Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Network‐based Analysis of the 1861 Hagelloch Measles Data

Identifieur interne : 001F08 ( Istex/Corpus ); précédent : 001F07; suivant : 001F09

A Network‐based Analysis of the 1861 Hagelloch Measles Data

Auteurs : Chris Groendyke ; David Welch ; David R. Hunter

Source :

RBID : ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067

English descriptors

Abstract

Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.

Url:
DOI: 10.1111/j.1541-0420.2012.01748.x

Links to Exploration step

ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<author>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: groendyke@rmu.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current address: Department of Computer Science, University of Auckland, Auckland 1142, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1541-0420.2012.01748.x</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F08</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<author>
<name sortKey="Groendyke, Chris" sort="Groendyke, Chris" uniqKey="Groendyke C" first="Chris" last="Groendyke">Chris Groendyke</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: groendyke@rmu.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Welch, David" sort="Welch, David" uniqKey="Welch D" first="David" last="Welch">David Welch</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Current address: Department of Computer Science, University of Auckland, Auckland 1142, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunter, David R" sort="Hunter, David R" uniqKey="Hunter D" first="David R." last="Hunter">David R. Hunter</name>
<affiliation>
<mods:affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biometrics</title>
<title level="j" type="alt">BIOMETRICS</title>
<idno type="ISSN">0006-341X</idno>
<idno type="eISSN">1541-0420</idno>
<imprint>
<biblScope unit="vol">68</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="755">755</biblScope>
<biblScope unit="page" to="765">765</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2012-09">2012-09</date>
</imprint>
<idno type="ISSN">0006-341X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-341X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Actual outbreak</term>
<term>Actual outbreak pattern</term>
<term>Algorithm</term>
<term>Bayesian</term>
<term>Bayesian inference</term>
<term>Biometrics</term>
<term>Britton</term>
<term>Candidate models</term>
<term>Contact network</term>
<term>Contact networks</term>
<term>Contact structure</term>
<term>Containment</term>
<term>Containment strategy</term>
<term>Covariates</term>
<term>Current address</term>
<term>Data sets</term>
<term>Degree distribution</term>
<term>Development core team</term>
<term>Disease data</term>
<term>Dyad</term>
<term>Dyadic</term>
<term>Dyadic covariates</term>
<term>Dyadic dependence model</term>
<term>Edge formation</term>
<term>Electronic version</term>
<term>Epidemic</term>
<term>Epidemic curves</term>
<term>Epidemic data</term>
<term>Epidemic model</term>
<term>Epidemic models</term>
<term>Epidemic parameters</term>
<term>Epidemiology</term>
<term>Ergm</term>
<term>Ergm network structure</term>
<term>Extra parameters</term>
<term>Further discussion</term>
<term>Gender homophily</term>
<term>Graph model</term>
<term>Groendyke</term>
<term>Hagelloch</term>
<term>Hagelloch data</term>
<term>Hagelloch measles data</term>
<term>Hagelloch measles epidemic</term>
<term>House distance</term>
<term>House distance parameter</term>
<term>Independence model</term>
<term>Infectious class</term>
<term>Infectious contact</term>
<term>Infectious contacts</term>
<term>Infectious group</term>
<term>Infectious individuals</term>
<term>Infectious period</term>
<term>Infectious periods</term>
<term>Infectious state</term>
<term>Keeling</term>
<term>Many cases</term>
<term>Mcmc</term>
<term>Mcmc algorithm</term>
<term>Meaningful statements</term>
<term>Measles</term>
<term>Measles data</term>
<term>Measles outbreak</term>
<term>Model selection</term>
<term>Network analysis</term>
<term>Network model</term>
<term>Network model parameters</term>
<term>Network models</term>
<term>Network parameters</term>
<term>Network structure</term>
<term>Node</term>
<term>Outbreak</term>
<term>Parameter</term>
<term>Parameter estimates</term>
<term>Parameter values</term>
<term>Pennsylvania state university</term>
<term>Population interactions</term>
<term>Posterior</term>
<term>Posterior density</term>
<term>Posterior distribution</term>
<term>Posterior distributions</term>
<term>Present analysis</term>
<term>Previous analyses</term>
<term>Previous works</term>
<term>Random graph model</term>
<term>Random graph models</term>
<term>Random graphs</term>
<term>Reproduction number</term>
<term>Reversible jump markov chain monte carlo</term>
<term>Right panel</term>
<term>Rjmcmc algorithm</term>
<term>Same household</term>
<term>Scandinavian journal</term>
<term>School class</term>
<term>Secondary infections</term>
<term>Seir</term>
<term>Seir epidemic model</term>
<term>Social network analysis</term>
<term>Social networks</term>
<term>Software</term>
<term>Software package</term>
<term>Spatial distance</term>
<term>Standard deviations</term>
<term>Statistical inference</term>
<term>Stochastic</term>
<term>Stochastic epidemics</term>
<term>Stochastic seir epidemic model</term>
<term>Susceptible individuals</term>
<term>Total time</term>
<term>Transmission process</term>
<term>Transmission rate</term>
<term>Transmission rates</term>
<term>Transmission tree</term>
<term>Ultimate size</term>
<term>University park</term>
<term>Unknown number</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>hagelloch</json:string>
<json:string>groendyke</json:string>
<json:string>britton</json:string>
<json:string>dyad</json:string>
<json:string>posterior distribution</json:string>
<json:string>mcmc</json:string>
<json:string>covariates</json:string>
<json:string>keeling</json:string>
<json:string>dyadic</json:string>
<json:string>hagelloch measles data</json:string>
<json:string>bayesian</json:string>
<json:string>contact network</json:string>
<json:string>outbreak</json:string>
<json:string>measles</json:string>
<json:string>mcmc algorithm</json:string>
<json:string>degree distribution</json:string>
<json:string>ergm</json:string>
<json:string>software</json:string>
<json:string>house distance</json:string>
<json:string>seir</json:string>
<json:string>epidemiology</json:string>
<json:string>node</json:string>
<json:string>biometrics</json:string>
