Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages

Identifieur interne : 005616 ( Main/Exploration ); précédent : 005615; suivant : 005617

Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages

Auteurs : Robert L. Brent [États-Unis]

Source :

RBID : ISTEX:B36900E13FE371ED60F3688F8193D2EB79DBF635

English descriptors

Abstract

BACKGROUND: Toxicology studies utilizing animals and in vitro cellular or tissue preparations have been used to study the toxic effects and mechanism of action of drugs and chemicals and to determine the effective and safe dose of drugs in humans and the risk of toxicity from chemical exposures. Testing in animals could be improved if animal dosing using the mg/kg basis was abandoned and drugs and chemicals were administered to compare the effects of pharmacokinetically and toxicokinetically equivalent serum levels in the animal model and human. Because alert physicians or epidemiology studies, not animal studies, have discovered most human teratogens and toxicities in children, animal studies play a minor role in discovering teratogens and agents that are deleterious to infants and children. In vitro studies play even a less important role, although they are helpful in describing the cellular or tissue effects of the drugs or chemicals and their mechanism of action. One cannot determine the magnitude of human risks from in vitro studies when they are the only source of toxicology data. METHODS: Toxicology studies on adult animals is carried out by pharmaceutical companies, chemical companies, the Food and Drug Administration (FDA), many laboratories at the National Institutes of Health, and scientific investigators in laboratories throughout the world. Although there is a vast amount of animal toxicology studies carried out on pregnant animals and adult animals, there is a paucity of animal studies utilizing newborn, infant, and juvenile animals. This deficiency is compounded by the fact that there are very few toxicology studies carried out in children. That is one reason why pregnant women and children are referred to as “therapeutic orphans.” RESULTS: When animal studies are carried out with newborn and developing animals, the results demonstrate that generalizations are less applicable and less predictable than the toxicology studies in pregnant animals. Although many studies show that infants and developing animals may have difficulty in metabolizing drugs and are more vulnerable to the toxic effects of environmental chemicals, there are exceptions that indicate that infants and developing animals may be less vulnerable and more resilient to some drugs and chemicals. In other words, the generalization indicating that developing animals are always more sensitive to environmental toxicants is not valid. For animal toxicology studies to be useful, animal studies have to utilize modern concepts of pharmacokinetics and toxicokinetics, as well as “mechanism of action” (MOA) studies to determine whether animal data can be utilized for determining human risk. One example is the inability to determine carcinogenic risks in humans for some drugs and chemicals that produce tumors in rodents, When the oncogenesis is the result of peroxisome proliferation, a reaction that is of diminished importance in humans. CONCLUSIONS: Scientists can utilize animal studies to study the toxicokinetic and toxicodynamic aspects of drugs and environmental toxicants. But they have to be carried out with the most modern techniques and interpreted with the highest level of scholarship and objectivity. Threshold exposures, no‐adverse‐effect level (NOAEL) exposures, and toxic effects can be determined in animals, but have to be interpreted with caution when applying them to the human. Adult problems in growth, endocrine dysfunction, neurobehavioral abnormalities, and oncogenesis may be related to exposures to drugs, chemicals, and physical agents during development and may be fruitful areas for investigation. Maximum permissible exposures have to be based on data, not on generalizations that are applied to all drugs and chemicals. Epidemiology studies are still the best methodology for determining the human risk and the effects of environmental toxicants. Carrying out these focused studies in developing humans will be difficult. Animal studies may be our only alternative for answering many questions with regard to specific postnatal developmental vulnerabilities. Birth Defects Res B 71:303–320, 2004. © 2004 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/bdrb.20020


