Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages

Identifieur interne : 001797 ( Istex/Corpus ); précédent : 001796; suivant : 001798

Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages

Auteurs : Jianfang Zhou ; Helen K. W. Law ; Chung Yan Cheung ; Iris H. Y. Ng ; J. S. Malik Peiris ; Yu Lung Lau

Source :

RBID : ISTEX:6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA

Abstract

Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis

Url:
DOI: 10.1086/500954

Links to Exploration step

ISTEX:6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
<author wicri:is="90%">
<name sortKey="Zhou, Jianfang" sort="Zhou, Jianfang" uniqKey="Zhou J" first="Jianfang" last="Zhou">Jianfang Zhou</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Law, Helen K W" sort="Law, Helen K W" uniqKey="Law H" first="Helen K. W." last="Law">Helen K. W. Law</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Cheung, Chung Yan" sort="Cheung, Chung Yan" uniqKey="Cheung C" first="Chung Yan" last="Cheung">Chung Yan Cheung</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Ng, Iris H Y" sort="Ng, Iris H Y" uniqKey="Ng I" first="Iris H. Y." last="Ng">Iris H. Y. Ng</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Peiris, J S Malik" sort="Peiris, J S Malik" uniqKey="Peiris J" first="J. S. Malik" last="Peiris">J. S. Malik Peiris</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Lau, Yu Lung" sort="Lau, Yu Lung" uniqKey="Lau Y" first="Yu Lung" last="Lau">Yu Lung Lau</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1086/500954</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001797</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001797</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
<author wicri:is="90%">
<name sortKey="Zhou, Jianfang" sort="Zhou, Jianfang" uniqKey="Zhou J" first="Jianfang" last="Zhou">Jianfang Zhou</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Law, Helen K W" sort="Law, Helen K W" uniqKey="Law H" first="Helen K. W." last="Law">Helen K. W. Law</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Cheung, Chung Yan" sort="Cheung, Chung Yan" uniqKey="Cheung C" first="Chung Yan" last="Cheung">Chung Yan Cheung</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Ng, Iris H Y" sort="Ng, Iris H Y" uniqKey="Ng I" first="Iris H. Y." last="Ng">Iris H. Y. Ng</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Peiris, J S Malik" sort="Peiris, J S Malik" uniqKey="Peiris J" first="J. S. Malik" last="Peiris">J. S. Malik Peiris</name>
<affiliation>
<mods:affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Lau, Yu Lung" sort="Lau, Yu Lung" uniqKey="Lau Y" first="Yu Lung" last="Lau">Yu Lung Lau</name>
<affiliation>
<mods:affiliation>Paediatrics and Adolescent Medicine and</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Journal of Infectious Diseases</title>
<title level="j" type="abbrev">The Journal of Infectious Diseases</title>
<idno type="ISSN">0022-1899</idno>
<idno type="eISSN">1537-6613</idno>
<imprint>
<publisher>The University of Chicago Press</publisher>
<date type="published">2006</date>
<biblScope unit="vol">193</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="945">945</biblScope>
<biblScope unit="page" to="953">953</biblScope>
</imprint>
<idno type="ISSN">0022-1899</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>apoptosis</json:string>
<json:string>mdms</json:string>
<json:string>jurkat</json:string>
<json:string>avian</json:string>
<json:string>gure</json:string>
<json:string>fasl</json:string>
<json:string>avian virus</json:string>
<json:string>mrna</json:string>
<json:string>lymphocyte</json:string>
<json:string>viral</json:string>
<json:string>receptor</json:string>
<json:string>ligand</json:string>
<json:string>macrophage</json:string>
<json:string>cell death</json:string>
<json:string>immunol</json:string>
<json:string>virol</json:string>
<json:string>dendritic</json:string>
<json:string>hong kong</json:string>
<json:string>drls</json:string>
<json:string>april</json:string>
<json:string>supernatant</json:string>
<json:string>chimera</json:string>
<json:string>coculture</json:string>
<json:string>immune</json:string>
<json:string>culture supernatant</json:string>
<json:string>independent experiment</json:string>
<json:string>invitrogen life technology</json:string>
<json:string>virus infection</json:string>
<json:string>cell apoptosis</json:string>
<json:string>active staining</json:string>
<json:string>tumor necrosis ligand</json:string>
<json:string>datum</json:string>
<json:string>mdck cell</json:string>
<json:string>trail mrna expression</json:string>
<json:string>avian virus infection</json:string>
<json:string>present study</json:string>
<json:string>functional trail</json:string>
<json:string>virus</json:string>
<json:string>human macrophage</json:string>
<json:string>virusinfected mdms</json:string>
<json:string>disease pathogenesis</json:string>
<json:string>tumor necrosis factor</json:string>
<json:string>coculture system</json:string>
<json:string>immune response</json:string>
<json:string>tumor necrosis factor ligand</json:string>
<json:string>tpck trypsin</json:string>
<json:string>fasl mrna expression</json:string>
<json:string>active cell</json:string>
<json:string>human disease</json:string>
<json:string>human virus</json:string>
<json:string>lymphocyte apoptosis</json:string>
<json:string>recombinant human</json:string>
<json:string>immature dendritic cell</json:string>
<json:string>strongest induction</json:string>
<json:string>necrosis</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jianfang Zhou</name>
<affiliations>
<json:string>Paediatrics and Adolescent Medicine and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Helen K. W. Law</name>
<affiliations>
<json:string>Paediatrics and Adolescent Medicine and</json:string>
</affiliations>
</json:item>
<json:item>
<name>Chung Yan Cheung</name>
<affiliations>
<json:string>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Iris H. Y. Ng</name>
<affiliations>
<json:string>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. S. Malik Peiris</name>
<affiliations>
<json:string>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yu Lung Lau</name>
<affiliations>
<json:string>Paediatrics and Adolescent Medicine and</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HXZ-H64517FP-C</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis</abstract>
<qualityIndicators>
<score>6.884</score>
<pdfWordCount>5248</pdfWordCount>
<pdfCharCount>31809</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>583</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>157</abstractWordCount>
<abstractCharCount>1126</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
<pmid>
<json:string>16518756</json:string>
</pmid>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>The Journal of Infectious Diseases</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-1899</json:string>
</issn>
<eissn>
<json:string>1537-6613</json:string>
</eissn>
<publisherId>
<json:string>jid</json:string>
</publisherId>
<volume>193</volume>
<issue>7</issue>
<pages>
<first>945</first>
<last>953</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1997</json:string>
<json:string>2006</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Queen Mary Hospital, Pokfulam, Hong Kong SAR, China</json:string>
<json:string>Dako Diagnostics</json:string>
<json:string>University of Hong Kong</json:string>
<json:string>D Systems</json:string>
<json:string>Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster</json:string>
<json:string>Invitrogen Life Technologies</json:string>
<json:string>Department of Microbiology, The University of Hong Kong</json:string>
<json:string>American Type Culture Collection</json:string>
<json:string>Research Grants Council, Hong Kong Special Administrative Region, China</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Winsie Luk</json:string>
<json:string>Yan Cheung</json:string>
<json:string>Hong Kong</json:string>
<json:string>Club</json:string>
<json:string>Kong Jockey</json:string>
<json:string>Yu Lung</json:string>
<json:string>H. Y. Ng</json:string>
<json:string>S. Malik</json:string>
</persName>
<placeName>
<json:string>Hong Kong</json:string>
<json:string>Bratislava</json:string>
<json:string>Canada</json:string>
<json:string>Vancouver</json:string>
<json:string>America</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[34]</json:string>
<json:string>[18]</json:string>
<json:string>[6]</json:string>
<json:string>[44]</json:string>
<json:string>[39]</json:string>
<json:string>[28, 29]</json:string>
<json:string>[43]</json:string>
<json:string>[38]</json:string>
<json:string>Zhou et al.</json:string>
<json:string>[3]</json:string>
<json:string>[31]</json:string>
<json:string>[1, 2]</json:string>
<json:string>[5]</json:string>
<json:string>[26]</json:string>
<json:string>[30]</json:string>
<json:string>[7]</json:string>
<json:string>[3, 17]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/HXZ-H64517FP-C</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - microbiology</json:string>
<json:string>2 - infectious diseases</json:string>
<json:string>2 - immunology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - microbiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Infectious Diseases</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Immunology and Allergy</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