<json:string>algorithm</json:string>
<json:string>transmission tree</json:string>
<json:string>infectious state</json:string>
<json:string>transmission rate</json:string>
<json:string>susceptible individuals</json:string>
<json:string>containment strategy</json:string>
<json:string>actual outbreak</json:string>
<json:string>parameter</json:string>
<json:string>network parameters</json:string>
<json:string>measles data</json:string>
<json:string>network model</json:string>
<json:string>network structure</json:string>
<json:string>parameter estimates</json:string>
<json:string>model selection</json:string>
<json:string>electronic version</json:string>
<json:string>measles outbreak</json:string>
<json:string>secondary infections</json:string>
<json:string>data sets</json:string>
<json:string>epidemic data</json:string>
<json:string>contact networks</json:string>
<json:string>epidemic parameters</json:string>
<json:string>infectious individuals</json:string>
<json:string>infectious period</json:string>
<json:string>network models</json:string>
<json:string>stochastic</json:string>
<json:string>containment</json:string>
<json:string>epidemic</json:string>
<json:string>posterior distributions</json:string>
<json:string>network analysis</json:string>
<json:string>parameter values</json:string>
<json:string>house distance parameter</json:string>
<json:string>candidate models</json:string>
<json:string>further discussion</json:string>
<json:string>software package</json:string>
<json:string>scandinavian journal</json:string>
<json:string>total time</json:string>
<json:string>epidemic models</json:string>
<json:string>statistical inference</json:string>
<json:string>meaningful statements</json:string>
<json:string>same household</json:string>
<json:string>reproduction number</json:string>
<json:string>contact structure</json:string>
<json:string>posterior</json:string>
<json:string>seir epidemic model</json:string>
<json:string>graph model</json:string>
<json:string>previous works</json:string>
<json:string>school class</json:string>
<json:string>standard deviations</json:string>
<json:string>transmission process</json:string>
<json:string>infectious periods</json:string>
<json:string>infectious contacts</json:string>
<json:string>ergm network structure</json:string>
<json:string>development core team</json:string>
<json:string>hagelloch data</json:string>
<json:string>reversible jump markov chain monte carlo</json:string>
<json:string>many cases</json:string>
<json:string>infectious contact</json:string>
<json:string>transmission rates</json:string>
<json:string>stochastic seir epidemic model</json:string>
<json:string>random graph model</json:string>
<json:string>current address</json:string>
<json:string>random graphs</json:string>
<json:string>rjmcmc algorithm</json:string>
<json:string>pennsylvania state university</json:string>
<json:string>dyadic covariates</json:string>
<json:string>gender homophily</json:string>
<json:string>population interactions</json:string>
<json:string>epidemic model</json:string>
<json:string>posterior density</json:string>
<json:string>network model parameters</json:string>
<json:string>previous analyses</json:string>
<json:string>edge formation</json:string>
<json:string>random graph models</json:string>
<json:string>hagelloch measles epidemic</json:string>
<json:string>social network analysis</json:string>
<json:string>infectious class</json:string>
<json:string>actual outbreak pattern</json:string>
<json:string>disease data</json:string>
<json:string>extra parameters</json:string>
<json:string>right panel</json:string>
<json:string>infectious group</json:string>
<json:string>ultimate size</json:string>
<json:string>present analysis</json:string>
<json:string>dyadic dependence model</json:string>
<json:string>independence model</json:string>
<json:string>epidemic curves</json:string>
<json:string>unknown number</json:string>
<json:string>university park</json:string>
<json:string>bayesian inference</json:string>
<json:string>stochastic epidemics</json:string>
<json:string>social networks</json:string>
<json:string>spatial distance</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Chris Groendyke</name>
<affiliations>
<json:string>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</json:string>
<json:string>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108, U.S.A.</json:string>
<json:string>E-mail: groendyke@rmu.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>David Welch</name>
<affiliations>
<json:string>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</json:string>
<json:string>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</json:string>
<json:string>Current address: Department of Computer Science, University of Auckland, Auckland 1142, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>David R. Hunter</name>
<affiliations>
<json:string>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</json:string>
<json:string>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Exponential family Random Graph Model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hagelloch</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Measles</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Networks</value>
</json:item>
</subject>
<articleId>
<json:string>BIOM1748</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-HMMJ4TRJ-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.</abstract>
<qualityIndicators>
<score>9.748</score>
<pdfWordCount>8280</pdfWordCount>
<pdfCharCount>47696</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>753</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>229</abstractWordCount>
<abstractCharCount>1599</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<pmid>
<json:string>22364540</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Biometrics</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1541-0420</json:string>
</doi>
<issn>
<json:string>0006-341X</json:string>
</issn>
<eissn>
<json:string>1541-0420</json:string>
</eissn>
<publisherId>
<json:string>BIOM</json:string>
</publisherId>
<volume>68</volume>
<issue>3</issue>
<pages>
<first>755</first>
<last>765</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
<json:string>1861</json:string>
</date>
<geogName>
<json:string>Hastings</json:string>
</geogName>
<orgName>
<json:string>R Development Core Team</json:string>
<json:string>Department of Computer Science, University of Auckland, Auckland</json:string>
<json:string>Pennsylvania State University</json:string>
