Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces

Identifieur interne : 002941 ( Main/Exploration ); précédent : 002940; suivant : 002942

Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces

Auteurs : Lisa M. Casanova [États-Unis] ; Soyoung Jeon [États-Unis] ; William A. Rutala [États-Unis] ; David J. Weber [États-Unis] ; Mark D. Sobsey [États-Unis]

Source :

RBID : Pascal:10-0255730

Descripteurs français

English descriptors

Abstract

Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces</title>
<author>
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M." last="Casanova">Lisa M. Casanova</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Statistics and Operations Research, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A." last="Rutala">William A. Rutala</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Medicine, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J." last="Weber">David J. Weber</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Medicine, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D." last="Sobsey">Mark D. Sobsey</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0255730</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0255730 INIST</idno>
<idno type="RBID">Pascal:10-0255730</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000163</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000825</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000152</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000152</idno>
<idno type="wicri:doubleKey">0099-2240:2010:Casanova L:effects:of:air</idno>
<idno type="wicri:Area/Main/Merge">002984</idno>
<idno type="wicri:Area/Main/Curation">002941</idno>
<idno type="wicri:Area/Main/Exploration">002941</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces</title>
<author>
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M." last="Casanova">Lisa M. Casanova</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Statistics and Operations Research, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A." last="Rutala">William A. Rutala</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Medicine, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J." last="Weber">David J. Weber</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Medicine, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D." last="Sobsey">Mark D. Sobsey</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill</s1>
<s2>Chapel Hill, North Carolina</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied and environmental microbiology : (Print)</title>
<title level="j" type="abbreviated">Appl. environ. microbiol. : (Print)</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied and environmental microbiology : (Print)</title>
<title level="j" type="abbreviated">Appl. environ. microbiol. : (Print)</title>
<idno type="ISSN">0099-2240</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air</term>
<term>Coronavirus</term>
<term>Relative humidity</term>
<term>Survival</term>
<term>Temperature</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Air</term>
<term>Température</term>
<term>Humidité relative</term>
<term>Survie</term>
<term>Coronavirus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Casanova, Lisa M" sort="Casanova, Lisa M" uniqKey="Casanova L" first="Lisa M." last="Casanova">Lisa M. Casanova</name>
</region>
<name sortKey="Jeon, Soyoung" sort="Jeon, Soyoung" uniqKey="Jeon S" first="Soyoung" last="Jeon">Soyoung Jeon</name>
<name sortKey="Rutala, William A" sort="Rutala, William A" uniqKey="Rutala W" first="William A." last="Rutala">William A. Rutala</name>
<name sortKey="Sobsey, Mark D" sort="Sobsey, Mark D" uniqKey="Sobsey M" first="Mark D." last="Sobsey">Mark D. Sobsey</name>
<name sortKey="Weber, David J" sort="Weber, David J" uniqKey="Weber D" first="David J." last="Weber">David J. Weber</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002941 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002941 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:10-0255730
   |texte=   Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021