<json:string>4 - pathologie infectieuse</json:string>
</inist>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1086/500954</json:string>
</doi>
<id>6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>The University of Chicago Press</publisher>
<availability>
<licence>© 2006 by the Infectious Diseases Society of America</licence>
</availability>
<date type="Copyright" when="2006">2006</date>
<date type="published">2006</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
<author xml:id="author-0000">
<persName>
<surname>Zhou</surname>
<forename type="first">Jianfang</forename>
</persName>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Law</surname>
<forename type="first">Helen K. W.</forename>
</persName>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Cheung</surname>
<forename type="first">Chung Yan</forename>
</persName>
<affiliation>
<orgName type="department">Microbiology</orgName>
<orgName type="laboratory">Hong Kong Jockey Club Clinical Research Centre</orgName>
<orgName type="department">Faculty of Medicine</orgName>
<orgName type="institution">The University of Hong Kong</orgName>
<address>
<addrLine>Pokfulam</addrLine>
<addrLine>Hong Kong Special Administrative Region</addrLine>
<country key="CN" xml:lang="en">CHINA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<surname>Ng</surname>
<forename type="first">Iris H. Y.</forename>
</persName>
<affiliation>
<orgName type="department">Microbiology</orgName>
<orgName type="laboratory">Hong Kong Jockey Club Clinical Research Centre</orgName>
<orgName type="department">Faculty of Medicine</orgName>
<orgName type="institution">The University of Hong Kong</orgName>
<address>
<addrLine>Pokfulam</addrLine>
<addrLine>Hong Kong Special Administrative Region</addrLine>
<country key="CN" xml:lang="en">CHINA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Peiris</surname>
<forename type="first">J. S. Malik</forename>
</persName>
<affiliation>
<orgName type="department">Microbiology</orgName>
<orgName type="laboratory">Hong Kong Jockey Club Clinical Research Centre</orgName>
<orgName type="department">Faculty of Medicine</orgName>
<orgName type="institution">The University of Hong Kong</orgName>
<address>
<addrLine>Pokfulam</addrLine>
<addrLine>Hong Kong Special Administrative Region</addrLine>
<country key="CN" xml:lang="en">CHINA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<surname>Lau</surname>
<forename type="first">Yu Lung</forename>
</persName>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</author>
<idno type="istex">6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA</idno>
<idno type="ark">ark:/67375/HXZ-H64517FP-C</idno>
<idno type="DOI">10.1086/500954</idno>
</analytic>
<monogr>
<title level="j" type="main">The Journal of Infectious Diseases</title>
<title level="j" type="abbrev">The Journal of Infectious Diseases</title>
<idno type="hwp">jinfdis</idno>
<idno type="publisher-id">jid</idno>
<idno type="pISSN">0022-1899</idno>
<idno type="eISSN">1537-6613</idno>
<imprint>
<publisher>The University of Chicago Press</publisher>
<date type="published">2006</date>
<biblScope unit="vol">193</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="945">945</biblScope>
<biblScope unit="page" to="953">953</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>Major Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">jinfdis</journal-id>
<journal-id journal-id-type="publisher-id">jid</journal-id>
<journal-title>The Journal of Infectious Diseases</journal-title>
<abbrev-journal-title>The Journal of Infectious Diseases</abbrev-journal-title>
<issn pub-type="ppub">0022-1899</issn>
<issn pub-type="epub">1537-6613</issn>
<publisher>
<publisher-name>The University of Chicago Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1086/500954</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Major Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</article-title>
</title-group>
<contrib-group>
<contrib>
<name>
<surname>Zhou</surname>
<given-names>Jianfang</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib>
<name>
<surname>Law</surname>
<given-names>Helen K. W.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib>
<name>
<surname>Cheung</surname>
<given-names>Chung Yan</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib>
<name>
<surname>Ng</surname>
<given-names>Iris H. Y.</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib>
<name>
<surname>Peiris</surname>
<given-names>J. S. Malik</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib>
<name>
<surname>Lau</surname>
<given-names>Yu Lung</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<aff>Departments of</aff>
<aff id="aff1">
<label>1</label>
<institution>Paediatrics and Adolescent Medicine and</institution>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</institution>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Reprints or correspondence: Dr. Yu Lung Lau, Dept. of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China (
<email>lauylung@hkucc.hku.hk</email>
)</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>1</day>
<month>4</month>
<year>2006</year>
</pub-date>
<volume>193</volume>
<issue>7</issue>
<fpage>945</fpage>
<lpage>953</lpage>
<history>
<date date-type="received">
<day>15</day>
<month>9</month>
<year>2005</year>
</date>
<date date-type="accepted">
<day>31</day>
<month>10</month>
<year>2005</year>
</date>
</history>
<copyright-statement>© 2006 by the Infectious Diseases Society of America</copyright-statement>
<copyright-year>2006</copyright-year>
<abstract>
<p>Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis</p>
</abstract>
</article-meta>
</front>
<body>
<p>In 1997, the avian influenza virus H5N1 crossed the species barrier and caused 18 confirmed human infections in Hong Kong with a case-fatality rate of 33%. The clinical manifestations include lymphopenia and severe pneumonia progressing to the syndromes of acute respiratory distress and multiple organ dysfunction [
<xref ref-type="bibr" rid="ref1">1</xref>
,
<xref ref-type="bibr" rid="ref2">2</xref>
]. The proinflammatory cytokine dysregulation detected in human H5N1 disease is thought to contribute to the severity of this influenza [
<xref ref-type="bibr" rid="ref3">3</xref>
]. However, the immune response in human to the avian influenza virus remains unclear</p>
<p>It has been shown in mallard ducks that H5N1 virus enhances macrophage phagocytic activity but suppresses T cell function [
<xref ref-type="bibr" rid="ref4">4</xref>
]. In mice, H5N1 virus depleted lymphocytes through apoptosis, which resulted in the reduction of interferon (IFN)–γ, interleukin (IL)–1β, macrophage inflammatory protein, and tissue cellularity, leading to a higher mortality rate [
<xref ref-type="bibr" rid="ref5">5</xref>
]. Indeed, cross-reactive cytotoxic T lymphocyte responses have been observed in humans with no previous exposure to avian influenza virus [
<xref ref-type="bibr" rid="ref6">6</xref>
], and B cell–dependent heterosubtypic cross-protection against H5N1 virus could also be induced in mice [
<xref ref-type="bibr" rid="ref7">7</xref>
]. Because lymphopenia is a notable observation in H5N1 infection, the clinical severity of human disease is associated with low peripheral white blood cell and lymphocyte counts at admission [
<xref ref-type="bibr" rid="ref1">1</xref>
,
<xref ref-type="bibr" rid="ref2">2</xref>
,
<xref ref-type="bibr" rid="ref8">8</xref>
,
<xref ref-type="bibr" rid="ref9">9</xref>
], the induction of lymphocyte apoptosis may contribute to disease pathogenesis</p>
<p>Death receptors (DRs) and their ligands play important roles in orchestrating innate and adaptive immune responses against pathogens by regulating cell death and survival [
<xref ref-type="bibr" rid="ref10">10</xref>
]. Tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and was identified by sequence homology with 2 well-characterized DR ligands (DRLs), TNF-α and Fas ligand (FasL). There are 5 receptors (R) for TRAIL, of which TRAIL-R1 and TRAIL-R2 contain the death domains. The binding of DRLs to their specific receptors leads to the activation of a cascade of specific proteolytic enzymes (termed “caspases”), leading to apoptosis [
<xref ref-type="bibr" rid="ref11">11</xref>
]. Several viruses—including measles virus, HIV, cytomegalovirus, papillomavirus, and herpes simplex virus—trigger immune-cell cytotoxicity through the induction of TRAIL expression, which is involved in the killing of virus-infected cells or bystander lymphocytes and NK cells [
<xref ref-type="bibr" rid="ref12">12</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
]. However, little is known about the apoptosis of immune cells mediated by DRLs, particularly TRAIL, in H5N1 infection</p>
<p>We have previously reported that avian influenza virus H5N1/97—but not the human strains A/Hong Kong/54/98 (H1N1) and A/Hong Kong/1174/99 (H3N2)—could induce high production of proinflammatory cytokines, most notably TNF-α, in human primary macrophages [
<xref ref-type="bibr" rid="ref3">3</xref>
]. The precursor of H5N1 virus, A/Quail/Hong Kong/G1/97 (H9N2/G1), which shares 6 internal gene segments with H5N1/97, also shared the high cytokine induction phenotype [