<json:string>The International</json:string>
<json:string>Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>David Welch</json:string>
<json:string>David R. Hunter</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Ball et al., 1997</json:string>
<json:string>Welch et al. (2011)</json:string>
<json:string>Neal and Roberts (2004)</json:string>
<json:string>Ray and Marzouk, 2008</json:string>
<json:string>Gough, 1977</json:string>
<json:string>Keeling et al., 2002</json:string>
<json:string>R Development Core Team, 2009</json:string>
<json:string>Britton and O’Neill, 2002</json:string>
<json:string>Neal and Roberts (2005)</json:string>
<json:string>Wasserman and Faust, 1994</json:string>
<json:string>Wallinga and Teunis, 2004</json:string>
<json:string>Meyers et al., 2005</json:string>
<json:string>Anderson and May, 1991</json:string>
<json:string>Atkinson et al., 2011</json:string>
<json:string>Wasserman and Pattison, 1996</json:string>
<json:string>Richardson and Green, 1997</json:string>
<json:string>Pfeilsticker, 1863</json:string>
<json:string>Britton et al. (2011)</json:string>
<json:string>Groendyke et al. (2011)</json:string>
<json:string>Keeling and Rohani, 2008</json:string>
<json:string>Becker and Utev, 1998</json:string>
<json:string>Hall and Becker, 2009</json:string>
<json:string>Cauchemez et al. (2011)</json:string>
<json:string>Erd˝s o e o and R´nyi, 1959</json:string>
<json:string>Lawson and Leimich (2000)</json:string>
<json:string>Gilbert, 1959</json:string>
<json:string>Eames, Tilston, and Edmunds, 2011</json:string>
<json:string>Ray and Marzouk (2008)</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-HMMJ4TRJ-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - statistics & probability</json:string>
<json:string>2 - mathematical & computational biology</json:string>
<json:string>2 - biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - mathematics & statistics</json:string>
<json:string>3 - statistics & probability</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Applied Mathematics</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - General Agricultural and Biological Sciences</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - General Immunology and Microbiology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - General Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Mathematics</json:string>
<json:string>3 - Statistics and Probability</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1541-0420.2012.01748.x</json:string>
</doi>
<id>AEC1DFA12D1667596C975113B9B8F2D1BDAED067</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<availability>
<licence>© 2012, The International Biometric Society</licence>
</availability>
<date type="published" when="2012-09"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Chris</forename>
<surname>Groendyke</surname>
</persName>
<affiliation>
<orgName type="division">Department of Statistics</orgName>
<orgName type="institution">Pennsylvania State University</orgName>
<orgName type="institution">University Park</orgName>
<address>
<addrLine>Pennsylvania 16802</addrLine>
<addrLine>U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="division">Current address: Department of Mathematics</orgName>
<orgName type="institution">Robert Morris University</orgName>
<address>
<addrLine>Moon Township</addrLine>
<addrLine>Pennsylvania 15108, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">David</forename>
<surname>Welch</surname>
</persName>
<affiliation>
<orgName type="division">Department of Statistics</orgName>
<orgName type="institution">Pennsylvania State University</orgName>
<orgName type="institution">University Park</orgName>
<address>
<addrLine>Pennsylvania 16802</addrLine>
<addrLine>U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Center for Infectious Disease Dynamics</orgName>
<orgName type="institution">Pennsylvania State University</orgName>
<orgName type="institution">University Park</orgName>
<address>
<addrLine>Pennsylvania 16802</addrLine>
<addrLine>U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="division">Current address: Department of Computer Science</orgName>
<orgName type="institution">University of Auckland</orgName>
<address>
<addrLine>Auckland 1142</addrLine>
<addrLine>New Zealand</addrLine>
<country key="NZ" xml:lang="en">NEW ZEALAND</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">David R.</forename>
<surname>Hunter</surname>
</persName>
<affiliation>
<orgName type="division">Department of Statistics</orgName>
<orgName type="institution">Pennsylvania State University</orgName>
<orgName type="institution">University Park</orgName>
<address>
<addrLine>Pennsylvania 16802</addrLine>
<addrLine>U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Center for Infectious Disease Dynamics</orgName>
<orgName type="institution">Pennsylvania State University</orgName>
<orgName type="institution">University Park</orgName>
<address>
<addrLine>Pennsylvania 16802</addrLine>
<addrLine>U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<idno type="istex">AEC1DFA12D1667596C975113B9B8F2D1BDAED067</idno>
<idno type="ark">ark:/67375/WNG-HMMJ4TRJ-5</idno>
<idno type="DOI">10.1111/j.1541-0420.2012.01748.x</idno>
<idno type="unit">BIOM1748</idno>
<idno type="toTypesetVersion">file:BIOM.BIOM1748.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Biometrics</title>
<title level="j" type="alt">BIOMETRICS</title>
<idno type="pISSN">0006-341X</idno>
<idno type="eISSN">1541-0420</idno>
<idno type="book-DOI">10.1111/(ISSN)1541-0420</idno>
<idno type="book-part-DOI">10.1111/biom.2012.68.issue-3</idno>
<idno type="product">BIOM</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">68</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="755">755</biblScope>
<biblScope unit="page" to="765">765</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2012-09"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>
<hi rend="bold">
<hi rend="smallCaps">Summary</hi>
</hi>
In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number,
<hi rend="italic">R</hi>
. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in
<hi rend="bold">R</hi>
, that performs this type of analysis.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">Exponential family Random Graph Model</term>
<term xml:id="k2">Hagelloch</term>
<term xml:id="k3">Measles</term>
<term xml:id="k4">Networks</term>
</keywords>
<keywords rend="tocHeading1">
<term>BIOMETRIC METHODOLOGY</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Inc</publisherName>
