Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols

Identifieur interne : 001018 ( Istex/Curation ); précédent : 001017; suivant : 001019

Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols

Auteurs : Robert M. Eninger [États-Unis] ; Atin Adhikari [États-Unis] ; Tiina Reponen [États-Unis] ; Sergey A. Grinshpun [États-Unis]

Source :

RBID : ISTEX:5683E348A6ACEDC012AD2A71BCB370B9F15346FF

English descriptors

Abstract

The feasibility of a novel testing protocol that allows differentiating between the physical (total) and viable bioaerosol penetrations through respirator filters was investigated. Three respirator models – two conventional N95 filtering‐facepiece respirators (FFR) used as controls and one P95 iodinated polymer FFR with antimicrobial properties – were challenged with aerosolized MS2 bacteriophage virus. Physical (Pphysical) and viable (Peviabl) filter penetrations were simultaneously measured with the FFR sealed on a manikin at a constant inhalation flow rate of 85 L/min. Separate testing was performed on specially‐manufactured P95 filter swatches with (i) no iodinated resin additive and (ii) “high” amount of the additive to determine whether it influenced filtration behavior of the P95 respirator. Bioaerosol collection on the N95 FFR filters fell in the range consistent with previous studies featuring about 2% penetration for MS2 and a peak around ∼︁5%. The P95 iodinated polymer respirator was found to be highly efficient, attributed in part to the iodinated resin powder which in separate swatch tests was found to increase the filter collection efficiency. No statistically significant differences were observed between penetration values obtained for total and culturable viruses for the two control respirators. Similarly, no difference was observed for the iodinated respirator, which suggested that the microbial inactivation effect was of insufficient magnitude to be detected or was not present for viral particles that penetrated the filter. Possible “long‐term” inactivation effect of the iodine‐based additive on the viable viruses, which were captured on the filter over time, was beyond the scope of this study. The novel testing protocol appears to be an adequate tool for evaluating respirators designed to protect against bioaerosol particles. Further improvement may be considered with respect to the aerosolization method for viable microorganisms.
Research Article: The feasibility of a novel testing protocol that allows differentiating between the physical (total) and viable bioaerosol penetrations through respirator filters was investigated. Three respirator models – two conventional N95 filtering‐facepiece respirators (FFR) used as controls and one P95 iodinated polymer FFR with antimicrobial properties – were challenged with aerosolized MS2 bacteriophage virus.