<xref ref-type="bibr" rid="ref3">3</xref>
,
<xref ref-type="bibr" rid="ref17">17</xref>
]. In the present study, we hypothesized that the innate immune responses to H5N1 result in a strong expression of DRLs that lead to lymphocyte apoptosis. Using Jurkat T cells as a model, we demonstrate the release of functional TRAIL and cytotoxicity of H5N1/97- or H9N2/G1-infected macrophages</p>
<sec id="S1">
<title>Materials and methods</title>
<p>
<bold>
<italic>Cells</italic>
</bold>
Human monocyte-derived macrophages (MDMs) were generated from buffy coats of samples from healthy blood donors as described elsewhere [
<xref ref-type="bibr" rid="ref3">3</xref>
]. The research protocol was approved by the Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster. The purity of monocytes, as determined by flow cytometry (Coulter Epics Elite; Beckman Coulter) with anti-CD14 monoclonal antibody (BD PharMingen), was consistently >90%. The monocytes were refed by fresh medium every 2 days and allowed to differentiate for 14 days in vitro</p>
<p>The Jurkat T cell line (American Type Culture Collection [ATCC]) was maintained in RPMI 1640 medium (Invitrogen Life Technologies) with 10% fetal bovine serum (FBS; Invitrogen Life Technologies). MDCK cells (ATCC) and murine fibroblasts L929 (ATCC) were cultured in MEM (Invitrogen Life Technologies) supplemented with 10% FBS</p>
<p>
<bold>
<italic>Virus preparation, titration, and infection</italic>
</bold>
In view of the biosafety issues involved in handling highly pathogenic viruses, we used avian influenza virus H9N2/G1 for optimization of the experimental system. Then, findings obtained with H9N2/G1 were confirmed using H5N1/97 virus in a biohazard level 3 facility. Avian influenza virus H9N2/G1 and human influenza A virus 54/98 (H1N1/98) were grown in MDCK cells that contained 2 mg/L N-p-tosyl-L-phenylalaninechloromethyl ketone–treated (TPCK) trypsin (Sigma). H5N1/97 virus was propagated in MDCK cells without TPCK trypsin, because these highly pathogenic avian influenza viruses are not dependent on exogenously added trypsin for productive virus replication. Virus stocks were purified by adsorption to and elution from turkey red blood cells [
<xref ref-type="bibr" rid="ref18">18</xref>
] and were stored at −70°C until use. The titer of virus stock was determined by daily observation for cytopathic effect in MDCK cells and confirmed by hemagglutination assay [
<xref ref-type="bibr" rid="ref19">19</xref>
]. To inactivate viruses, samples were irradiated at a dose of 0.2 J/cm
<sup>2</sup>
for 15 min in a UV cross-linker (Spectrolinker)</p>
<p>Day-14 differentiated MDMs and Jurkat T cells were infected by influenza viruses at MOIs of 2 and 1, respectively. This was set as the 0-h point of infection (POI) for the experiments described below. After virus adsorption for 1 h at 37°C, unadsorbed virus was removed by washing with PBS. Mock-treated cells were handled in parallel, except that virus was not added. To determine infectivity, cells were fixed and analyzed by immunofluorescent staining specific for influenza A virus nucleoprotein (DAKO Imagen; Dako Diagnostics)</p>
<p>
<bold>
<italic>Quantification of mRNA by real-time, quantitative reverse</italic>
</bold>
<bold>
<italic>-transcription (RT) polymerase chain reaction (PCR)</italic>
</bold>
Infected MDMs (∼5×10
<sup>5</sup>
) cultured in macrophage serum-free medium (Invitrogen Life Technologies) were harvested at the 4-, 8-, and 12-h POI for total RNA extraction by TRIzol Reagent (Invitrogen Life Technologies). RT was performed on DNase-treated total RNA. The cDNA was synthesized from mRNA with oligo(dT)
<sub>12–18</sub>
primer and Superscript II reverse transcriptase (Invitrogen Life Technologies). The cDNA samples were diluted (1:10) and used as the template. Specific primers and probes (
<xref ref-type="fig" rid="tb1">table 1</xref>
) were used in a real-time PCR assay (ABI PRISM 7700 Sequence Detection System; Applied Biosystem). The standard curve was generated using serial dilutions of plasmids (∼10–10
<sup>7</sup>
copies) that contained the respective cloned gene targets. The results were normalized and expressed as the number of target gene copies per 10
<sup>4</sup>
copies of β-actin</p>
<p>
<bold>
<italic>Bioassay for TNF-α in the culture supernatants from virus-infected MDMs</italic>
</bold>
To avoid the generation of aerosol, we used a sensitive bioassay for quantitating bioactive TNF-α in culture supernatants [
<xref ref-type="bibr" rid="ref20">20</xref>
]. Some samples were being assayed by both bioassay and ELISA, and a strong correlation was observed (data not shown). Supernatants from mock- or virus-infected 10
<sup>6</sup>
MDMs/well in a volume of 800 μL of RPMI 1640 plus 10% FBS for 24 h were collected and stored at −70°C, thawed, and UV irradiated before use</p>
<p>The culture supernatants or samples diluted to 1:10 or 1:50 were added into a confluent culture of L929 cells in 96-well plate with 1 μg/mL actinomycin D (Sigma) in duplicate, and cell viability was determined by crystal violet staining. The concentration of TNF-α in the supernatants was calculated with reference to the standard curve generated by serial dilution of recombinant human TNF-α (R & D Systems)</p>
<p>
<bold>
<italic>Apoptosis of T lymphocytes by culture supernatants from virus-infected MDMs</italic>
</bold>
Jurkat T cells (5×10
<sup>5</sup>
/mL) were cultured in the presence of 50% UV-treated culture supernatants generated from mock- or virus-infected MDMs for 24 h. The cell death was detected by anti–active caspase–3 antibody staining (BD PharMingen), as described in our previous study [
<xref ref-type="bibr" rid="ref21">21</xref>
]. The experiments were also performed in the presence of 1 μg/mL TRAIL-R2/Fc chimera (631-T2; R & D Systems) for the blocking of TRAIL or 1 μg/mL neutralizing anti–FasL antibody (clone 100419; R & D Systems) for the determination of the specific pathway of apoptosis. The optimal concentration used was determined by titration</p>
<p>
<bold>
<italic>Coculture of PKH-26–labeled Jurkat T cells with virus-infected MDMs</italic>
</bold>
To distinguish between effector and target cells, Jurkat T cells were labeled with PKH-26 (Sigma) before coculture at a MDMs:Jurkat T cell ratio of 2:1 for a further 24 h. The experiments were also performed in the presence of TRAIL-R2/Fc chimera (1 μg/mL) or anti-FasL (1 μg/mL). Then, cell death was detected by active caspase–3 staining, as described above. To ensure that H1N1/98 and H9N2/G1 released by infected MDMs would not infect the Jurkat T cells, TPCK trypsin was not added to the coculture system</p>
<p>
<bold>
<italic>Statistical analysis</italic>
</bold>
Data are expressed as means ± SEs. Statistical significance was determined by Student
<italic>t</italic>
test or the nonparametric equivalent, the Mann-Whitney
<italic>U</italic>
test, using Instat software (version 3.05; GraphPad). P<.05 was considered to be significant</p>
</sec>
<sec id="S2">
<title>Results</title>
<p>
<bold>
<italic>Up-regulation of the expression of TNF-α and TRAIL but not FasL mRNA in MDMs by avian influenza virus infection</italic>
</bold>
 MDMs are susceptible to both human and avian influenza virus infection. As evidenced by the expression of viral nucleoprotein, >90% of MDMs were infected by the 12-h POI. As is shown in
<xref ref-type="fig" rid="Fig1">figure 1
<italic>A</italic>
</xref>
the expression of TNF-α mRNA was rapidly induced by avian virus H9N2/G1 infection. It was detected at the 4-h POI and then gradually decreased over time. In contrast, TRAIL mRNA expression in H9N2/G1-infected MDMs progressively increased with time (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>B</italic>
</xref>
). At all time points assessed (the 4-, 8-, and 12-h POI), the expression level of TRAIL mRNA in H9N2/G1-infected MDMs (range, 60–1000 copies/10
<sup>4</sup>
copies of β-actin) was significantly higher than that in H1N1/98-infected MDMs (range, 10–100 copies/10
<sup>4</sup>
copies of β-actin; n=6; P<.01). A very low level of FasL mRNA expression (<30 copies/10
<sup>4</sup>
copies of β-actin) was detected in mock- or influenza virus–infected MDMs (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>C</italic>
</xref>
)</p>
<p>We subsequently repeated the experiment on H5N1/97-infected MDMs in a biohazard level 3 laboratory. At the 7-h POI, both TNF-α (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>D</italic>
</xref>
) and TRAIL (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>E</italic>
</xref>
) mRNA were significantly up-regulated (P=.0289 and P=.01, respectively, vs. H1N1/98-infected MDMs; n=4), and the expression of FasL was very low in H5N1/97-infected MDMs (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>F</italic>
</xref>
). This up-regulation of TNF-α and TRAIL was dependent on viral replication. As is shown in figure
<xref ref-type="fig" rid="Fig1">1
<italic>D</italic>
</xref>
and
<xref ref-type="fig" rid="Fig1">1
<italic>E</italic>
</xref>
a significantly lower level of TNF-α and TRAIL mRNA expression was detected in MDMs treated by UV-irradiated H5N1/97. The UV-irradiated H5N1/97-induced TRAIL mRNA expression was, however, significantly higher than that in mock-treated MDMs (P=.001) (