<publisherLoc>Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1541-0420</doi>
<issn type="print">0006-341X</issn>
<issn type="electronic">1541-0420</issn>
<idGroup>
<id type="product" value="BIOM"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="BIOMETRICS">Biometrics</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="09103">
<doi origin="wiley">10.1111/biom.2012.68.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="68">68</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2012-09">September 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="14" status="forIssue">
<doi origin="wiley">10.1111/j.1541-0420.2012.01748.x</doi>
<idGroup>
<id type="unit" value="BIOM1748"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">BIOMETRIC METHODOLOGY</title>
</titleGroup>
<copyright>© 2012, The International Biometric Society</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.9 mode:FullText" date="2012-11-16"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-02-24"></event>
<event type="publishedOnlineFinalForm" date="2012-09-26"></event>
<event type="firstOnline" date="2012-02-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-07"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="755">755</numbering>
<numbering type="pageLast" number="765">765</numbering>
</numberingGroup>
<correspondenceTo>
<i>email:</i>
<email>groendyke@rmu.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:BIOM.BIOM1748.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received October 2011. Revised December 2011. Accepted January 2012.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="74"></count>
<count type="referenceTotal" number="35"></count>
<count type="linksCrossRef" number="110"></count>
</countGroup>
<titleGroup>
<title type="main">A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2" corresponding="yes">
<personName>
<givenNames>Chris</givenNames>
<familyName>Groendyke</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1 #a3 #a4">
<personName>
<givenNames>David</givenNames>
<familyName>Welch</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1 #a3">
<personName>
<givenNames>David R.</givenNames>
<familyName>Hunter</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108, U.S.A.</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="NZ">
<unparsedAffiliation>Current address: Department of Computer Science, University of Auckland, Auckland 1142, New Zealand</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Exponential family Random Graph Model</keyword>
<keyword xml:id="k2">Hagelloch</keyword>
<keyword xml:id="k3">Measles</keyword>
<keyword xml:id="k4">Networks</keyword>
</keywordGroup>
<supportingInformation>
<p>Web Figures referenced in Sections 1.1, 3.4, 3.5, and 3.6 are available with this article at the
<i>Biometrics</i>
website on Wiley Online Library.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:0006341X:media:biom1748:BIOM_1748_sm_SuppMat"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>
<sc>Summary</sc>
</b>
In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number,
<i>R</i>
. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in
<b>R</b>
, that performs this type of analysis.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A Network‐based Analysis of the 1861 Hagelloch Measles Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Groendyke</namePart>
<affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</affiliation>
<affiliation>Current address: Department of Mathematics, Robert Morris University, Moon Township, Pennsylvania 15108, U.S.A.</affiliation>
<affiliation>E-mail: groendyke@rmu.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Welch</namePart>
<affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</affiliation>
<affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</affiliation>
<affiliation>Current address: Department of Computer Science, University of Auckland, Auckland 1142, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David R.</namePart>
<namePart type="family">Hunter</namePart>
<affiliation>Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</affiliation>
<affiliation>Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Inc</publisher>
<place>
<placeTerm type="text">Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-09</dateIssued>
<edition>Received October 2011. Revised December 2011. Accepted January 2012.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">0</extent>
<extent unit="formulas">74</extent>
<extent unit="references">35</extent>
<extent unit="linksCrossRef">110</extent>
</physicalDescription>
<abstract lang="en">Summary In this article, we demonstrate a statistical method for fitting the parameters of a sophisticated network and epidemic model to disease data. The pattern of contacts between hosts is described by a class of dyadic independence exponential‐family random graph models (ERGMs), whereas the transmission process that runs over the network is modeled as a stochastic susceptible‐exposed‐infectious‐removed (SEIR) epidemic. We fit these models to very detailed data from the 1861 measles outbreak in Hagelloch, Germany. The network models include parameters for all recorded host covariates including age, sex, household, and classroom membership and household location whereas the SEIR epidemic model has exponentially distributed transmission times with gamma‐distributed latent and infective periods. This approach allows us to make meaningful statements about the structure of the population—separate from the transmission process—as well as to provide estimates of various biological quantities of interest, such as the effective reproductive number, R. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint posterior distribution of all the parameters of this model—the network, transmission tree, network parameters, and SEIR parameters—and perform Bayesian model selection to find the best‐fitting network model. We compare our results with those of previous analyses and show that the ERGM network model better fits the data than a Bernoulli network model previously used. We also provide a software package, written in R, that performs this type of analysis.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Exponential family Random Graph Model</topic>
<topic>Hagelloch</topic>
<topic>Measles</topic>
<topic>Networks</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biometrics</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Web Figures referenced in Sections 1.1, 3.4, 3.5, and 3.6 are available with this article at the Biometrics website on Wiley Online Library.Supporting Info Item: Supporting info item - </note>
