Serveur d'exploration SRAS - Checkpoint (Ncbi)

Index « Mesh.i » - entrée « Hydrophobic and Hydrophilic Interactions »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Hydrolyzable Tannins < Hydrophobic and Hydrophilic Interactions < Hydroponics  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 24.
[0-20] [0 - 20][0 - 24][20-23][20-40]
Ident.Authors (with country if any)Title
000C21 (2004) Chi-Yuan Chou [Taïwan] ; Hui-Chuan Chang ; Wen-Chi Hsu ; Tien-Zheng Lin ; Chao-Hsiung Lin ; Gu-Gang ChangQuaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease.
000D63 (2005) Qishi Du [République populaire de Chine] ; Shuqing Wang ; Dongqing Wei ; Suzanne Sirois ; Kuo-Chen ChouMolecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase.
001162 (2005) Kathryn V. Holmes [États-Unis]Structural biology. Adaptation of SARS coronavirus to humans.
001163 (2005) Fang Li [États-Unis] ; Wenhui Li ; Michael Farzan ; Stephen C. HarrisonStructure of SARS coronavirus spike receptor-binding domain complexed with receptor.
001263 (2005) Salomé Veiga [Portugal] ; Yunyun Yuan [République populaire de Chine] ; Xuqin Li [République populaire de Chine] ; Nuno C. Santos [Portugal] ; Gang Liu [République populaire de Chine] ; Miguel A. R. B. Castanho [Portugal]Why are HIV-1 fusion inhibitors not effective against SARS-CoV? Biophysical evaluation of molecular interactions
001496 (2006) Q. Yuan [Singapour] ; Y. Liao ; J. Torres ; J P Tam ; D X LiuBiochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells.
001580 (2006) Christoph Meier [Royaume-Uni] ; A. Radu Aricescu [Royaume-Uni] ; Rene Assenberg [Royaume-Uni] ; Robin T. Aplin [Royaume-Uni] ; Robert J. C. Gilbert [Royaume-Uni] ; Jonathan M. Grimes [Royaume-Uni] ; David I. Stuart [Royaume-Uni]The Crystal Structure of ORF-9b, a Lipid Binding Protein from the SARS Coronavirus
001599 (2006) Syaulan Yang [République populaire de Chine] ; Shu-Jen Chen ; Min-Feng Hsu ; Jen-Dar Wu ; Chien-Te K. Tseng ; Yu-Fan Liu ; Hua-Chien Chen ; Chun-Wei Kuo ; Chi-Shen Wu ; Li-Wen Chang ; Wen-Chang Chen ; Shao-Ying Liao ; Teng-Yuan Chang ; Hsin-Hui Hung ; Hui-Lin Shr ; Cheng-Yuan Liu ; Yu-An Huang ; Ling-Yin Chang ; Jen-Chi Hsu ; Clarence J. Peters ; Andrew H-J Wang ; Ming-Chu HsuSynthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.
001A30 (2007) Jason Netland [États-Unis] ; Debra Ferraro ; Lecia Pewe ; Heidi Olivares ; Thomas Gallagher ; Stanley PerlmanEnhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the N-terminal hydrophobic region but not C-terminal sorting motifs.
001B09 (2008) David C. Ireland [Australie] ; Conan K L. Wang ; Jennifer A. Wilson ; Kirk R. Gustafson ; David J. CraikCyclotides as natural anti-HIV agents.
001C75 (2008) Gustav R Der [Danemark] ; Ole Kristensen ; Jette S. Kastrup ; S Ren Buus ; Michael GajhedeStructure of a SARS coronavirus-derived peptide bound to the human major histocompatibility complex class I molecule HLA-B*1501.
001C97 (2008) Jaime Guillén [Espagne] ; Ana J. Pérez-Berná ; Miguel R. Moreno ; José VillalaínA second SARS-CoV S2 glycoprotein internal membrane-active peptide. Biophysical characterization and membrane interaction.
002054 (2009) Jeroen Corver [Pays-Bas] ; Rene Broer ; Puck Van Kasteren ; Willy SpaanMutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry.
002059 (2010) Yantao Chen [République populaire de Chine] ; Mingliang Wang ; Qianling Zhang ; Jianhong LiuConstruction of an implicit membrane environment for the lattice Monte Carlo simulation of transmembrane protein.
002264 (2010) Zai Wang ; Jian-Dong Huang ; Kin-Ling Wong ; Pei-Gang Wang ; Hao-Jie Zhang ; Julian A. Tanner ; Ottavia Spiga ; Andrea Bernini ; Bo-Jian Zheng ; Neri NiccolaiOn the mechanisms of bananin activity against severe acute respiratory syndrome coronavirus
002829 (2014) Halil Aydin ; Dina Al-Khooly ; Jeffrey E. LeeInfluence of hydrophobic and electrostatic residues on SARS‐coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design
002833 (2014) Chi-Yuan Chou [Taïwan] ; Hsing-Yi Lai [Taïwan] ; Hung-Yi Chen [Taïwan] ; Shu-Chun Cheng [Taïwan] ; Kai-Wen Cheng [Taïwan] ; Ya-Wen Chou [Taïwan]Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease.
002983 (2015) Hao-Jen Hsu [Taïwan] ; Meng-Han Lin ; Christina Schindler ; Wolfgang B. FischerStructure based computational assessment of channel properties of assembled ORF-8a from SARS-CoV.
002A52 (2015) Anirban Ghosh [Inde] ; Amit S. Pithadia [États-Unis] ; Jyotsna Bhat [Inde] ; Supriyo Bera [Inde] ; Anupam Midya [Inde] ; Carol A. Fierke [États-Unis] ; Ayyalusamy Ramamoorthy [États-Unis] ; Anirban Bhunia [Inde]Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.
002A86 (2015) Sakshi Tomar ; Melanie L. Johnston [États-Unis] ; Sarah E. St John ; Heather L. Osswald [États-Unis] ; Prasanth R. Nyalapatla [États-Unis] ; Lake N. Paul ; Arun K. Ghosh [États-Unis] ; Mark R. Denison [États-Unis] ; Andrew D. Mesecar [États-Unis]Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.
002C02 (2016) Chunmei Li [République populaire de Chine] ; Xin Teng [République populaire de Chine] ; Yifei Qi [République populaire de Chine] ; Bo Tang [République populaire de Chine] ; Hailing Shi [République populaire de Chine] ; Xiaomin Ma [République populaire de Chine] ; Luhua Lai [République populaire de Chine]Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity.

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/Mesh.i -k "Hydrophobic and Hydrophilic Interactions" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/Mesh.i  \
                -Sk "Hydrophobic and Hydrophilic Interactions" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Mesh.i
   |clé=    Hydrophobic and Hydrophilic Interactions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021