Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoparticle detection of respiratory infection

Identifieur interne : 000292 ( Istex/Curation ); précédent : 000291; suivant : 000293

Nanoparticle detection of respiratory infection

Auteurs : Kristin C. Halfpenny [États-Unis] ; David W. Wright [États-Unis]

Source :

RBID : ISTEX:6BEE1F2416E2D87C8CBC1CBF0C484D97FC270C79

English descriptors

Abstract

Respiratory viruses are a constant concern for all demographics. Examples include established viruses such as respiratory syncytial virus (RSV), the leading cause of respiratory infection in infants and young children, and emerging viruses such as severe acute respiratory syndrome (SARS), which reached near pandemic levels in 2003, or H1N1 (swine) influenza. Despite this prevalence, traditional methods of virus detection are typically labor intensive and require several days to successfully confirm infection. Recently, however, nanoparticle‐based detection strategies have been employed in an effort to develop detection assays that are both sensitive and expedient. Each of these platforms capitalizes on the unique properties of nanoparticles for the detection of respiratory viruses. In this article, several nanoparticle‐based scaffolds are discussed.Gold nanoparticles (AuNPs) have been functionalized with virus specific antibodies or oligonucleotides. In each of these constructs, AuNPs act as both an easily conjugated scaffolding system for biological molecules and a powerful fluorescence quencher. AuNPs have also been immobilized and used as electrochemical transducers. They efficiently serve as a conducting interface of electrocatalyic activity making them a powerful tool in this application. Quantum dots (QDs) posses unique fluorescence properties that have also been explored for their application to virus detection when combined with direct antibody conjugation or streptavidin‐biotin binding systems. QDs have an advantage over many traditional fluorophores because their fluorescence properties can be finely tuned and they are resistant to photobleaching. The development of these nanoparticle‐based detection strategies holds the potential to be a powerful method to quickly and easily confirm respiratory virus infection. WIREs Nanomed Nanobiotechnol 2010 2 277–290 For further resources related to this article, please visit the WIREs website

Url:
DOI: 10.1002/wnan.83

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:6BEE1F2416E2D87C8CBC1CBF0C484D97FC270C79