<xref ref-type="fig" rid="Fig1">figure 1
<italic>E</italic>
</xref>
). A similar pattern of TNF-α and TRAIL expression was found in UV-treated H9N2/G1 virus (data not shown)</p>
<p>
<bold>
<italic>Release of soluble bioactive TNF-α and TRAIL from virus-infected MDMs</italic>
</bold>
Similar to that reported elsewhere [
<xref ref-type="bibr" rid="ref3">3</xref>
], we detected high levels of bioactive TNF-α in culture supernatant from avian influenza virus–infected MDMs (4.43±0.38 and 5.28±1.34 ng/mL for H9N2/G1 and H5N1/97, respectively, vs. 0.53±0.28 ng/mL for H1N1/98; P<.001; n=4). In the search for a specific cell line to determine the release of bioactive TRAIL by influenza virus–infected MDMs, we tested the sensitivity of Jurkat T cells to recombinant DRLs. It was intriguing to find that Jurkat T cells are sensitive to TRAIL and FasL in a dose-dependent manner but not to TNF-α (
<xref ref-type="fig" rid="Fig2">figure 2
<italic>A</italic>
</xref>
). This specific induction of cell death by high-dose TRAIL (100 ng/mL) and FasL (100 ng/mL) could be reversed by the addition of TRAIL-R2/Fc chimera (1 μg/mL) and anti-FasL neutralizing antibody (1 μg/mL), respectively (
<xref ref-type="fig" rid="Fig2">figure 2
<italic>B</italic>
</xref>
)</p>
<p>By incubating Jurkat T cells in the presence of 50% UV-irradiated supernatant, we demonstrated that supernatants from H1N1/98-, H9N2/G1-, and H5N1/97-infected MDMs induced the apoptosis of Jurkat T cells, but supernatants from mock-treated MDMs did not (figure
<xref ref-type="fig" rid="Fig3">3
<italic>A</italic>
</xref>
<xref ref-type="fig" rid="Fig3">3
<italic>D</italic>
</xref>
). The cell death could be significantly reduced by the addition of TRAIL-R2/Fc chimera but not by anti-FasL. The combination of both antibodies did not reduce the level of apoptosis further</p>
<p>
<bold>
<italic>Stronger apoptosis of Jurkat T cells infected by H1N1/98, compared with H5N1/97 and H9N2/G1</italic>
</bold>
To test the direct cytopathic effects of influenza virus on Jurkat T cells, we infected Jurkat T cells with the 3 virus strains at MOIs of 1. As assessed by immunofluorescence staining of viral nucleoprotein at the 24-h POI, >70% of Jurkat T cells were infected by either human or avian influenza viruses. Marked apoptosis was detected in H1N1/98-infected Jurkat T cells, with the percentage of active caspase–3–positive cells at 82.50%±1.1% (n=3;
<xref ref-type="fig" rid="Fig4">figure 4</xref>
). Fewer than 30% of apoptotic cells were detected in H9N2/G1- and H5N1-infected Jurkat T cells (12.2% ± 2.89% and 22.2%±7.36%, respectively; n=3) (
<xref ref-type="fig" rid="Fig4">figure 4</xref>
)</p>
<p>
<bold>
<italic>Direct induction of Jurkat T cells apoptosis by virus-infected MDMs</italic>
</bold>
It has been reported that the expression of TRAIL on the surface of virus-infected cells is also important in inducing apoptosis [
<xref ref-type="bibr" rid="ref14">14</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
]. Hence, we tested the direct cytotoxicity of virus-infected MDMs by coculturing Jurkat T cells with virus-infected MDMs for 24 h. No TPCK trypsin was added, to ensure no infection of Jurkat T cells by H1N1/98 or H9N2/G1 released from infected MDMs. The infection of cells by H5N1/97 was, however, independent of the presence of trypsin. Similar to that observed in MDM supernatant, increased apoptosis was detected in Jurkat T cells cocultured with virus-infected MDMs (
<xref ref-type="fig" rid="Fig5">figure 5</xref>
). In contrast to H1N1/98- and H9N2/G1-infected MDMs, H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells (
<xref ref-type="fig" rid="Fig5">figure 5
<italic>C</italic>
</xref>
), with the percentage of active caspase–3–positive cells at 55.30% ± 13.52% (vs. H9N2/G1 at 20.75%±2.12% and H1N1/98 at 20.96%±3.78%; P=.0144 and P=.0485, respectively). The cytotoxic effects of H1N1/98- and H9N2/G1-infected MDMs on Jurkat T cells could be significantly inhibited by TRAIL-R2/Fc chimera but not by anti-FasL alone (figure
<xref ref-type="fig" rid="Fig5">5
<italic>A</italic>
</xref>
and
<xref ref-type="fig" rid="Fig5">5
<italic>B</italic>
</xref>
). Partial inhibition of apoptosis in Jurkat T cells cocultured with H5N1/97-infected MDMs by TRAIL-R2/Fc chimera was observed, but the difference did not yield statistical significance (
<xref ref-type="fig" rid="Fig5">figure 5
<italic>C</italic>
</xref>
)</p>
<p>
<bold>
<italic>Sensitization of Jurkat T cells by avian influenza viruses to apoptosis induced by death receptor ligands</italic>
</bold>
The stronger induction of Jurkat T cells apoptosis by H5N1/97-infected MDMs (
<xref ref-type="fig" rid="Fig5">figure 5
<italic>C</italic>
</xref>
), compared with the corresponding UV-treated supernatants (
<xref ref-type="fig" rid="Fig3">figure 3
<italic>D</italic>
</xref>
), suggested that the effects of virus itself may be involved. According to the virus titer measured in H5N1 coculture systems (10
<sup>5</sup>
log
<sub>10</sub>
TCID
<sub>50</sub>
/mL), the MOI in the coculture was only 0.2. Even when Jurkat T cells were directly infected with H5N1 at an MOI of 1, the percentage of active caspase–3–positive cells was not very high (
<xref ref-type="fig" rid="Fig4">figure 4</xref>
). Hence, there may be an increased sensitivity of Jurkat T cells in the coculture system. To test the sensitivity of infected cells to DRL-induced apoptosis, exogenous TNF-α (500 ng/mL), TRAIL (10 ng/mL), or FasL (10 ng/mL) was added into H9N2/G1- or H5N1/97-infected Jurkat T cells, and they were incubated for 24 h. As shown in
<xref ref-type="fig" rid="Fig6">figure 6</xref>
, mock-infected Jurkat T cells were resistant to the apoptosis induction effect of TNF-α, even at a high dose (500 ng/mL), and only a moderate increase in apoptosis was observed with recombinant human (rh) TRAIL and rhFasL. In contrast, a significantly enhanced level of apoptosis was detected in H5N1/97- and H9N2/G1-infected Jurkat T cells in the presence of TNF-α. A similar phenomenon was also observed with low doses of TRAIL and FasL (
<xref ref-type="fig" rid="Fig6">figure 6</xref>
)</p>
</sec>
<sec id="S3">
<title>Discussion</title>
<p>Accelerated macrophage accumulation was detected in the lungs of patients with fatal H5N1 disease [
<xref ref-type="bibr" rid="ref22">22</xref>
] and in primates [
<xref ref-type="bibr" rid="ref23">23</xref>
], but their roles were not defined. Here, we used human MDMs as an in vitro model and showed that influenza virus–infected MDMs may exert a cytotoxic effect on lymphocytes. In particular, we demonstrated that T cell apoptosis was mediated by functional TRAIL</p>
<p>TRAIL, a member of the TNF superfamily, is involved in a number of viral infections [
<xref ref-type="bibr" rid="ref12">12</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
,
<xref ref-type="bibr" rid="ref24">24</xref>
,
<xref ref-type="bibr" rid="ref25">25</xref>
]. Its expression is up-regulated directly by the binding of viral hemagglutinin (HA) and neuraminidase of Newcastle virus to the target cells [
<xref ref-type="bibr" rid="ref26">26</xref>
] and by viral matrix protein of lyssavirus in the cytoplasm of infected and transfected cells [
<xref ref-type="bibr" rid="ref27">27</xref>
]. Alternatively, various cytokines, including IFN-α, IFN-β, IFN-γ, and TNF-α, can modulate the expression of TRAIL [
<xref ref-type="bibr" rid="ref28">28</xref>
,
<xref ref-type="bibr" rid="ref29">29</xref>
]. In the present study, we showed that avian influenza virus H9N2/G1 and H5N1/97 significantly up-regulated the expression of TNF-α and TRAIL, but not FasL, in MDMs (figure
<xref ref-type="fig" rid="Fig1">1
<italic>A</italic>
</xref>
<xref ref-type="fig" rid="Fig1">1
<italic>C</italic>
</xref>
). Because ∼90% of MDMs were infected at the 12-h POI, the differential expression caused by avian and human influenza viruses was not due to the difference in infectivity. Our findings are supported by those of recent studies that demonstrated that TRAIL was up-regulated in avian influenza virus A/Bratislava/79 (H7N7)–infected epithelial cells [
<xref ref-type="bibr" rid="ref30">30</xref>
] and in NK cells and T cells of influenza virus A/PR/8/34 (H1N1)–infected mice [
<xref ref-type="bibr" rid="ref31">31</xref>
]</p>
<p>We also demonstrated that the induction of TNF-α and TRAIL mRNA expression is dependent on viral replication. Interestingly, UV-treated H5N1 virus could induce a low but significant expression of TRAIL but not TNF-α mRNA in MDMs (figure
<xref ref-type="fig" rid="Fig1">1
<italic>D</italic>
</xref>
and
<xref ref-type="fig" rid="Fig1">1
<italic>E</italic>
</xref>
). We have shown previously that the high production of TNF-α in H5N1/97 infection was associated, at least in part, with the viral nonstructural protein [
<xref ref-type="bibr" rid="ref3">3</xref>
]. Avian influenza virus H9N2/G1 and H5N1/97 share 6 common internal genes. Their similar ability to induce DRLs suggested that ⩾1 of the internal genes or their proteins were likely to be involved</p>
<p>Consistent with our previous findings [
<xref ref-type="bibr" rid="ref3">3</xref>
], there was abundant production of bioactive TNF-α by avian influenza virus–infected MDMs. To determine the mediator of apoptosis other than TNF-α, we selected Jurkat T cells, which are only sensitive to TRAIL- and FasL-mediated apoptosis (
