Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Measures of the Effects of Vaccination in a Randomly Mixing Population

Identifieur interne : 001D52 ( Istex/Corpus ); précédent : 001D51; suivant : 001D53

Measures of the Effects of Vaccination in a Randomly Mixing Population

Auteurs : Michael Haber ; Ira M. Longini ; M Elizabeth Halloran

Source :

RBID : ISTEX:53A4B73E735D5F35D026C2269DA45ADF681FE9B1

Abstract

Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.1,2 In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith et al,3but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities. Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,4 and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.

Url:
DOI: 10.1093/ije/20.1.300

Links to Exploration step

ISTEX:53A4B73E735D5F35D026C2269DA45ADF681FE9B1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
<author>
<name sortKey="Haber, Michael" sort="Haber, Michael" uniqKey="Haber M" first="Michael" last="Haber">Michael Haber</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Longini, Ira M" sort="Longini, Ira M" uniqKey="Longini I" first="Ira M" last="Longini">Ira M. Longini</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halloran, M Elizabeth" sort="Halloran, M Elizabeth" uniqKey="Halloran M" first="M Elizabeth" last="Halloran">M Elizabeth Halloran</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:53A4B73E735D5F35D026C2269DA45ADF681FE9B1</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1093/ije/20.1.300</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D52</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
<author>
<name sortKey="Haber, Michael" sort="Haber, Michael" uniqKey="Haber M" first="Michael" last="Haber">Michael Haber</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Longini, Ira M" sort="Longini, Ira M" uniqKey="Longini I" first="Ira M" last="Longini">Ira M. Longini</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Halloran, M Elizabeth" sort="Halloran, M Elizabeth" uniqKey="Halloran M" first="M Elizabeth" last="Halloran">M Elizabeth Halloran</name>
<affiliation>
<mods:affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">International Journal of Epidemiology</title>
<idno type="eISSN">1464-3685</idno>
<idno type="ISSN">0300-5771</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">1991</date>
<biblScope unit="vol">20</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="300">300</biblScope>
<biblScope unit="page" to="310">310</biblScope>
</imprint>
<idno type="ISSN">0300-5771</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0300-5771</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.1,2 In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith et al,3but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities. Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,4 and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>vaccinated</json:string>
<json:string>vaccine</json:string>
<json:string>unvaccinated</json:string>
<json:string>attack rate</json:string>
<json:string>vaccine efficacy</json:string>
<json:string>programme</json:string>
<json:string>transmission rate</json:string>
<json:string>study population</json:string>
<json:string>vaccination</json:string>
<json:string>halloran</json:string>
<json:string>epidemiol</json:string>
<json:string>vaccination programme</json:string>
<json:string>control population</json:string>
<json:string>field efficacy</json:string>
<json:string>vaccinated people</json:string>
<json:string>longini</json:string>
<json:string>direct effectiveness</json:string>
<json:string>epidemiology</json:string>
<json:string>struchiner</json:string>
<json:string>indirect effect</json:string>
<json:string>infectious disease</json:string>
<json:string>threshold value</json:string>
<json:string>total effectiveness</json:string>
<json:string>international journal</json:string>
<json:string>fraction vaccinated</json:string>
<json:string>relative attack rate</json:string>
<json:string>average effectiveness</json:string>
<json:string>vaccine mechanism</json:string>
<json:string>infectious agent</json:string>
<json:string>math biosc</json:string>
<json:string>vaccination effectiveness</json:string>
<json:string>protective effect</json:string>
<json:string>vaccinated group</json:string>
<json:string>susceptible person</json:string>
<json:string>unvaccinated people</json:string>
<json:string>indirect effectiveness</json:string>
<json:string>basic reproduction number</json:string>
<json:string>infection rate</json:string>
<json:string>infectious period</json:string>
<json:string>vaccinated person</json:string>
<json:string>final attack rate</json:string>
<json:string>relative reduction</json:string>
<json:string>transmission parameter</json:string>
<json:string>datum</json:string>
<json:string>outbreak</json:string>
<json:string>efficacy</json:string>
<json:string>transmission probability</json:string>
<json:string>proportion vaccinated</json:string>
<json:string>vaccination status</json:string>
<json:string>effectiveness measure</json:string>
<json:string>population biology</json:string>
<json:string>vaccine action</json:string>
<json:string>differential equation</json:string>
<json:string>study design</json:string>
<json:string>short time unit</json:string>
<json:string>community transmission parameter</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>MICHAEL HABER</name>
<affiliations>