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanoparticle detection of respiratory infection</title>
<author>
<name sortKey="Halfpenny, Kristin C" sort="Halfpenny, Kristin C" uniqKey="Halfpenny K" first="Kristin C." last="Halfpenny">Kristin C. Halfpenny</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wright, David W" sort="Wright, David W" uniqKey="Wright D" first="David W." last="Wright">David W. Wright</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: David.wright@vanderbilt.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence address: Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Correspondence address: Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6BEE1F2416E2D87C8CBC1CBF0C484D97FC270C79</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/wnan.83</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-X4QGKFQ9-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000292</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000292</idno>
<idno type="wicri:Area/Istex/Curation">000292</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Nanoparticle detection of respiratory infection</title>
<author>
<name sortKey="Halfpenny, Kristin C" sort="Halfpenny, Kristin C" uniqKey="Halfpenny K" first="Kristin C." last="Halfpenny">Kristin C. Halfpenny</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wright, David W" sort="Wright, David W" uniqKey="Wright D" first="David W." last="Wright">David W. Wright</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: David.wright@vanderbilt.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence address: Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Correspondence address: Department of Chemistry, Vanderbilt University, Nashville, TN, 37235</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</title>
<title level="j" type="alt">WILEY INTERDISCIPLINARY REVIEWS: NANOMEDICINE AND NANOBIOTECHNOLOGY</title>
<idno type="ISSN">1939-5116</idno>
<idno type="eISSN">1939-0041</idno>
<imprint>
<biblScope unit="vol">2</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="290">290</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<date type="published" when="2010-05">2010-05</date>
</imprint>
<idno type="ISSN">1939-5116</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1939-5116</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptor</term>
<term>Acceptor molecule</term>
<term>Acceptor molecules</term>
<term>Anal bioanal chem</term>
<term>Anal chem</term>
<term>Antibody functionalized</term>
<term>Antibody functionalized aunps</term>
<term>Assay</term>
<term>Atherosclerotic lesions</term>
<term>Aunp</term>
<term>Aunp biosensor</term>
<term>Aunp surface</term>
<term>Aunps</term>
<term>Biological applications</term>
<term>Biological molecules</term>
<term>Biosensor</term>
<term>Bulk gold surface</term>
<term>Cdna</term>
<term>Chem</term>
<term>Classical methods</term>
<term>Clin microbiol</term>
<term>Conjugation</term>
<term>Days postinfection</term>
<term>Detection</term>
<term>Detection methods</term>
<term>Detection strategies</term>
<term>Direct conjugation</term>
<term>Drug delivery</term>
<term>Electrochemical</term>
<term>Electrochemical detection</term>
<term>Electrochemical transducers</term>
<term>Emission bands</term>
<term>Forster resonance energy transfer</term>
<term>Functionalized</term>
<term>Functionalized nanoparticles</term>
<term>Gene detection</term>
<term>Gold nanoparticles</term>
<term>Hairpin structure</term>
<term>High ratio</term>
<term>Infection</term>
<term>John wiley sons</term>
<term>Lung tissue</term>
<term>Magnetic nanoparticles</term>
<term>Metal surface</term>
<term>Metallic silver</term>
<term>Mismatch</term>
<term>Molecular beacons</term>
<term>Multiplex detection</term>
<term>Multiplexed detection</term>
<term>Multiplexing capabilities</term>
<term>Nano lett</term>
<term>Nanobiotechnology</term>
<term>Nanobiotechnology nanoparticle detection</term>
<term>Nanomedicine</term>
<term>Nanometer length scale</term>
<term>Nanoparticle</term>
<term>Nanoparticles</term>
<term>Nanoscale</term>
<term>Nanoscale materials</term>
<term>Nanowire</term>
<term>Nanowires</term>
<term>Noncomplementary target</term>
<term>Oligonucleotide sequence</term>
<term>Optical biosensor</term>
<term>Original sample</term>
<term>Plaque number</term>
<term>Porcine</term>
<term>Positive signal</term>
<term>Probe sequence</term>
<term>Product detection</term>
<term>Prrsv</term>
<term>Prrsv antibody</term>
<term>Quantum dots</term>
<term>Quenching</term>
<term>Respiratory infection</term>
<term>Respiratory infections</term>
<term>Respiratory syncytial virus</term>
<term>Respiratory syncytial virus infection</term>
<term>Respiratory syndrome</term>
<term>Respiratory syndrome virus</term>
<term>Respiratory viruses</term>
<term>Sars</term>
<term>Sars virus</term>
<term>Several days</term>
<term>Sharp emission spectra</term>
<term>Silver nanowires</term>
<term>Smnps</term>
<term>Streptavidin functionalized</term>
<term>Superparamagnetic nanoparticles</term>
<term>Syncytial</term>
<term>Syndrome</term>
<term>Target cdna</term>
<term>Target sars sequence</term>
<term>Target sequence</term>
<term>Target strand</term>
<term>Time points</term>
<term>Traditional methods</term>
<term>Uninfected control mice</term>
<term>Unique properties</term>
<term>Uorescence</term>
<term>Uorescence dyes</term>
<term>Uorescence intensity</term>
<term>Uorescence lifetime</term>
<term>Uorescence microscopy</term>
<term>Uorescence properties</term>
<term>Uorescence quencher</term>
<term>Uorescence quenching</term>
<term>Uorescence signal</term>
<term>Uorophore</term>
<term>Vero cells</term>
<term>Viral</term>
<term>Virus</term>
<term>Virus detection</term>
<term>West nile virus</term>
<term>Wires nanomedicine</term>
<term>Young children</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Respiratory viruses are a constant concern for all demographics. Examples include established viruses such as respiratory syncytial virus (RSV), the leading cause of respiratory infection in infants and young children, and emerging viruses such as severe acute respiratory syndrome (SARS), which reached near pandemic levels in 2003, or H1N1 (swine) influenza. Despite this prevalence, traditional methods of virus detection are typically labor intensive and require several days to successfully confirm infection. Recently, however, nanoparticle‐based detection strategies have been employed in an effort to develop detection assays that are both sensitive and expedient. Each of these platforms capitalizes on the unique properties of nanoparticles for the detection of respiratory viruses. In this article, several nanoparticle‐based scaffolds are discussed.Gold nanoparticles (AuNPs) have been functionalized with virus specific antibodies or oligonucleotides. In each of these constructs, AuNPs act as both an easily conjugated scaffolding system for biological molecules and a powerful fluorescence quencher. AuNPs have also been immobilized and used as electrochemical transducers. They efficiently serve as a conducting interface of electrocatalyic activity making them a powerful tool in this application. Quantum dots (QDs) posses unique fluorescence properties that have also been explored for their application to virus detection when combined with direct antibody conjugation or streptavidin‐biotin binding systems. QDs have an advantage over many traditional fluorophores because their fluorescence properties can be finely tuned and they are resistant to photobleaching. The development of these nanoparticle‐based detection strategies holds the potential to be a powerful method to quickly and easily confirm respiratory virus infection. WIREs Nanomed Nanobiotechnol 2010 2 277–290 For further resources related to this article, please visit the WIREs website</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000292 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 000292 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:6BEE1F2416E2D87C8CBC1CBF0C484D97FC270C79
   |texte=   Nanoparticle detection of respiratory infection
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021