<xref ref-type="fig" rid="Fig2">figure 2</xref>
). We documented that the influenza virus–infected MDMs induced Jurkat T cells apoptosis was specially mediated by TRAIL but not by FasL (figures
<xref ref-type="fig" rid="Fig3">3</xref>
and
<xref ref-type="fig" rid="Fig5">5</xref>
). It has been reported that Fas-FasL was involved in the apoptosis of lymphocytes induced by human influenza virus H1N1- and H3N2-infected monocytes through direct cell-to-cell contact [
<xref ref-type="bibr" rid="ref32">32</xref>
]. However, our experiments did not indicate the involvement of FasL in the apoptosis of Jurkat T cells induced by influenza virus–infected MDMs or its supernatant (figures
<xref ref-type="fig" rid="Fig3">3</xref>
and
<xref ref-type="fig" rid="Fig5">5</xref>
)</p>
<p>The influenza viruses used in the present study infected Jurkat T cells to a similar extent; however, a lower level of apoptosis was detected in avian than in human influenza infection (
<xref ref-type="fig" rid="Fig4">figure 4</xref>
). Apoptosis induced by viral infection is a multifactor process in which various influenza viral proteins are involved [
<xref ref-type="bibr" rid="ref33">33</xref>
]. The reduced cytopathic effects of avian viruses on Jurkat T cells suggest a possible mechanism of immune evasion for avian viruses</p>
<p>Although there was no significant difference in the level of Jurkat T cell apoptosis when cells were exposed to the supernatants from virus-infected MDMs (
<xref ref-type="fig" rid="Fig3">figure 3</xref>
), H5N1/97-infected MDMs exhibited the strongest induction of Jurkat T cell apoptosis via cell-to-cell contact (
<xref ref-type="fig" rid="Fig5">figure 5
<italic>C</italic>
</xref>
). This higher level of apoptosis in cell-to-cell coculture may be due to (1) direct cytopathic effects caused by the virus, (2) enhanced responses of infected cells to death signals, and/or (3) molecules other than TRAIL</p>
<p>The sensitization of avian influenza virus–infected Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL was observed in our experiments (
<xref ref-type="fig" rid="Fig6">figure 6</xref>
). H5-subtype avian influenza virus has a characteristic cleavage-site sequence in the viral HA that renders HA susceptible to the effect of a wide spectrum of cellular proteases and permits H5N1 virus to become infectious to many tissues and organs [
<xref ref-type="bibr" rid="ref34">34</xref>
]. Therefore, the sensitization to DRLs in the infected cells is probably common to many cell types in H5N1 infection and may contribute to the severe lung damage or lymphopenia observed clinically. Enhanced sensitization of virus-infected cells to apoptosis induced by TRAIL or FasL has been reported in HIV, reovirus, and respiratory syncytial virus [
<xref ref-type="bibr" rid="ref16">16</xref>
,
<xref ref-type="bibr" rid="ref35">35</xref>
<xref ref-type="bibr" rid="ref37">37</xref>
]. This is caused by the up-regulation of TRAIL-R2 or Fas expression in virus-infected cells that leads to enhanced TRAIL- and FasL-mediated apoptosis. Other mechanisms that are responsible for the modulation of sensitivity or resistance to DRLs include the involvement of TRAIL decoy receptors [
<xref ref-type="bibr" rid="ref38">38</xref>
] and the regulation of downstream molecules such as Fas-associated death domain (FADD), caspase 8, cellular FADD-like IL-1β–converting enzyme inhibitory protein, and mitochondrial factors [
<xref ref-type="bibr" rid="ref39">39</xref>
]. Further study on the underlying mechanism is needed</p>
<p>In addition to the induction of apoptosis [
<xref ref-type="bibr" rid="ref12">12</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
,
<xref ref-type="bibr" rid="ref24">24</xref>
,
<xref ref-type="bibr" rid="ref25">25</xref>
,
<xref ref-type="bibr" rid="ref40">40</xref>
], TRAIL acts as an important immunomodulator. At an early stage of influenza virus infection, TRAIL may suppress immune responses [
<xref ref-type="bibr" rid="ref31">31</xref>
]. It inhibits calcium influx and IL-2–dependent growth in T cell blasts [
<xref ref-type="bibr" rid="ref41">41</xref>
,
<xref ref-type="bibr" rid="ref42">42</xref>
] and enhances the elimination of immature dendritic cells by NK cells in vivo [
<xref ref-type="bibr" rid="ref43">43</xref>
]. TRAIL has also been reported to enhance the propagation of influenza virus in epithelial cells [
<xref ref-type="bibr" rid="ref30">30</xref>
]</p>
<p>The recent episodes of human H5N1 infection—with high mortality, notable lymphopenia, and thrombocytopenia [
<xref ref-type="bibr" rid="ref44">44</xref>
]—highlight the urgency to understand its pathogenesis. The production of functional TRAIL and enhanced sensitization to DRLs-induced apoptosis shown in the present study may contribute to disease pathogenesis</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgment</title>
<p>We thank Winsie Luk, Department of Microbiology, The University of Hong Kong, for her technical assistance</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<label>1</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus</article-title>
<source>Lancet</source>
<year>1998</year>
<volume>351</volume>
<fpage>467</fpage>
<lpage>71</lpage>
</nlm-citation>
</ref>
<ref id="ref2">
<label>2</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tran</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>TD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Avian influenza A (H5N1) in 10 patients in Vietnam</article-title>
<source>N Engl J Med</source>
<year>2004</year>
<volume>350</volume>
<fpage>1179</fpage>
<lpage>88</lpage>
</nlm-citation>
</ref>
<ref id="ref3">
<label>3</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheung</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease</article-title>
<source>Lancet</source>
<year>2002</year>
<volume>360</volume>
<fpage>1831</fpage>
<lpage>7</lpage>
</nlm-citation>
</ref>
<ref id="ref4">
<label>4</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laudert</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Sivanandan</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Halvorson</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Effect of an H5N1 avian influenza virus infection on the immune system of mallard ducks</article-title>
<source>Avian Dis</source>
<year>1993</year>
<volume>37</volume>
<fpage>845</fpage>
<lpage>53</lpage>
</nlm-citation>
</ref>
<ref id="ref5">
<label>5</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Morken</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans</article-title>
<source>J Virol</source>
<year>2000</year>
<volume>74</volume>
<fpage>6105</fpage>
<lpage>16</lpage>
</nlm-citation>
</ref>
<ref id="ref6">
<label>6</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jameson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Terajima</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ennis</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species</article-title>
<source>J Immunol</source>
<year>1999</year>
<volume>162</volume>
<fpage>7578</fpage>
<lpage>83</lpage>
</nlm-citation>
</ref>
<ref id="ref7">
<label>7</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Renshaw</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Clements</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Katz</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection</article-title>
<source>J Virol</source>
<year>2001</year>
<volume>75</volume>
<fpage>5141</fpage>
<lpage>50</lpage>
</nlm-citation>
</ref>
<ref id="ref8">
<label>8</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shortridge</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of avian H5N1 influenza viruses from poultry in Hong Kong</article-title>
<source>Virology</source>
<year>1998</year>
<volume>252</volume>
<fpage>331</fpage>
<lpage>42</lpage>
</nlm-citation>
</ref>
<ref id="ref9">
<label>9</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shortridge</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation</article-title>
<source>Vaccine</source>
<year>1999</year>
<volume>17</volume>
<fpage>S26</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref10">
<label>10</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benedict</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Ware</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>Death and survival: viral regulation of TNF signaling pathways</article-title>
<source>Curr Opin Immunol</source>
<year>2003</year>
<volume>15</volume>
<fpage>59</fpage>
<lpage>65</lpage>
</nlm-citation>
</ref>
<ref id="ref11">
<label>11</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheridan</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Marsters</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Pitti</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors</article-title>
<source>Science</source>
<year>1997</year>
<volume>277</volume>
<fpage>818</fpage>
<lpage>21</lpage>
</nlm-citation>
</ref>
<ref id="ref12">
<label>12</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vidalain</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Azocar</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lamouille</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Measles virus induces functional TRAIL production by human dendritic cells</article-title>