<identifier type="ISSN">0006-341X</identifier>
<identifier type="eISSN">1541-0420</identifier>
<identifier type="DOI">10.1111/(ISSN)1541-0420</identifier>
<identifier type="PublisherID">BIOM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>68</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>755</start>
<end>765</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit1">
<titleInfo>
<title>Anderson, R. and May, R. (1991). Infectious Diseases of Humans . Oxford : Oxford University Press.</title>
</titleInfo>
<note type="citation/reference">Anderson, R. and May, R. (1991). Infectious Diseases of Humans . Oxford : Oxford University Press.</note>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
</originInfo>
<part>
<date>1991</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit2">
<titleInfo>
<title>Limit theorems for a random graph epidemic model</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Andersson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Andersson, H. (1998). Limit theorems for a random graph epidemic model. Annals of Applied Probability 8 , 1331–1349.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1331</start>
<end>1349</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Annals of Applied Probability</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1331</start>
<end>1349</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit3">
<titleInfo>
<title>Epidemiology and Prevention of Vaccine-Preventable Diseases</title>
</titleInfo>
<genre>journal-article</genre>
<note type="citation/reference">Atkinson, W., Wolfe, S., and Hamborsky, J. (2011). Epidemiology and Prevention of Vaccine-Preventable Diseases , 12th edition. Washington DC: Centers for Disease Control and Prevention.</note>
<name type="personal">
<namePart type="given">W.</namePart>
<namePart type="family">Atkinson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Wolfe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Hamborsky</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>2011</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit4">
<titleInfo>
<title>Epidemics with two levels of mixing</title>
</titleInfo>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Ball</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Mollison</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Scalia‐Tomba</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Ball, F., Mollison, D., and Scalia‐Tomba, G. (1997). Epidemics with two levels of mixing. The Annals of Applied Probability 7 , 46–89.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>46</start>
<end>89</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>The Annals of Applied Probability</title>
</titleInfo>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>46</start>
<end>89</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit5">
<titleInfo>
<title>The effect of community structure on the immunity coverage required to prevent epidemics</title>
</titleInfo>
<name type="personal">
<namePart type="given">N.</namePart>
<namePart type="family">Becker</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Utev</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Becker, N. and Utev, S. (1998). The effect of community structure on the immunity coverage required to prevent epidemics. Mathematical Biosciences 147 , 23–39.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>147</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>39</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mathematical Biosciences</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>147</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>39</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit6">
<titleInfo>
<title>Inference for epidemics with three levels of mixing: Methodology and application to a measles outbreak</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Britton</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Kypraios</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">O’Neill</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Britton, T., Kypraios, T., and O’Neill, P. (2011). Inference for epidemics with three levels of mixing: Methodology and application to a measles outbreak. Scandinavian Journal of Statistics 38 , 578–599.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>578</start>
<end>599</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Scandinavian Journal of Statistics</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>578</start>
<end>599</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit7">
<titleInfo>
<title>Bayesian inference for stochastic epidemics in populations with random social structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Britton</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">O’Neill</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Britton, T. and O’Neill, P. (2002). Bayesian inference for stochastic epidemics in populations with random social structure. Scandinavian Journal of Statistics 29 , 375–390.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>375</start>
<end>390</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Scandinavian Journal of Statistics</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>375</start>
<end>390</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit8">
<titleInfo>
<title>Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Cauchemez</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Bhattarai</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. L.</namePart>
<namePart type="family">Marchbanks</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. P.</namePart>
<namePart type="family">Fagan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Ostroff</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. M.</namePart>
<namePart type="family">Ferguson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Swerdlow</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Cauchemez, S., Bhattarai, A., Marchbanks, T. L., Fagan, R. P., Ostroff, S., Ferguson, N. M., Swerdlow, D., and the Pennsylvania H1N1 working group, (2011). Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences 108 , 2825–2830.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>108</number>
</detail>
<extent unit="pages">
<start>2825</start>
<end>2830</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the National Academy of Sciences</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>108</number>
