jul 18;270(3):360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9237903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jan 1;26(1):148-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9399820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Mar 1;255(1):2-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 May 7;288(3):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(20):e160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jan 7;17(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jun;3(6):e172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Apr 28;298(2):167-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Plant, Ewan P" sort="Plant, Ewan P" uniqKey="Plant E" first="Ewan P" last="Plant">Ewan P. Plant</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001393 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001393 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:16497657
   |texte=   Comparative study of the effects of heptameric slippery site composition on -1 frameshifting among different eukaryotic systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:16497657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021