Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.

Identifieur interne : 000984 ( Ncbi/Merge ); précédent : 000983; suivant : 000985

A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.

Auteurs : S. Shen [Singapour] ; Y C Law ; D X Liu

Source :

RBID : pubmed:15302214

Descripteurs français

English descriptors

Abstract

The spike (S) glycoprotein of coronavirus is responsible for receptor binding and membrane fusion. A number of variants with deletions and mutations in the S protein have been isolated from naturally and persistently infected animals and tissue cultures. Here, we report the emergence and isolation of two temperature sensitive (ts) mutants and a revertant in the process of cold-adaptation of coronavirus infectious bronchitis virus (IBV) to a monkey kidney cell line. The complete sequences of wild type (wt) virus, two ts mutants, and the revertant were compared and variations linked to phenotypes were mapped. A single amino acid reversion (L294-to-Q) in the S protein is sufficient to abrogate the ts phenotype. Interestingly, unlike wt virus, the revertant grows well at and below 32 degrees C, the permissive temperature, as it carries other mutations in multiple genes that might be associated with the cold-adaptation phenotype. If the two ts mutants were allowed to enter cells at 32 degrees C, the S protein was synthesized, core-glycosylated and at least partially modified at 40 degrees C. However, compared with wt virus and the revertant, no infectious particles of these ts mutants were assembled and released from the ts mutant-infected cells at 40 degrees C. Evidence presented demonstrated that the Q294-to-L294 mutation, located at a highly conserved domain of the S1 subunit, might hamper processing of the S protein to a matured 180-kDa, endo-glycosidase H-resistant glycoprotein and the translocation of the protein to the cell surface. Consequently, some essential functions of the S protein, including mediation of cell-to-cell fusion and its incorporation into virions, were completely abolished.