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages</title>
<author>
<name sortKey="Brent, Robert L" sort="Brent, Robert L" uniqKey="Brent R" first="Robert L." last="Brent">Robert L. Brent</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B36900E13FE371ED60F3688F8193D2EB79DBF635</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/bdrb.20020</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-RMLJTLMV-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002008</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002008</idno>
<idno type="wicri:Area/Istex/Curation">002008</idno>
<idno type="wicri:Area/Istex/Checkpoint">001C94</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001C94</idno>
<idno type="wicri:doubleKey">1542-9733:2004:Brent R:utilization:of:juvenile</idno>
<idno type="wicri:Area/Main/Merge">005A62</idno>
<idno type="wicri:Area/Main/Curation">005616</idno>
<idno type="wicri:Area/Main/Exploration">005616</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages</title>
<author>
<name sortKey="Brent, Robert L" sort="Brent, Robert L" uniqKey="Brent R" first="Robert L." last="Brent">Robert L. Brent</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Thomas Jefferson University, Alfred I. duPont Hospital for Children, Laboratory of Clinical and Environmental Teratology, Wilmington</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Delaware</region>
</placeName>
<wicri:cityArea>Correspondence address: Room 308, R/A, Alfred I. duPont Hospital for Children, Box 269, Wilmington</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Birth Defects Research Part B: Developmental and Reproductive Toxicology</title>
<title level="j" type="alt">BIRTH DEFECTS RESEARCH PART B: DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY</title>
<idno type="ISSN">1542-9733</idno>
<idno type="eISSN">1542-9741</idno>
<imprint>
<biblScope unit="vol">71</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="303">303</biblScope>
<biblScope unit="page" to="320">320</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-10">2004-10</date>
</imprint>
<idno type="ISSN">1542-9733</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1542-9733</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Action studies</term>
<term>Active metabolite</term>
<term>Acute toxicity</term>
<term>Adolescent development</term>
<term>Adult</term>
<term>Adult animals</term>
<term>Adult leydig cells</term>
<term>Adult mice</term>
<term>Adult rats</term>
<term>Alert physicians</term>
<term>Animal carcinogenicity studies</term>
<term>Animal data</term>
<term>Animal experiments</term>
<term>Animal model</term>
<term>Animal models</term>
<term>Animal studies</term>
<term>Animal testing</term>
<term>Animal toxicology studies</term>
<term>Appl</term>
<term>Appropriate animal models</term>
<term>Atomic bomb survivors</term>
<term>Authors state</term>
<term>Available data</term>
<term>Biol</term>
<term>Birth defects</term>
<term>Birth defects research</term>
<term>Blood level</term>
<term>Blood levels</term>
<term>Body water compartments</term>
<term>Body weight</term>
<term>Bone growth</term>
<term>Bone staining</term>
<term>Brent</term>
<term>Brent table</term>
<term>Cancer studies</term>
<term>Carcinogenesis</term>
<term>Carcinogenic</term>
<term>Carcinogenic agents</term>
<term>Cause cirrhosis</term>
<term>Cell division</term>
<term>Cell proliferation</term>
<term>Chemical carcinogenesis</term>
<term>Chemotherapeutic agents</term>
<term>Clostridium botulinum spores</term>
<term>Critical windows</term>
<term>Defect</term>
<term>Dehp</term>
<term>Deleterious effects</term>
<term>Desk reference</term>
<term>Developmental differences</term>
<term>Developmental events</term>
<term>Developmental processes</term>
<term>Developmental risks</term>
<term>Developmental toxicity</term>
<term>Developmental toxicology</term>
<term>Difficult area</term>
<term>Dos</term>
<term>Drug administration</term>
<term>Drug classification</term>
<term>Drug metab</term>
<term>Dupont hospital</term>
<term>Embryonic development</term>
<term>Endemic cretinism</term>
<term>Environ</term>
<term>Environ health perspect</term>
<term>Environmental</term>
<term>Environmental agents</term>
<term>Environmental chemicals</term>
<term>Environmental exposures</term>
<term>Environmental influences</term>