</detail>
<extent unit="pages">
<start>2825</start>
<end>2830</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit9">
<titleInfo>
<title>The impact of school holidays on the social mixing patterns of school children</title>
</titleInfo>
<name type="personal">
<namePart type="given">K. T.</namePart>
<namePart type="family">Eames</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. L.</namePart>
<namePart type="family">Tilston</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W. J.</namePart>
<namePart type="family">Edmunds</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Eames, K. T., Tilston, N. L., and Edmunds, W. J. (2011). The impact of school holidays on the social mixing patterns of school children. Epidemics 3 , 103–108.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>103</start>
<end>108</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Epidemics</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>103</start>
<end>108</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit10">
<titleInfo>
<title>On random graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Erdős</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Rényi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathematicae 6 , 290–297.</note>
<part>
<date>1959</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>290</start>
<end>297</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Publicationes Mathematicae</title>
</titleInfo>
<part>
<date>1959</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>290</start>
<end>297</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit11">
<titleInfo>
<title>Random graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Gilbert</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Gilbert, E. (1959). Random graphs. The Annals of Mathematical Statistics 30 , 1141–1144.</note>
<part>
<date>1959</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>1141</start>
<end>1144</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>The Annals of Mathematical Statistics</title>
</titleInfo>
<part>
<date>1959</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>1141</start>
<end>1144</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit12">
<titleInfo>
<title>The estimation of latent and infectious periods</title>
</titleInfo>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Gough</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Gough, K. (1977). The estimation of latent and infectious periods. Biometrika 64 , 559–565.</note>
<part>
<date>1977</date>
<detail type="volume">
<caption>vol.</caption>
<number>64</number>
</detail>
<extent unit="pages">
<start>559</start>
<end>565</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biometrika</title>
</titleInfo>
<part>
<date>1977</date>
<detail type="volume">
<caption>vol.</caption>
<number>64</number>
</detail>
<extent unit="pages">
<start>559</start>
<end>565</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit13">
<titleInfo>
<title>Reversible jump Markov chain Monte Carlo computation and Bayesian model determination</title>
</titleInfo>
<name type="personal">
<namePart type="given">P. J.</namePart>
<namePart type="family">Green</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 , 711–732.</note>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>82</number>
</detail>
<extent unit="pages">
<start>711</start>
<end>732</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biometrika</title>
</titleInfo>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>82</number>
</detail>
<extent unit="pages">
<start>711</start>
<end>732</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit14">
<titleInfo>
<title>Bayesian inference for contact networks given epidemic data</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Groendyke</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Welch</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. R.</namePart>
<namePart type="family">Hunter</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Groendyke, C., Welch, D., and Hunter, D. R. (2011). Bayesian inference for contact networks given epidemic data. Scandinavian Journal of Statistics 38 , 600–616.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>600</start>
<end>616</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Scandinavian Journal of Statistics</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>600</start>
<end>616</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit15">
<titleInfo>
<title>Preventing epidemics in a community of households</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Hall</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N.</namePart>
<namePart type="family">Becker</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hall, R. and Becker, N. (2009). Preventing epidemics in a community of households. Epidemiology and Infection 117 , 443–455.</note>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>443</start>
<end>455</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Epidemiology and Infection</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>443</start>
<end>455</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit16">
<titleInfo>
<title>Networks and epidemic models</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Keeling</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Eames</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Keeling, M. and Eames, K. (2005). Networks and epidemic models. Journal of the Royal Society Interface 2 , 295–307.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>295</start>
<end>307</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Journal of the Royal Society Interface</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>295</start>
<end>307</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit17">
<titleInfo>
<title>Modeling infectious diseases in humans and animals</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Keeling</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Rohani</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Keeling, M. and Rohani, P. (2008). Modeling infectious diseases in humans and animals. Clinical Infectious Diseases 47 , 864–866.</note>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>864</start>
<end>866</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Clinical Infectious Diseases</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>864</start>
<end>866</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit18">