DOI: 10.1016/j.virol.2004.06.016
PubMed: 15302214

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15302214

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.</title>
<author>
<name sortKey="Shen, S" sort="Shen, S" uniqKey="Shen S" first="S" last="Shen">S. Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, 117609, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, 117609</wicri:regionArea>
<wicri:noRegion>117609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Law, Y C" sort="Law, Y C" uniqKey="Law Y" first="Y C" last="Law">Y C Law</name>
</author>
<author>
<name sortKey="Liu, D X" sort="Liu, D X" uniqKey="Liu D" first="D X" last="Liu">D X Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15302214</idno>
<idno type="pmid">15302214</idno>
<idno type="doi">10.1016/j.virol.2004.06.016</idno>
<idno type="wicri:Area/PubMed/Corpus">002C31</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002C31</idno>
<idno type="wicri:Area/PubMed/Curation">002C31</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002C31</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002E54</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002E54</idno>
<idno type="wicri:Area/Ncbi/Merge">000984</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.</title>
<author>
<name sortKey="Shen, S" sort="Shen, S" uniqKey="Shen S" first="S" last="Shen">S. Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Molecular and Cell Biology, 117609, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Institute of Molecular and Cell Biology, 117609</wicri:regionArea>
<wicri:noRegion>117609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Law, Y C" sort="Law, Y C" uniqKey="Law Y" first="Y C" last="Law">Y C Law</name>
</author>
<author>
<name sortKey="Liu, D X" sort="Liu, D X" uniqKey="Liu D" first="D X" last="Liu">D X Liu</name>
</author>
</analytic>
<series>
<title level="j">Virology</title>
<idno type="ISSN">0042-6822</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Cytoplasm (metabolism)</term>
<term>Glutamine (chemistry)</term>
<term>Glycoside Hydrolases</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Infectious bronchitis virus (genetics)</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Leucine (chemistry)</term>
<term>Membrane Glycoproteins (biosynthesis)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Point Mutation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Temperature</term>
<term>Transfection</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (biosynthesis)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation</term>
<term>Animaux</term>
<term>Assemblage viral</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Cytoplasme (métabolisme)</term>
<term>Glutamine ()</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (biosynthèse)</term>
<term>Glycoprotéines membranaires (génétique)</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Glycosidases</term>
<term>Humains</term>
<term>Leucine ()</term>
<term>Mutation ponctuelle</term>
<term>Protéines de l'enveloppe virale (biosynthèse)</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Substitution d'acide aminé</term>
<term>Température</term>
<term>Transfection</term>
<term>Virus de la bronchite infectieuse (génétique)</term>
<term>Virus de la bronchite infectieuse (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutamine</term>
<term>Leucine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Infectious bronchitis virus</term>
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Virus de la bronchite infectieuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Infectious bronchitis virus</term>
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acclimatization</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Glycoside Hydrolases</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Point Mutation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Temperature</term>
<term>Transfection</term>
<term>Vero Cells</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acclimatation</term>
<term>Animaux</term>
<term>Assemblage viral</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Glutamine</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycosidases</term>
<term>Humains</term>
<term>Leucine</term>
<term>Mutation ponctuelle</term>
<term>Substitution d'acide aminé</term>
<term>Température</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The spike (S) glycoprotein of coronavirus is responsible for receptor binding and membrane fusion. A number of variants with deletions and mutations in the S protein have been isolated from naturally and persistently infected animals and tissue cultures. Here, we report the emergence and isolation of two temperature sensitive (ts) mutants and a revertant in the process of cold-adaptation of coronavirus infectious bronchitis virus (IBV) to a monkey kidney cell line. The complete sequences of wild type (wt) virus, two ts mutants, and the revertant were compared and variations linked to phenotypes were mapped. A single amino acid reversion (L294-to-Q) in the S protein is sufficient to abrogate the ts phenotype. Interestingly, unlike wt virus, the revertant grows well at and below 32 degrees C, the permissive temperature, as it carries other mutations in multiple genes that might be associated with the cold-adaptation phenotype. If the two ts mutants were allowed to enter cells at 32 degrees C, the S protein was synthesized, core-glycosylated and at least partially modified at 40 degrees C. However, compared with wt virus and the revertant, no infectious particles of these ts mutants were assembled and released from the ts mutant-infected cells at 40 degrees C. Evidence presented demonstrated that the Q294-to-L294 mutation, located at a highly conserved domain of the S1 subunit, might hamper processing of the S protein to a matured 180-kDa, endo-glycosidase H-resistant glycoprotein and the translocation of the protein to the cell surface. Consequently, some essential functions of the S protein, including mediation of cell-to-cell fusion and its incorporation into virions, were completely abolished.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15302214</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0042-6822</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>326</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Virology</Title>
<ISOAbbreviation>Virology</ISOAbbreviation>
</Journal>
<ArticleTitle>A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.</ArticleTitle>
<Pagination>
<MedlinePgn>288-98</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The spike (S) glycoprotein of coronavirus is responsible for receptor binding and membrane fusion. A number of variants with deletions and mutations in the S protein have been isolated from naturally and persistently infected animals and tissue cultures. Here, we report the emergence and isolation of two temperature sensitive (ts) mutants and a revertant in the process of cold-adaptation of coronavirus infectious bronchitis virus (IBV) to a monkey kidney cell line. The complete sequences of wild type (wt) virus, two ts mutants, and the revertant were compared and variations linked to phenotypes were mapped. A single amino acid reversion (L294-to-Q) in the S protein is sufficient to abrogate the ts phenotype. Interestingly, unlike wt virus, the revertant grows well at and below 32 degrees C, the permissive temperature, as it carries other mutations in multiple genes that might be associated with the cold-adaptation phenotype. If the two ts mutants were allowed to enter cells at 32 degrees C, the S protein was synthesized, core-glycosylated and at least partially modified at 40 degrees C. However, compared with wt virus and the revertant, no infectious particles of these ts mutants were assembled and released from the ts mutant-infected cells at 40 degrees C. Evidence presented demonstrated that the Q294-to-L294 mutation, located at a highly conserved domain of the S1 subunit, might hamper processing of the S protein to a matured 180-kDa, endo-glycosidase H-resistant glycoprotein and the translocation of the protein to the cell surface. Consequently, some essential functions of the S protein, including mediation of cell-to-cell fusion and its incorporation into virions, were completely abolished.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, 117609, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Law</LastName>
<ForeName>Y C</ForeName>
<Initials>YC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>D X</ForeName>
<Initials>DX</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Virology</MedlineTA>
<NlmUniqueID>0110674</NlmUniqueID>
<ISSNLinking>0042-6822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2004</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15302214</ArticleId>
<ArticleId IdType="doi">10.1016/j.virol.2004.06.016</ArticleId>
<ArticleId IdType="pii">S0042682204003988</ArticleId>
<ArticleId IdType="pmc">PMC7126609</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1997 Jan 20;227(2):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9018137</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1997 Dec 8;239(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9426441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Feb;71(2):949-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995612</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1998 May 10;244(2):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1987 Aug 20;196(4):963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3681988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1999 Aug;80 ( Pt 8):2077-2085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10466806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1981 Dec;115(2):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7314449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1994 Oct 21;266(5184):456-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7939687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1994 Jan;124(1-2):55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1998 Jul 5;246(2):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657947</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Sep 10;274(37):26085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10473557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1994 Mar;68(3):1682-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7509001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):2959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Aug;71(8):6183-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1996 Sep 1;223(1):68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9024-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371559</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1997 Feb 10;136(3):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9024687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520090</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1996 Jun 17;15(12):2961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Oct;73(10):8152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482565</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 1995 Dec;39(2-3):261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837889</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2000;145(5):871-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10881675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1994 Dec;68(12):8008-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7525985</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1991 Apr;65(4):1916-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1848311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Dec;185(2):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1962461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Jun 20;311(1):16-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1993 Dec;67(12):7394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8230460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1996 Apr;70(4):2632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Mar;75(5):2452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Law, Y C" sort="Law, Y C" uniqKey="Law Y" first="Y C" last="Law">Y C Law</name>
<name sortKey="Liu, D X" sort="Liu, D X" uniqKey="Liu D" first="D X" last="Liu">D X Liu</name>
</noCountry>
<country name="Singapour">
<noRegion>
<name sortKey="Shen, S" sort="Shen, S" uniqKey="Shen S" first="S" last="Shen">S. Shen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000984 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000984 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:15302214
   |texte=   A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:15302214" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021