<term>Environmental toxicant</term>
<term>Environmental toxicants</term>
<term>Epidemiological studies</term>
<term>Epidemiology studies</term>
<term>Epiphyseal closure</term>
<term>Exposure</term>
<term>Exposure levels</term>
<term>Fetal development</term>
<term>Fetus</term>
<term>Gastrointestinal tract</term>
<term>Greater risk</term>
<term>Greatest risk</term>
<term>Growth promotion</term>
<term>Growth retardation</term>
<term>Heart block</term>
<term>High doses</term>
<term>High exposures</term>
<term>Higher risk</term>
<term>Human exposures</term>
<term>Human risk</term>
<term>Human risks</term>
<term>Human teratogens</term>
<term>Immune system</term>
<term>Infant</term>
<term>Infant animals</term>
<term>Infection hepatitis</term>
<term>Intellectual decrements</term>
<term>Intracranial pressure</term>
<term>Iodine deficiency</term>
<term>Jensh</term>
<term>Juvenile animal studies</term>
<term>Juvenile animals</term>
<term>Laboratory animals</term>
<term>Leflunomide</term>
<term>Mammalian species</term>
<term>Many instances</term>
<term>Mature stature</term>
<term>Mental retardation</term>
<term>Metabolism</term>
<term>Modern pharmacokinetics</term>
<term>Mutagenic</term>
<term>Neonate</term>
<term>Nervous system</term>
<term>Neurobehavioral effects</term>
<term>Neurological symptoms</term>
<term>Newborn</term>
<term>Newborn animals</term>
<term>Newborn infants</term>
<term>Newborn mice</term>
<term>Noael</term>
<term>Oncogenic</term>
<term>Oncogenic effect</term>
<term>Oncogenic effects</term>
<term>Oncogenic risks</term>
<term>Oncogenic susceptibility</term>
<term>Peroxisome</term>
<term>Peroxisome proliferation</term>
<term>Peroxisome proliferator</term>
<term>Peroxisome proliferators</term>
<term>Perspect</term>
<term>Pesticide</term>
<term>Pharmacokinetics</term>
<term>Pharmacol</term>
<term>Phthalate</term>
<term>Phthalate esters</term>
<term>Physical agents</term>
<term>Polychlorinated biphenyls</term>
<term>Postnatal</term>
<term>Postnatal exposure</term>
<term>Postnatal growth</term>
<term>Postnatal period</term>
<term>Precocious puberty</term>
<term>Prefrontal</term>
<term>Prefrontal cortex</term>
<term>Pregnant animals</term>
<term>Pregnant women</term>
<term>Premature babies</term>
<term>Prenatal</term>
<term>Preston</term>
<term>Proliferation</term>
<term>Puberty</term>
<term>Pyrimidine</term>
<term>Pyrimidine synthesis</term>
<term>Reproductive</term>
<term>Reproductive effects</term>
<term>Reproductive risks</term>
<term>Reproductive system</term>
<term>Respiratory arrest</term>
<term>Retardation</term>
<term>Risk assessment</term>
<term>Rodent</term>
<term>Serum concentrations</term>
<term>Serum levels</term>
<term>Smaller stature</term>
<term>Sodium salicylate</term>
<term>Species differences</term>
<term>Specific effects</term>
<term>Spontaneous risk</term>
<term>Stochastic</term>
<term>Stochastic effect</term>
<term>Stochastic phenomena</term>
<term>Surface area</term>
<term>Surface area basis</term>
<term>Susceptibility</term>
<term>Teratogen</term>
<term>Teratogenic</term>
<term>Teratogenic effects</term>
<term>Teratogenicity</term>
<term>Teratology</term>
<term>Teratology brent</term>
<term>Teratology jensh</term>
<term>Testicular toxicity</term>
<term>Threshold effect</term>
<term>Threshold exposure</term>
<term>Threshold exposures</term>
<term>Thyroid function</term>
<term>Thyroid gland</term>
<term>Total body water</term>
<term>Toxic</term>
<term>Toxic effects</term>
<term>Toxicant</term>
<term>Toxicity</term>
<term>Toxicol</term>
<term>Toxicology</term>
<term>Toxicology studies</term>
<term>Urinary bladder</term>
<term>Utero</term>
<term>Utero effects</term>
<term>Utero exposure</term>
<term>Various stages</term>
<term>Vivo animal studies</term>
<term>Vivo testing</term>