<json:string>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>IRA M LONGINI JR</name>
<affiliations>
<json:string>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>M ELIZABETH HALLORAN</name>
<affiliations>
<json:string>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>20.1.300</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-CG75R3CB-Q</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.1,2 In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith et al,3but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities. Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,4 and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.</abstract>
<qualityIndicators>
<score>8</score>
<pdfWordCount>6393</pdfWordCount>
<pdfCharCount>36707</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>528 x 701 pts</pdfPageSize>
<pdfWordsPerPage>581</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>false</refBibsNative>
<abstractWordCount>257</abstractWordCount>
<abstractCharCount>1667</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
<pmid>
<json:string>2066239</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>International Journal of Epidemiology</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0300-5771</json:string>
</issn>
<eissn>
<json:string>1464-3685</json:string>
</eissn>
<publisherId>
<json:string>ije</json:string>
</publisherId>
<volume>20</volume>
<issue>1</issue>
<pages>
<first>300</first>
<last>310</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Articles</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1991</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Greenland and Frerichs</json:string>
<json:string>US National Institutes of Health</json:string>
<json:string>Department of Epidemiology</json:string>
<json:string>Department of Epidemiology and Biostatistics</json:string>
<json:string>and Greenland and Frerichs</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>E. Measures</json:string>
<json:string>In</json:string>
<json:string>N. Let</json:string>
<json:string>Scott Clark</json:string>
</persName>
<placeName>
<json:string>Georgia</json:string>
<json:string>Atlanta</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Elveback et al.</json:string>
<json:string>Smith et al</json:string>
<json:string>Kim-Farley et al.</json:string>
<json:string>Halloran et al.</json:string>
<json:string>Kim-Farley et al</json:string>
<json:string>Emory University, 1599</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-CG75R3CB-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - social science</json:string>
<json:string>2 - public, environmental & occupational health</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - public health & health services</json:string>
<json:string>3 - epidemiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Epidemiology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1093/ije/20.1.300</json:string>
</doi>
<id>53A4B73E735D5F35D026C2269DA45ADF681FE9B1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>© International Epidemiological Association</licence>
</availability>
<date type="Copyright" when="1991">1991</date>
<date type="published">1991</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
<author xml:id="author-0000">
<persName>
<surname>HABER</surname>
<forename type="first">MICHAEL</forename>
</persName>
<affiliation>
<orgName type="institution">Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University</orgName>
<address>
<addrLine>1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>LONGINI</surname>
<forename type="first">IRA M</forename>
<genName>JR</genName>
</persName>
<affiliation>
<orgName type="institution">Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University</orgName>
<address>
<addrLine>1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>HALLORAN</surname>
<forename type="first">M ELIZABETH</forename>
</persName>
<affiliation>
<orgName type="institution">Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University</orgName>
<address>
<addrLine>1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</addrLine>
</address>
</affiliation>
</author>
<idno type="istex">53A4B73E735D5F35D026C2269DA45ADF681FE9B1</idno>
<idno type="ark">ark:/67375/HXZ-CG75R3CB-Q</idno>
<idno type="publisher-id">20.1.300</idno>
<idno type="DOI">10.1093/ije/20.1.300</idno>
</analytic>
<monogr>
<title level="j" type="main">International Journal of Epidemiology</title>
<idno type="hwp">intjepid</idno>
<idno type="publisher-id">ije</idno>
<idno type="pmc">intjepid</idno>
<idno type="eISSN">1464-3685</idno>
<idno type="pISSN">0300-5771</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">1991</date>
<biblScope unit="vol">20</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="300">300</biblScope>
<biblScope unit="page" to="310">310</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.
<hi rend="superscript">1,2</hi>
In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith
<hi rend="italic">et al</hi>
,
<hi rend="superscript">3</hi>
but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities.</p>
<p>Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,
<hi rend="superscript">4</hi>
and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="subject">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">intjepid</journal-id>
<journal-id journal-id-type="publisher-id">ije</journal-id>
<journal-id journal-id-type="pmc">intjepid</journal-id>
