Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sensitivity analysis of infectious disease models: methods, advances and their application

Identifieur interne : 001A16 ( Main/Curation ); précédent : 001A15; suivant : 001A17

Sensitivity analysis of infectious disease models: methods, advances and their application

Auteurs : Jianyong Wu [États-Unis] ; Radhika Dhingra [États-Unis] ; Manoj Gambhir [Royaume-Uni] ; Justin V. Remais [États-Unis]

Source :

RBID : ISTEX:03CD6E3087F62163FAA9FBF4A67A8901D755C741

Abstract

Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design.

Url:
DOI: 10.1098/rsif.2012.1018

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:03CD6E3087F62163FAA9FBF4A67A8901D755C741

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Sensitivity analysis of infectious disease models: methods, advances and their application</title>
<author>
<name sortKey="Wu, Jianyong" sort="Wu, Jianyong" uniqKey="Wu J" first="Jianyong" last="Wu">Jianyong Wu</name>
</author>
<author>
<name sortKey="Dhingra, Radhika" sort="Dhingra, Radhika" uniqKey="Dhingra R" first="Radhika" last="Dhingra">Radhika Dhingra</name>
</author>
<author>
<name sortKey="Gambhir, Manoj" sort="Gambhir, Manoj" uniqKey="Gambhir M" first="Manoj" last="Gambhir">Manoj Gambhir</name>
</author>
<author>
<name sortKey="Remais, Justin V" sort="Remais, Justin V" uniqKey="Remais J" first="Justin V." last="Remais">Justin V. Remais</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:03CD6E3087F62163FAA9FBF4A67A8901D755C741</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1098/rsif.2012.1018</idno>
<idno type="url">https://api.istex.fr/ark:/67375/V84-PCJ0MG5K-1/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F95</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F95</idno>
<idno type="wicri:Area/Istex/Curation">001F95</idno>
<idno type="wicri:Area/Istex/Checkpoint">000294</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000294</idno>
<idno type="wicri:doubleKey">1742-5689:2013:Wu J:sensitivity:analysis:of</idno>
<idno type="wicri:Area/Main/Merge">001A26</idno>
<idno type="wicri:Area/Main/Curation">001A16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Sensitivity analysis of infectious disease models: methods, advances and their application</title>
<author>
<name sortKey="Wu, Jianyong" sort="Wu, Jianyong" uniqKey="Wu J" first="Jianyong" last="Wu">Jianyong Wu</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Dhingra, Radhika" sort="Dhingra, Radhika" uniqKey="Dhingra R" first="Radhika" last="Dhingra">Radhika Dhingra</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gambhir, Manoj" sort="Gambhir, Manoj" uniqKey="Gambhir M" first="Manoj" last="Gambhir">Manoj Gambhir</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>MRC Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Remais, Justin V" sort="Remais, Justin V" uniqKey="Remais J" first="Justin V." last="Remais">Justin V. Remais</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Population Biology, Ecology and Evolution, Graduate Division of Biological and Biomedical Sciences, Emory University, 1510 Clifton Road, Atlanta, GA 30322</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of the Royal Society Interface</title>
<title level="j" type="abbrev">J. R. Soc. Interface</title>
<idno type="ISSN">1742-5689</idno>
<idno type="eISSN">1742-5662</idno>
<imprint>
<publisher>The Royal Society</publisher>
<date type="published">2013</date>
<biblScope unit="vol">10</biblScope>
<biblScope unit="issue">86</biblScope>
</imprint>
<idno type="ISSN">1742-5689</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1742-5689</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001A16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:03CD6E3087F62163FAA9FBF4A67A8901D755C741
   |texte=   Sensitivity analysis of infectious disease models: methods, advances and their application
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021