Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.

Identifieur interne : 000D82 ( Main/Exploration ); précédent : 000D81; suivant : 000D83

Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.

Auteurs : Kevin W. Graepel [États-Unis] ; Xiaotao Lu [États-Unis] ; James Brett Case [États-Unis] ; Nicole R. Sexton [États-Unis] ; Everett Clinton Smith [États-Unis] ; Mark R. Denison [États-Unis]

Source :

RBID : pubmed:29114026

Descripteurs français

English descriptors

Abstract

The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold-decreased fidelity, and increased susceptibility to nucleoside analogues. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with wild-type MHV (WT-MHV). Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication and increased competitive fitness without reversion at the ExoN(-) active site. Furthermore, MHV-ExoN(-) P250 was less susceptible than MHV-ExoN(-) P3 to multiple nucleoside analogues, suggesting that MHV-ExoN(-) was under selection for increased replication fidelity. We subsequently identified novel amino acid changes within the RNA-dependent RNA polymerase and nsp14 of MHV-ExoN(-) P250 that partially accounted for the reduced susceptibility to nucleoside analogues. Our results suggest that increased replication fidelity is selected in ExoN(-) CoVs and that there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and indicate that multiple replicase proteins could compensate for ExoN functions during replication.IMPORTANCE Uniquely among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] either are nonviable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we showed that ExoN(-) murine hepatitis virus can adapt during long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogues that is explained only partially by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogues is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.

DOI: 10.1128/mBio.01503-17
PubMed: 29114026


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.</title>
<author>
<name sortKey="Graepel, Kevin W" sort="Graepel, Kevin W" uniqKey="Graepel K" first="Kevin W" last="Graepel">Kevin W. Graepel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Case, James Brett" sort="Case, James Brett" uniqKey="Case J" first="James Brett" last="Case">James Brett Case</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R" last="Sexton">Nicole R. Sexton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA ecsmith@sewanee.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA ecsmith@sewanee.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29114026</idno>
<idno type="pmid">29114026</idno>
<idno type="doi">10.1128/mBio.01503-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000A65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A65</idno>
<idno type="wicri:Area/PubMed/Curation">000A65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A65</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A79</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A79</idno>
<idno type="wicri:Area/Ncbi/Merge">002E64</idno>
<idno type="wicri:Area/Ncbi/Curation">002E64</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002E64</idno>
<idno type="wicri:Area/Main/Merge">000D84</idno>
<idno type="wicri:Area/Main/Curation">000D82</idno>
<idno type="wicri:Area/Main/Exploration">000D82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.</title>
<author>
<name sortKey="Graepel, Kevin W" sort="Graepel, Kevin W" uniqKey="Graepel K" first="Kevin W" last="Graepel">Kevin W. Graepel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Case, James Brett" sort="Case, James Brett" uniqKey="Case J" first="James Brett" last="Case">James Brett Case</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R" last="Sexton">Nicole R. Sexton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA ecsmith@sewanee.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA ecsmith@sewanee.edu mark.denison@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Azacitidine (pharmacology)</term>
<term>Cell Line</term>
<term>Coronavirus (drug effects)</term>
<term>Coronavirus (enzymology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (pathogenicity)</term>
<term>Coronavirus Infections (virology)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Genetic Fitness</term>
<term>Genome, Viral</term>
<term>Genotype</term>
<term>Mice</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>RNA Replicase (genetics)</term>
<term>RNA Replicase (metabolism)</term>
<term>RNA, Viral (genetics)</term>
<term>Ribavirin (pharmacology)</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (génétique)</term>
<term>Animaux</term>
<term>Antiviraux (pharmacologie)</term>
<term>Aptitude génétique</term>
<term>Azacitidine (pharmacologie)</term>
<term>Coronavirus ()</term>
<term>Coronavirus (enzymologie)</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (pathogénicité)</term>
<term>Exoribonucleases (génétique)</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Génome viral</term>
<term>Génotype</term>
<term>Infections à coronavirus (virologie)</term>
<term>Lignée cellulaire</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>RNA replicase (génétique)</term>
<term>RNA replicase (métabolisme)</term>
<term>Ribavirine (pharmacologie)</term>
<term>Réplication virale (génétique)</term>
<term>Souris</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA Replicase</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA Replicase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Azacitidine</term>
<term>Ribavirin</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Coronavirus</term>
<term>Exoribonucleases</term>
<term>RNA replicase</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Exoribonucleases</term>
<term>RNA replicase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Azacitidine</term>
<term>Ribavirine</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Genetic Fitness</term>
<term>Genome, Viral</term>
<term>Genotype</term>
<term>Mice</term>
<term>Mutation</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Aptitude génétique</term>
<term>Coronavirus</term>
<term>Génome viral</term>
<term>Génotype</term>
<term>Lignée cellulaire</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold-decreased fidelity, and increased susceptibility to nucleoside analogues. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with wild-type MHV (WT-MHV). Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication and increased competitive fitness without reversion at the ExoN(-) active site. Furthermore, MHV-ExoN(-) P250 was less susceptible than MHV-ExoN(-) P3 to multiple nucleoside analogues, suggesting that MHV-ExoN(-) was under selection for increased replication fidelity. We subsequently identified novel amino acid changes within the RNA-dependent RNA polymerase and nsp14 of MHV-ExoN(-) P250 that partially accounted for the reduced susceptibility to nucleoside analogues. Our results suggest that increased replication fidelity is selected in ExoN(-) CoVs and that there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and indicate that multiple replicase proteins could compensate for ExoN functions during replication.
<b>IMPORTANCE</b>
Uniquely among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] either are nonviable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we showed that ExoN(-) murine hepatitis virus can adapt during long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogues that is explained only partially by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogues is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Graepel, Kevin W" sort="Graepel, Kevin W" uniqKey="Graepel K" first="Kevin W" last="Graepel">Kevin W. Graepel</name>
</region>
<name sortKey="Case, James Brett" sort="Case, James Brett" uniqKey="Case J" first="James Brett" last="Case">James Brett Case</name>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R" last="Sexton">Nicole R. Sexton</name>
<name sortKey="Smith, Everett Clinton" sort="Smith, Everett Clinton" uniqKey="Smith E" first="Everett Clinton" last="Smith">Everett Clinton Smith</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29114026
   |texte=   Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29114026" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021