<source>J Virol</source>
<year>2000</year>
<volume>74</volume>
<fpage>556</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref13">
<label>13</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raftery</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Schwab</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Eibert</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Samstag</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Walczak</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Schonrich</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy</article-title>
<source>Immunity</source>
<year>2001</year>
<volume>15</volume>
<fpage>997</fpage>
<lpage>1009</lpage>
</nlm-citation>
</ref>
<ref id="ref14">
<label>14</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hubert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Giannini</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Vanderplasschen</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dendritic cells induce the death of human papillomavirus-transformed keratinocytes</article-title>
<source>FASEB J</source>
<year>2001</year>
<volume>15</volume>
<fpage>2521</fpage>
<lpage>3</lpage>
</nlm-citation>
</ref>
<ref id="ref15">
<label>15</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Raftery</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Kather</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Giese</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schonrich</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Frontline: induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus</article-title>
<source>Eur J Immunol</source>
<year>2004</year>
<volume>34</volume>
<fpage>941</fpage>
<lpage>51</lpage>
</nlm-citation>
</ref>
<ref id="ref16">
<label>16</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lichtner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maranon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vidalain</surname>
<given-names>PO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>2004</year>
<volume>20</volume>
<fpage>175</fpage>
<lpage>82</lpage>
</nlm-citation>
</ref>
<ref id="ref17">
<label>17</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shortridge</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Krauss</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China</article-title>
<source>J Virol</source>
<year>2000</year>
<volume>74</volume>
<fpage>9372</fpage>
<lpage>80</lpage>
</nlm-citation>
</ref>
<ref id="ref18">
<label>18</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirst</surname>
<given-names>GK</given-names>
</name>
</person-group>
<article-title>Adsorption of influenza hemagglutinins and virus by red blood cells</article-title>
<source>J Exp Med</source>
<year>1942</year>
<volume>76</volume>
<fpage>195</fpage>
<lpage>209</lpage>
</nlm-citation>
</ref>
<ref id="ref19">
<label>19</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Payment</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Trudel</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Payment</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Trudel</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Isolation and identification of viruses</article-title>
<source>Methods and techniques in virology</source>
<year>1993</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Marcel Dekker</publisher-name>
<fpage>19</fpage>
<lpage>38</lpage>
</nlm-citation>
</ref>
<ref id="ref20">
<label>20</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levesque</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paquet</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Page</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Improved fluorescent bioassay for the detection of tumor necrosis factor activity</article-title>
<source>J Immunol Methods</source>
<year>1995</year>
<volume>178</volume>
<fpage>71</fpage>
<lpage>6</lpage>
</nlm-citation>
</ref>
<ref id="ref21">
<label>21</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Law</surname>
<given-names>HK</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>HY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells</article-title>
<source>Blood</source>
<year>2005</year>
<volume>106</volume>
<fpage>2366</fpage>
<lpage>74</lpage>
</nlm-citation>
</ref>
<ref id="ref22">
<label>22</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>CW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Re-emergence of fatal human influenza A subtype H5N1 disease</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>363</volume>
<fpage>617</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref23">
<label>23</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rimmelzwaan</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Kuiken</surname>
<given-names>T</given-names>
</name>
<name>
<surname>van Amerongen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Besterbroer</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>A primate model to study the pathogenesis of influenza A (H5N1) virus infection</article-title>
<source>Avian Dis</source>
<year>2003</year>
<volume>47</volume>
<fpage>931</fpage>
<lpage>3</lpage>
</nlm-citation>
</ref>
<ref id="ref24">
<label>24</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roe</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Bloxham</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>White</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Ross-Russell</surname>
<given-names>RI</given-names>
</name>
<name>
<surname>Tasker</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>O’Donnell</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis</article-title>
<source>Clin Exp Immunol</source>
<year>2004</year>
<volume>137</volume>
<fpage>139</fpage>
<lpage>45</lpage>
</nlm-citation>
</ref>
<ref id="ref25">
<label>25</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hensley</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Jahrling</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Geisbert</surname>
<given-names>TW</given-names>
</name>
</person-group>
<article-title>Proinflammatory response during Ebola virus infection of primate models: possible involvement of tumor necrosis factor receptor superfamilly</article-title>
<source>Immunol Lett</source>
<year>2002</year>
<volume>80</volume>
<fpage>169</fpage>
<lpage>79</lpage>
</nlm-citation>
</ref>
<ref id="ref26">
<label>26</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fournier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Schirrmacher</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus</article-title>
<source>Virology</source>
<year>2002</year>
<volume>297</volume>
<fpage>19</fpage>
<lpage>30</lpage>
</nlm-citation>
</ref>
<ref id="ref27">
<label>27</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kassis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Larrous</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Estaquier</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bourhy</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation</article-title>
<source>J Virol</source>
<year>2004</year>
<volume>78</volume>
<fpage>6543</fpage>
<lpage>55</lpage>
</nlm-citation>
</ref>
<ref id="ref28">
<label>28</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sedger</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Shows</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Blanton</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFN-gamma mediates a novel antivival activity through dynamic modulation of TRAIL and TRAIL receptor expression</article-title>
<source>J Immunol</source>
<year>1999</year>
<volume>163</volume>
<fpage>920</fpage>
<lpage>6</lpage>
</nlm-citation>
</ref>
<ref id="ref29">
<label>29</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamohara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Matsuyama</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shimozato</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils</article-title>
<source>Immunology</source>
<year>2004</year>
<volume>111</volume>
<fpage>186</fpage>
<lpage>94</lpage>
</nlm-citation>
</ref>
<ref id="ref30">
<label>30</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wurzer</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Ehrhardt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pleschka</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation</article-title>
<source>J Biol Chem</source>
<year>2004</year>
<volume>279</volume>
<fpage>30931</fpage>
<lpage>7</lpage>
</nlm-citation>
</ref>
<ref id="ref31">
<label>31</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishikawa</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nakazawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yoshinari</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Minami</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice</article-title>
<source>J Virol</source>
<year>2005</year>
<volume>79</volume>
<fpage>7658</fpage>
<lpage>63</lpage>
</nlm-citation>
</ref>
<ref id="ref32">
<label>32</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author"> </person-group>
<article-title>Human lymphocyte apoptosis after exposure to influenza A virus</article-title>
<source>J Virol</source>