Url:
DOI: 10.1002/clen.200700198

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:5683E348A6ACEDC012AD2A71BCB370B9F15346FF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols</title>
<author>
<name sortKey="Eninger, Robert M" sort="Eninger, Robert M" uniqKey="Eninger R" first="Robert M." last="Eninger">Robert M. Eninger</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Adhikari, Atin" sort="Adhikari, Atin" uniqKey="Adhikari A" first="Atin" last="Adhikari">Atin Adhikari</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reponen, Tiina" sort="Reponen, Tiina" uniqKey="Reponen T" first="Tiina" last="Reponen">Tiina Reponen</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Grinshpun, Sergey A" sort="Grinshpun, Sergey A" uniqKey="Grinshpun S" first="Sergey A." last="Grinshpun">Sergey A. Grinshpun</name>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: sergey.grinshpun@uc.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5683E348A6ACEDC012AD2A71BCB370B9F15346FF</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/clen.200700198</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-SNZWCS09-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001018</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001018</idno>
<idno type="wicri:Area/Istex/Curation">001018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols</title>
<author>
<name sortKey="Eninger, Robert M" sort="Eninger, Robert M" uniqKey="Eninger R" first="Robert M." last="Eninger">Robert M. Eninger</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Adhikari, Atin" sort="Adhikari, Atin" uniqKey="Adhikari A" first="Atin" last="Adhikari">Atin Adhikari</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reponen, Tiina" sort="Reponen, Tiina" uniqKey="Reponen T" first="Tiina" last="Reponen">Tiina Reponen</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Grinshpun, Sergey A" sort="Grinshpun, Sergey A" uniqKey="Grinshpun S" first="Sergey A." last="Grinshpun">Sergey A. Grinshpun</name>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: sergey.grinshpun@uc.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">CLEAN – Soil, Air, Water</title>
<title level="j" type="sub">Bioaerosol Research</title>
<idno type="ISSN">1863-0650</idno>
<idno type="eISSN">1863-0669</idno>
<imprint>
<biblScope unit="vol">36</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="615">615</biblScope>
<biblScope unit="page" to="621">621</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2008-07">2008-07</date>
</imprint>
<idno type="ISSN">1863-0650</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1863-0650</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aerosol</term>
<term>Aerosolization</term>
<term>Aerosolization method</term>
<term>American conference</term>
<term>American society</term>
<term>Antimicrobial</term>
<term>Antimicrobial capability</term>
<term>Antimicrobial effect</term>
<term>Antimicrobial properties</term>
<term>Avian influenza</term>
<term>Bacterial aerosols</term>
<term>Bacteriophage</term>
<term>Bacteriophage virions</term>
<term>Bioaerosol</term>
<term>Bioaerosol challenges</term>
<term>Bioaerosol concentration</term>
<term>Bioaerosol particles</term>
<term>Bioaerosols</term>
<term>Challenge aerosol</term>
<term>Challenge aerosols</term>
<term>Chemical substances</term>
<term>Collection efficiency</term>
<term>Collison</term>
<term>Collison nebulizer</term>
<term>Control respirators</term>
<term>Culturable viruses</term>
<term>Dhhs</term>
<term>Disease control</term>
<term>Drug administration</term>
<term>Electrical mobility diameter</term>
<term>Electrospray ionization</term>
<term>Environmental health</term>
<term>Exposure limits</term>
<term>Filter</term>
<term>Filter efficiency</term>
<term>Filter layers</term>
<term>Filter material</term>
<term>Filter materials</term>
<term>Filter media</term>
<term>Filter medium</term>
<term>Filter samples</term>
<term>Filter swatch</term>
<term>Filter swatches</term>
<term>Filter testing</term>
<term>Filtration</term>
<term>Filtration efficiency</term>
<term>Final rules</term>
<term>Flow rate</term>
<term>Gelatin filters</term>
<term>Gmbh</term>
<term>Gphysical</term>
<term>Grinshpun</term>
<term>Gviable</term>
<term>Health administration</term>
<term>Health effects</term>
<term>Human services</term>
<term>Inert particles</term>
<term>Infectious aerosols</term>
<term>Insufficient magnitude</term>
<term>Iodine release</term>
<term>Kgaa</term>
<term>Microbial inactivation effect</term>
<term>Microorganism</term>
<term>Nacl aerosol</term>
<term>National institute</term>
<term>Nebulizer</term>
<term>Niehs wetp</term>
<term>Novel testing protocol</term>
<term>Occup</term>
<term>Occupational safety</term>
<term>Particle penetration</term>
<term>Particle size</term>
<term>Particle size range</term>
<term>Particle sizes</term>
<term>Performance evaluation</term>
<term>Physical penetration</term>
<term>Physical penetrations</term>
<term>Physical properties</term>
<term>Plaque assay</term>
<term>Polymer</term>
<term>Polymer respirator</term>
<term>Polynomial regressions</term>
<term>Pphysical</term>
<term>Previous studies</term>
<term>Protocol</term>
<term>Pviable</term>
<term>Resin powder</term>
<term>Respirator</term>
<term>Respirator filter</term>
<term>Respirator filters</term>
<term>Respirator models</term>
<term>Respirator selection</term>
<term>Respirator test</term>
<term>Respiratory protection</term>
<term>Respiratory protection devices</term>
<term>Same time</term>
<term>Significant difference</term>
<term>Significant differences</term>
<term>Single virions</term>
<term>Sodium chloride</term>
<term>Standard deviation</term>
<term>Standard test method</term>
<term>Surgical</term>
<term>Surgical mask</term>
<term>Surgical mask filters</term>
<term>Surgical masks</term>
<term>Swatch</term>
<term>Swatch tests</term>
<term>Technol</term>
<term>Test method</term>
<term>Ultrafine particles</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Viable</term>
<term>Viable efficiencies</term>
<term>Viable filtration</term>
<term>Viable filtration efficiency</term>
<term>Viable microorganisms</term>
<term>Viable penetration</term>
<term>Viable viruses</term>
<term>Viral</term>
<term>Viral particles</term>
<term>Virion</term>
<term>Weinheim</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The feasibility of a novel testing protocol that allows differentiating between the physical (total) and viable bioaerosol penetrations through respirator filters was investigated. Three respirator models – two conventional N95 filtering‐facepiece respirators (FFR) used as controls and one P95 iodinated polymer FFR with antimicrobial properties – were challenged with aerosolized MS2 bacteriophage virus. Physical (Pphysical) and viable (Peviabl) filter penetrations were simultaneously measured with the FFR sealed on a manikin at a constant inhalation flow rate of 85 L/min. Separate testing was performed on specially‐manufactured P95 filter swatches with (i) no iodinated resin additive and (ii) “high” amount of the additive to determine whether it influenced filtration behavior of the P95 respirator. Bioaerosol collection on the N95 FFR filters fell in the range consistent with previous studies featuring about 2% penetration for MS2 and a peak around ∼︁5%. The P95 iodinated polymer respirator was found to be highly efficient, attributed in part to the iodinated resin powder which in separate swatch tests was found to increase the filter collection efficiency. No statistically significant differences were observed between penetration values obtained for total and culturable viruses for the two control respirators. Similarly, no difference was observed for the iodinated respirator, which suggested that the microbial inactivation effect was of insufficient magnitude to be detected or was not present for viral particles that penetrated the filter. Possible “long‐term” inactivation effect of the iodine‐based additive on the viable viruses, which were captured on the filter over time, was beyond the scope of this study. The novel testing protocol appears to be an adequate tool for evaluating respirators designed to protect against bioaerosol particles. Further improvement may be considered with respect to the aerosolization method for viable microorganisms.</div>
<div type="abstract" xml:lang="en">Research Article: The feasibility of a novel testing protocol that allows differentiating between the physical (total) and viable bioaerosol penetrations through respirator filters was investigated. Three respirator models – two conventional N95 filtering‐facepiece respirators (FFR) used as controls and one P95 iodinated polymer FFR with antimicrobial properties – were challenged with aerosolized MS2 bacteriophage virus.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 001018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:5683E348A6ACEDC012AD2A71BCB370B9F15346FF
   |texte=   Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021