<titleInfo>
<title>Modelling vaccination strategies against foot‐and‐mouth disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Keeling</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Woolhouse</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Davies</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Grenfell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Keeling, M., Woolhouse, M., May, R., Davies, G., and Grenfell, B. (2002). Modelling vaccination strategies against foot‐and‐mouth disease. Nature 421 , 136–142.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>421</number>
</detail>
<extent unit="pages">
<start>136</start>
<end>142</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>421</number>
</detail>
<extent unit="pages">
<start>136</start>
<end>142</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit19">
<titleInfo>
<title>Contact intervals, survival analysis of epidemic data, and estimation of R0</title>
</titleInfo>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Kenah</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kenah, E. (2011). Contact intervals, survival analysis of epidemic data, and estimation of R0. Biostatistics 12 , 548–566.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>548</start>
<end>566</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biostatistics</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>548</start>
<end>566</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit20">
<titleInfo>
<title>Approaches to the space‐time modelling of infectious disease behaviour</title>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Lawson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Leimich</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Lawson, A. and Leimich, P. (2000). Approaches to the space‐time modelling of infectious disease behaviour. IMA Journal of Mathematics Applied in Medicine and Biology 17 , 1–13.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>13</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>IMA Journal of Mathematics Applied in Medicine and Biology</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>13</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit21">
<titleInfo>
<title>Contact network epidemiology: Bond percolation applied to infectious disease prediction and control</title>
</titleInfo>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Meyers</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Meyers, L. (2007). Contact network epidemiology: Bond percolation applied to infectious disease prediction and control. Bulletin of the American Mathematical Society 44 , 63–86.</note>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<extent unit="pages">
<start>63</start>
<end>86</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Bulletin of the American Mathematical Society</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<extent unit="pages">
<start>63</start>
<end>86</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit22">
<titleInfo>
<title>Network theory and SARS: Predicting outbreak diversity</title>
</titleInfo>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Meyers</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Pourbohloul</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Newman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Skowronski</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Brunham</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Meyers, L., Pourbohloul, B., Newman, M., Skowronski, D., and Brunham, R. (2005). Network theory and SARS: Predicting outbreak diversity. Journal of Theoretical Biology 232 , 71–81.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>232</number>
</detail>
<extent unit="pages">
<start>71</start>
<end>81</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Journal of Theoretical Biology</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>232</number>
</detail>
<extent unit="pages">
<start>71</start>
<end>81</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit23">
<titleInfo>
<title>Statistical inference and model selection for the 1861 Hagelloch measles epidemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Neal</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Neal, P. and Roberts, G. (2004). Statistical inference and model selection for the 1861 Hagelloch measles epidemic. Biostatistics 5 , 249–261.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>249</start>
<end>261</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biostatistics</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>249</start>
<end>261</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit24">
<titleInfo>
<title>A case study in non‐centering for data augmentation: Stochastic epidemics</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Neal</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Neal, P. and Roberts, G. (2005). A case study in non‐centering for data augmentation: Stochastic epidemics. Statistics and Computing 15 , 315–327.</note>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>315</start>
<end>327</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Statistics and Computing</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>315</start>
<end>327</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit25">
<titleInfo>
<title>Statistiche Reanalyse einer Masernepidemie 1861 in Hagelloch. M.D.Thesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Oesterle</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>other</genre>
<part>
<date>1992</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit26">
<titleInfo>
<title>Beiträge zur Pathologie der Masern mit besonderer Berücksichtigung der statistischen Verhältnisse. M.D. Thesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Pfeilsticker</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>other</genre>
<part>
<date>1863</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit27">
<titleInfo>
<title>R Development Core Team (2009). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna , Austria , ISBN 3‐900051‐07‐0.</title>
</titleInfo>
<name type="corporate">
<namePart>R Development Core Team</namePart>
</name>
<note type="citation/reference">R Development Core Team (2009). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna , Austria , ISBN 3‐900051‐07‐0.</note>
<genre>book</genre>
<originInfo>
<publisher>R Foundation for Statistical Computing</publisher>
</originInfo>
<part>
<date>2009</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit28">