<year>2001</year>
<volume>75</volume>
<fpage>5921</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref33">
<label>33</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Nightingale</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sweet</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Influenza A virus-induced apoptosis is a multifactorial process: exploiting reverse genetics to elucidate the role of influenza A virus proteins in virus-induced apoptosis</article-title>
<source>Virology</source>
<year>2005</year>
<volume>335</volume>
<fpage>198</fpage>
<lpage>211</lpage>
</nlm-citation>
</ref>
<ref id="ref34">
<label>34</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tollis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Di Trani</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Recent developments in avian influenza research epidemiology and immunoprophylaxis</article-title>
<source>Vet J</source>
<year>2002</year>
<volume>164</volume>
<fpage>202</fpage>
<lpage>15</lpage>
</nlm-citation>
</ref>
<ref id="ref35">
<label>35</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clarke</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Meintzer</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reovirus-induced apoptosis is mediated by TRAIL</article-title>
<source>J Virol</source>
<year>2000</year>
<volume>74</volume>
<fpage>8135</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref36">
<label>36</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Oliveira Pinto</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lecoeur</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Rapp</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gougeon</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3</article-title>
<source>Blood</source>
<year>2002</year>
<volume>99</volume>
<fpage>1666</fpage>
<lpage>75</lpage>
</nlm-citation>
</ref>
<ref id="ref37">
<label>37</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotelkin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prikhod’ko</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Bukreyev</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand</article-title>
<source>J Virol</source>
<year>2003</year>
<volume>77</volume>
<fpage>9156</fpage>
<lpage>72</lpage>
</nlm-citation>
</ref>
<ref id="ref38">
<label>38</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>El-Deiry</surname>
<given-names>WS</given-names>
</name>
</person-group>
<article-title>TRAIL and apoptosis induction by TNF-family death receptors</article-title>
<source>Oncogene</source>
<year>2003</year>
<volume>22</volume>
<fpage>8628</fpage>
<lpage>33</lpage>
</nlm-citation>
</ref>
<ref id="ref39">
<label>39</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suliman</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Datta</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>RK</given-names>
</name>
</person-group>
<article-title>Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and independent pathways</article-title>
<source>Oncogene</source>
<year>2001</year>
<volume>20</volume>
<fpage>2122</fpage>
<lpage>33</lpage>
</nlm-citation>
</ref>
<ref id="ref40">
<label>40</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zheng</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YH</given-names>
</name>
</person-group>
<article-title>Apoptosis and ameliorated listeriosis in TRAIL-null mice</article-title>
<source>J Immunol</source>
<year>2004</year>
<volume>173</volume>
<fpage>5652</fpage>
<lpage>8</lpage>
</nlm-citation>
</ref>
<ref id="ref41">
<label>41</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lunemann</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Waiczies</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ehrlich</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells</article-title>
<source>J Immunol</source>
<year>2002</year>
<volume>168</volume>
<fpage>4881</fpage>
<lpage>8</lpage>
</nlm-citation>
</ref>
<ref id="ref42">
<label>42</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bosque</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pardo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Martinez-Lorenzo</surname>
<given-names>MJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Down-regulation of normal human T cell blast activation: roles of APO2L/TRAIL, FasL, and c-FLIP, Bim, or Bcl-x isoform expression</article-title>
<source>J Leukoc Biol</source>
<year>2005</year>
<volume>77</volume>
<fpage>568</fpage>
<lpage>78</lpage>
</nlm-citation>
</ref>
<ref id="ref43">
<label>43</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayakawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Screpanti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Yagita</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy</article-title>
<source>J Immunol</source>
<year>2004</year>
<volume>172</volume>
<fpage>123</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="ref44">
<label>44</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beigel</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Farrar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Consultation on human influenza A/H5: avian influenza A (H5N1) infection in humans</article-title>
<source>N Engl J Med</source>
<year>2005</year>
<volume>353</volume>
<fpage>1374</fpage>
<lpage>85</lpage>
</nlm-citation>
</ref>
</ref-list>
<sec sec-type="display-objects">
<title>Figures and Tables</title>
<fig id="Fig1" position="float">
<label>Figure 1</label>
<caption>
<p>mRNA expression of tumor necrosis factor (TNF)–α, TNF-related apoptosis-inducing ligand (TRAIL), and Fas ligand (FasL) in influenza virus–infected monocyte-derived macrophages (MDMs).
<italic>A, B</italic>
and
<italic>C</italic>
The kinetics of TNF-α, TRAIL, and FasL mRNA expression in H1N1/98- and H9N2/G1-infected MDMs. Total RNA was harvested at 4, 8, and 12 h after influenza virus infection. The target genes were quantified by quantitative reverse-transcription polymerase chain reaction and normalized to 1×10
<sup>4</sup>
copies of β-actin mRNA. Data are the mean ± SE from 6 independent experiments.
<italic>D, E</italic>
and
<italic>F</italic>
TNF-α, TRAIL, and FasL mRNA expression in MDMs treated by H5N1 and UV-irradiated H5N1 (UVH1N1) at 7 h after infection. Data are the mean ± SE from 4 independent experiments. *P<.05, **P<.01</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig001.tif"></graphic>
</fig>
<fig id="Fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Sensitivity of Jurkat T cells to tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL)– and Fas ligand (FasL)–induced apoptosis but not to TNF-α.
<italic>A</italic>
Jurkat T cells cultured in the presence of recombinant TNF-α, TRAIL, and FasL at concentrations of 0–100 ng/mL for 24 h. Cell death was determined by active caspase–3 staining.
<italic>B</italic>
Jurkat T cell death, induced by 100 ng/mL recombinant human (rh) TRAIL and 100 ng/mL FasL and inhibited by specific antibodies at a final concentration of 1 μg/mL. Data are representative of 3 independent experiments. TRAIL-R2, TRAIL receptor 2</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig002.tif"></graphic>
</fig>
<fig id="Fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Release of functional soluble tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) by influenza virus–infected monocyte-dervied macrophates (MDMs) that was cytotoxic to Jurkat T cells. UV-irradiated supernatants from mock-treated
<italic>(A)</italic>
and influenza virus-infected
<italic>(B–D)</italic>
MDMs were tested for cytotoxic activity against Jurkat T cells. Jurkat T cells were incubated for 24 h with culture medium alone or with 50% supernatant from mock- or H1N1/98-, H9N2/G1-, and H5N1/97-infected MDMs, with or without TRAIL–receptor 2 (R2)/Fc chimera (1 μg/mL) or anti–Fas ligand (FasL; 1 μg/mL) (n=4, 4, 4, and 3, respectively). Cell death was determined by active caspase–3 staining. *P<.05, **P<.01)</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig003.tif"></graphic>
</fig>
<fig id="Fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Marked apoptosis of Jurkat T cells directly infected by human influenza virus H1N1/98 but not by avian influenza viruses H9N2/G1 and H5N1/97. Jurkat T cells were infected with H1N1/98, H5N1/97, and H9N2/G1 at an MOI of 1 for 1 h; then, unadsorbed virus was washed off and cells were cultured for further 24 h. Cell death was determined by active caspase–3 staining. A high level of apoptosis was observed in H1N1-infected Jurkat T cells. Data are the mean ± SE from 3 independent experiments</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig004.tif"></graphic>
</fig>
<fig id="Fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Influenza virus-infected monocyte-dervied macrophates (MDMs) becoming cytotoxic to Jurkat T cells. Mock- or virus-infected MDMs were coincubated with PKH-26–labeled Jurkat T cells at a ratio of 2:1. Cell death was determined by active caspase–3 staining
<italic>(A</italic>
and
<italic>B)</italic>
The cytotoxicity of H1N1/98-infected MDMs (n=9) and H9N2/G1-infected MDMs (n=14) was significantly inhibited by tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)–receptor 2 (R2)/Fc chimera (1 μg/mL) but not anti–Fas ligand (FasL; 1 μg/mL).