<journal-title>International Journal of Epidemiology</journal-title>
<issn pub-type="epub">1464-3685</issn>
<issn pub-type="ppub">0300-5771</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">20.1.300</article-id>
<article-id pub-id-type="doi">10.1093/ije/20.1.300</article-id>
<article-categories>
<subj-group>
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Measures of the Effects of Vaccination in a Randomly Mixing Population</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>HABER</surname>
<given-names>MICHAEL</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LONGINI</surname>
<given-names>IRA M</given-names>
<suffix>JR</suffix>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>HALLORAN</surname>
<given-names>M ELIZABETH</given-names>
</name>
</contrib>
<aff>
<institution>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University</institution>
<addr-line>1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</addr-line>
</aff>
</contrib-group>
<pub-date pub-type="ppub">
<month>3</month>
<year>1991</year>
</pub-date>
<volume>20</volume>
<issue>1</issue>
<fpage>300</fpage>
<lpage>310</lpage>
<history>
<date date-type="rev-recd">
<month>5</month>
<year>1990</year>
</date>
</history>
<copyright-statement>© International Epidemiological Association</copyright-statement>
<copyright-year>1991</copyright-year>
<abstract>
<p>Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.
<sup>1,2</sup>
In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith
<italic>et al</italic>
,
<sup>3</sup>
but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities.</p>
<p>Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,
<sup>4</sup>
and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.</p>
</abstract>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Measures of the Effects of Vaccination in a Randomly Mixing Population</title>
</titleInfo>
<name type="personal">
<namePart type="given">MICHAEL</namePart>
<namePart type="family">HABER</namePart>
<affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">IRA M</namePart>
<namePart type="family">LONGINI</namePart>
<namePart type="termsOfAddress">JR</namePart>
<affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M ELIZABETH</namePart>
<namePart type="family">HALLORAN</namePart>
<affiliation>Division of Biostatistics, Department of Epidemiology and Biostatistics, Emory University, 1599 Clifton Road NE, Atlanta, Georgia 30329, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">1991-03</dateIssued>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<abstract>Vaccine efficacy in the field is often derived from the relative attack rates in the vaccinated and unvaccinated after an outbreak.1,2 In this paper, vaccine efficacy is defined in terms of the probability that the infectious agent is transmitted from an infected to a susceptible person, and a method for estimating it from the usual attack rate data is given. We explore two mechanisms of vaccine action defined by Smith et al,3but include an underlying dynamic epidemic model of an acute directly transmitted disease. We show analytically that under the model in which the vaccine mechanism reduces the probability of infection given a certain exposure, vaccine efficacy based on the relative attack rates underestimates the protective effect of the vaccine based on the realtive transmission probabilities. Under the other model in which the vaccine mechanism offers complete protection to a certain proportion of those vaccinated, and no protection to the other vaccinated proportion, the vaccine efficacy based on the relative attack rates will equal that based on the transmission probabilities. Parameters for the effectiveness of a vaccination programme are defined in terms of the direct and indirect benefit to a single person as well as the total and average benefit to the entire population,4 and derived from the dynamic model for an outbreak of an acute directly transmitted disease. These effects can also be estimated without an actual separate unvaccinated population, independent of assumptions about the vaccine mechanism. The variation of these measures as functions of the fraction of vaccinated people in the population is explored numerically.</abstract>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Epidemiology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<topic>Original Articles</topic>
</subject>
<identifier type="ISSN">0300-5771</identifier>
<identifier type="eISSN">1464-3685</identifier>
<identifier type="PublisherID">ije</identifier>
<identifier type="PublisherID-hwp">intjepid</identifier>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>300</start>
<end>310</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">53A4B73E735D5F35D026C2269DA45ADF681FE9B1</identifier>
<identifier type="ark">ark:/67375/HXZ-CG75R3CB-Q</identifier>
<identifier type="DOI">10.1093/ije/20.1.300</identifier>
<identifier type="ArticleID">20.1.300</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© International Epidemiological Association</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-16</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-CG75R3CB-Q/annexes.pdf</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:53A4B73E735D5F35D026C2269DA45ADF681FE9B1
   |texte=   Measures of the Effects of Vaccination in a Randomly Mixing Population
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021