<titleInfo>
<title>A Bayesian method for inferring transmission chains in a partially observed epidemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Ray</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y.</namePart>
<namePart type="family">Marzouk</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book-chapter</genre>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Statistical Meetings: Conference Held in Denver, Colorado, August 3‐7, 2008</title>
</titleInfo>
<originInfo>
<publisher>Denver, CO: American Statistical Association</publisher>
</originInfo>
<part>
<date>2008</date>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit29">
<titleInfo>
<title>Disease evolution on networks: the role of contact structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Read</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Keeling</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Read, J. and Keeling, M. (2003). Disease evolution on networks: the role of contact structure. Proceedings of the Royal Society of London. Series B: Biological Sciences 270 , 699–708.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>270</number>
</detail>
<extent unit="pages">
<start>699</start>
<end>708</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Royal Society of London. Series B: Biological Sciences</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>270</number>
</detail>
<extent unit="pages">
<start>699</start>
<end>708</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit30">
<titleInfo>
<title>On Bayesian analysis of mixtures with an unknown number of components</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Richardson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. J.</namePart>
<namePart type="family">Green</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society. Series B (Methodological) 59 , 731–792.</note>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>59</number>
</detail>
<extent unit="pages">
<start>731</start>
<end>792</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Journal of the Royal Statistical Society. Series B (Methodological)</title>
</titleInfo>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>59</number>
</detail>
<extent unit="pages">
<start>731</start>
<end>792</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit31">
<titleInfo>
<title>Perspective: Human contact patterns and the spread of airborne infectious diseases</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Wallinga</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W.</namePart>
<namePart type="family">Edmunds</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Kretzschmar</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Wallinga, J., Edmunds, W., and Kretzschmar, M. (1999). Perspective: Human contact patterns and the spread of airborne infectious diseases. TRENDS in Microbiology 7 , 372–377.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>372</start>
<end>377</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>TRENDS in Microbiology</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>372</start>
<end>377</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit32">
<titleInfo>
<title>Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Wallinga</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Teunis</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Wallinga, J. and Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American Journal of Epidemiology 160 , 509–516.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>160</number>
</detail>
<extent unit="pages">
<start>509</start>
<end>516</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>American Journal of Epidemiology</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>160</number>
</detail>
<extent unit="pages">
<start>509</start>
<end>516</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit33">
<titleInfo>
<title>Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications . New York, NY: Cambridge University Press.</title>
</titleInfo>
<note type="citation/reference">Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications . New York, NY: Cambridge University Press.</note>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Wasserman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Faust</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>book</genre>
<originInfo>
<publisher>New York, NY: Cambridge University Press</publisher>
</originInfo>
<part>
<date>1994</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit34">
<titleInfo>
<title>Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Wasserman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Pattison</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61 , 401–425.</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>61</number>
</detail>
<extent unit="pages">
<start>401</start>
<end>425</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Psychometrika</title>
</titleInfo>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>61</number>
</detail>
<extent unit="pages">
<start>401</start>
<end>425</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit35">
<titleInfo>
<title>Statistical inference to advance network models in epidemiology</title>
</titleInfo>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Welch</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. R.</namePart>
<namePart type="family">Hunter</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Welch, D., Bansal, S., and Hunter, D. R. (2011). Statistical inference to advance network models in epidemiology. Epidemics 3 , 38–45.</note>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>38</start>
<end>45</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Epidemics</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>38</start>
<end>45</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">AEC1DFA12D1667596C975113B9B8F2D1BDAED067</identifier>
<identifier type="ark">ark:/67375/WNG-HMMJ4TRJ-5</identifier>
<identifier type="DOI">10.1111/j.1541-0420.2012.01748.x</identifier>
<identifier type="ArticleID">BIOM1748</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012, The International Biometric Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-13</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-HMMJ4TRJ-5/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AEC1DFA12D1667596C975113B9B8F2D1BDAED067
   |texte=   A Network‐based Analysis of the 1861 Hagelloch Measles Data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021