<term>Young children</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">BACKGROUND: Toxicology studies utilizing animals and in vitro cellular or tissue preparations have been used to study the toxic effects and mechanism of action of drugs and chemicals and to determine the effective and safe dose of drugs in humans and the risk of toxicity from chemical exposures. Testing in animals could be improved if animal dosing using the mg/kg basis was abandoned and drugs and chemicals were administered to compare the effects of pharmacokinetically and toxicokinetically equivalent serum levels in the animal model and human. Because alert physicians or epidemiology studies, not animal studies, have discovered most human teratogens and toxicities in children, animal studies play a minor role in discovering teratogens and agents that are deleterious to infants and children. In vitro studies play even a less important role, although they are helpful in describing the cellular or tissue effects of the drugs or chemicals and their mechanism of action. One cannot determine the magnitude of human risks from in vitro studies when they are the only source of toxicology data. METHODS: Toxicology studies on adult animals is carried out by pharmaceutical companies, chemical companies, the Food and Drug Administration (FDA), many laboratories at the National Institutes of Health, and scientific investigators in laboratories throughout the world. Although there is a vast amount of animal toxicology studies carried out on pregnant animals and adult animals, there is a paucity of animal studies utilizing newborn, infant, and juvenile animals. This deficiency is compounded by the fact that there are very few toxicology studies carried out in children. That is one reason why pregnant women and children are referred to as “therapeutic orphans.” RESULTS: When animal studies are carried out with newborn and developing animals, the results demonstrate that generalizations are less applicable and less predictable than the toxicology studies in pregnant animals. Although many studies show that infants and developing animals may have difficulty in metabolizing drugs and are more vulnerable to the toxic effects of environmental chemicals, there are exceptions that indicate that infants and developing animals may be less vulnerable and more resilient to some drugs and chemicals. In other words, the generalization indicating that developing animals are always more sensitive to environmental toxicants is not valid. For animal toxicology studies to be useful, animal studies have to utilize modern concepts of pharmacokinetics and toxicokinetics, as well as “mechanism of action” (MOA) studies to determine whether animal data can be utilized for determining human risk. One example is the inability to determine carcinogenic risks in humans for some drugs and chemicals that produce tumors in rodents, When the oncogenesis is the result of peroxisome proliferation, a reaction that is of diminished importance in humans. CONCLUSIONS: Scientists can utilize animal studies to study the toxicokinetic and toxicodynamic aspects of drugs and environmental toxicants. But they have to be carried out with the most modern techniques and interpreted with the highest level of scholarship and objectivity. Threshold exposures, no‐adverse‐effect level (NOAEL) exposures, and toxic effects can be determined in animals, but have to be interpreted with caution when applying them to the human. Adult problems in growth, endocrine dysfunction, neurobehavioral abnormalities, and oncogenesis may be related to exposures to drugs, chemicals, and physical agents during development and may be fruitful areas for investigation. Maximum permissible exposures have to be based on data, not on generalizations that are applied to all drugs and chemicals. Epidemiology studies are still the best methodology for determining the human risk and the effects of environmental toxicants. Carrying out these focused studies in developing humans will be difficult. Animal studies may be our only alternative for answering many questions with regard to specific postnatal developmental vulnerabilities. Birth Defects Res B 71:303–320, 2004. © 2004 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Delaware</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Delaware">
<name sortKey="Brent, Robert L" sort="Brent, Robert L" uniqKey="Brent R" first="Robert L." last="Brent">Robert L. Brent</name>
</region>
<name sortKey="Brent, Robert L" sort="Brent, Robert L" uniqKey="Brent R" first="Robert L." last="Brent">Robert L. Brent</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005616 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005616 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B36900E13FE371ED60F3688F8193D2EB79DBF635
   |texte=   Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021