<italic>C</italic>
Strong cytotoxicity in avian influenza virus H5N1/97–infected MDMs and Jurkat T cell coculture. The apoptosis could only be reduced partially by TRAIL-R2 Fc/chimera. Data are the mean ± SE from 3 independent experiments. *P<.05, **P<.01</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig005.tif"></graphic>
</fig>
<fig id="Fig6" position="float">
<label>Figure 6</label>
<caption>
<p>H9N2/G1 and H5N1/97 infection sensitizing Jurkat T cells to induction of apoptosis by tumor necrosis factor (TNF)–α, TNF-related apoptosis-inducing ligand (TRAIL), and Fas ligand (FasL). After 1 h of virus adsorption, H9N2/G1- and H5N1/97-infected Jurkat T cells were cultured in presence of exogenous TNF-α (500 ng/mL), TRAIL (10 ng/mL), or FasL (10 ng/mL), respectively, for another 24-h culture. A significantly higher percentage of apoptotic cells was observed (P<.05). Data are the mean ± SE from 3 independent experiments</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-fig006.tif"></graphic>
</fig>
<fig id="tb1" position="float">
<label>Table 1</label>
<caption>
<p>Primer sequences and probes used in real-time polymerase chain reaction</p>
</caption>
<graphic mimetype="image" xlink:href="193-7-945-tab001.tif"></graphic>
</fig>
</sec>
<fn-group>
<fn id="fn1">
<p>Presented in part: Keystone Symposium 2005 (B2), 5 February 2005, Vancouver, Canada (abstract 450)</p>
<p>Financial support: Research Grants Council, Hong Kong Special Administrative Region, China (project HKU 7532/05M); Outstanding Researcher Awards (to Y.L.L. and J.S.M.P.); University of Hong Kong (Postgraduate Studentship and Vice Chancellor’s Development Fund to J.Z.)</p>
<p>Potential conflicts of interest: none reported</p>
</fn>
</fn-group>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianfang</namePart>
<namePart type="family">Zhou</namePart>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</name>
<name type="personal">
<namePart type="given">Helen K. W.</namePart>
<namePart type="family">Law</namePart>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</name>
<name type="personal">
<namePart type="given">Chung Yan</namePart>
<namePart type="family">Cheung</namePart>
<affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</affiliation>
</name>
<name type="personal">
<namePart type="given">Iris H. Y.</namePart>
<namePart type="family">Ng</namePart>
<affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</affiliation>
</name>
<name type="personal">
<namePart type="given">J. S. Malik</namePart>
<namePart type="family">Peiris</namePart>
<affiliation>Microbiology, Hong Kong Jockey Club Clinical Research Centre, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China</affiliation>
</name>
<name type="personal">
<namePart type="given">Yu Lung</namePart>
<namePart type="family">Lau</namePart>
<affiliation>Paediatrics and Adolescent Medicine and</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>The University of Chicago Press</publisher>
<dateIssued encoding="w3cdtf">2006-04-01</dateIssued>
<dateCreated encoding="w3cdtf">2005-10-31</dateCreated>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<abstract>Severe human disease associated with influenza A H5N1 virus was first detected in Hong Kong in 1997. Its recent reemergence in Asia and high associated mortality highlight the need to understand its pathogenesis. We investigated the roles of death receptor ligands (DRLs) in H5N1 infection. Significant up-regulation of tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and TNF-α, but not Fas ligand (FasL) mRNA, was detected in human monocyte–derived macrophages (MDMs) infected with avian influenza viruses A/Hong Kong/483/97 (H5N1/97) or its precursor, A/Quail/Hong Kong/G1/97. H5N1/97-infected MDMs exhibited the strongest induction of apoptosis in Jurkat T cells, and it could be reduced by TRAIL–receptor 2 blocking antibody. Furthermore, influenza virus infection enhanced the sensitivity of Jurkat T cells to apoptosis induced by TNF-α, TRAIL, and FasL. Our data suggested that functional TRAIL produced by influenza virus–infected MDMs was related to their cytotoxicity and that the enhanced sensitization to DRL-induced apoptosis detected in avian influenza may contribute to disease pathogenesis</abstract>
<relatedItem type="host">
<titleInfo>
<title>The Journal of Infectious Diseases</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>The Journal of Infectious Diseases</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-1899</identifier>
<identifier type="eISSN">1537-6613</identifier>
<identifier type="PublisherID">jid</identifier>
<identifier type="PublisherID-hwp">jinfdis</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>193</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>945</start>
<end>953</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="b1">
<titleInfo>
<title>Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">KY</namePart>
<namePart type="family">Yuen</namePart>
</name>
<name type="personal">
<namePart type="given">PK</namePart>
<namePart type="family">Chan</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Peiris</namePart>
</name>
<genre>journal</genre>
<note>Yuen KY Chan PK Peiris M Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus Lancet 1998 351 467 71</note>
<relatedItem type="host">
<titleInfo>
<title>Lancet</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>351</number>
</detail>
<extent unit="pages">
<start>467</start>
<end>71</end>
<list>467-71</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b2">
<titleInfo>
<title>Avian influenza A (H5N1) in 10 patients in Vietnam</title>
</titleInfo>
<name type="personal">
<namePart type="given">TH</namePart>
<namePart type="family">Tran</namePart>
</name>
<name type="personal">
<namePart type="given">TL</namePart>
<namePart type="family">Nguyen</namePart>
</name>
<name type="personal">
<namePart type="given">TD</namePart>
<namePart type="family">Nguyen</namePart>
</name>
<genre>journal</genre>
<note>Tran TH Nguyen TL Nguyen TD Avian influenza A (H5N1) in 10 patients in Vietnam N Engl J Med 2004 350 1179 88</note>
<relatedItem type="host">
<titleInfo>
<title>N Engl J Med</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>350</number>
</detail>
<extent unit="pages">
<start>1179</start>
<end>88</end>
<list>1179-88</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b3">
<titleInfo>
<title>Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Cheung</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Poon</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Lau</namePart>
</name>
<genre>journal</genre>
<note>Cheung C Poon L Lau A Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease Lancet 2002 360 1831 7</note>
<relatedItem type="host">
<titleInfo>
<title>Lancet</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>360</number>
</detail>
<extent unit="pages">
<start>1831</start>
<end>7</end>
<list>1831-7</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b4">
<titleInfo>
<title>Effect of an H5N1 avian influenza virus infection on the immune system of mallard ducks</title>
</titleInfo>
<name type="personal">
<namePart type="given">EA</namePart>
<namePart type="family">Laudert</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Sivanandan</namePart>
</name>
<name type="personal">
<namePart type="given">DA</namePart>
<namePart type="family">Halvorson</namePart>
</name>
<genre>journal</genre>
<note>Laudert EA Sivanandan V Halvorson DA Effect of an H5N1 avian influenza virus infection on the immune system of mallard ducks Avian Dis 1993 37 845 53</note>
<relatedItem type="host">
<titleInfo>
<title>Avian Dis</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>845</start>
<end>53</end>
<list>845-53</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b5">
<titleInfo>
<title>Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans</title>
</titleInfo>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Tumpey</namePart>
</name>
<name type="personal">
<namePart type="given">X</namePart>
<namePart type="family">Lu</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Morken</namePart>
</name>
<name type="personal">
<namePart type="given">SR</namePart>
<namePart type="family">Zaki</namePart>
</name>
<name type="personal">
<namePart type="given">JM</namePart>
<namePart type="family">Katz</namePart>
</name>
<genre>journal</genre>
<note>Tumpey TM Lu X Morken T Zaki SR Katz JM Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans J Virol 2000 74 6105 16</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>6105</start>
<end>16</end>
<list>6105-16</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b6">
<titleInfo>
<title>Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Jameson</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Cruz</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Terajima</namePart>
</name>
<name type="personal">
<namePart type="given">FA</namePart>
<namePart type="family">Ennis</namePart>
</name>
<genre>journal</genre>
<note>Jameson J Cruz J Terajima M Ennis FA Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species J Immunol 1999 162 7578 83</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>162</number>
</detail>
<extent unit="pages">
<start>7578</start>
<end>83</end>
<list>7578-83</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b7">
<titleInfo>
<title>Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection</title>
</titleInfo>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Tumpey</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Renshaw</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Clements</namePart>
</name>
<name type="personal">
<namePart type="given">JM</namePart>
<namePart type="family">Katz</namePart>
</name>
<genre>journal</genre>
<note>Tumpey TM Renshaw M Clements JD Katz JM Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection J Virol 2001 75 5141 50</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>75</number>
</detail>
<extent unit="pages">
<start>5141</start>
<end>50</end>
<list>5141-50</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b8">
<titleInfo>
<title>Characterization of avian H5N1 influenza viruses from poultry in Hong Kong</title>
</titleInfo>
<name type="personal">
<namePart type="given">KF</namePart>
<namePart type="family">Shortridge</namePart>
</name>
<name type="personal">
<namePart type="given">NN</namePart>
<namePart type="family">Zhou</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Guan</namePart>
</name>
<genre>journal</genre>
<note>Shortridge KF Zhou NN Guan Y Characterization of avian H5N1 influenza viruses from poultry in Hong Kong Virology 1998 252 331 42</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>331</start>
<end>42</end>
<list>331-42</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b9">
<titleInfo>
<title>Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation</title>
</titleInfo>
<name type="personal">
<namePart type="given">KF</namePart>
<namePart type="family">Shortridge</namePart>
</name>
<genre>journal</genre>
<note>Shortridge KF Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation Vaccine 1999 17 S26 9</note>
<relatedItem type="host">
<titleInfo>
<title>Vaccine</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>S26</start>
<end>9</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b10">
<titleInfo>
<title>Death and survival: viral regulation of TNF signaling pathways</title>
</titleInfo>
<name type="personal">
<namePart type="given">CA</namePart>
<namePart type="family">Benedict</namePart>
</name>
<name type="personal">
<namePart type="given">TA</namePart>
<namePart type="family">Banks</namePart>
</name>
<name type="personal">
<namePart type="given">CF</namePart>
<namePart type="family">Ware</namePart>
</name>
<genre>journal</genre>
<note>Benedict CA Banks TA Ware CF Death and survival: viral regulation of TNF signaling pathways Curr Opin Immunol 2003 15 59 65</note>
<relatedItem type="host">
<titleInfo>
<title>Curr Opin Immunol</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>59</start>
<end>65</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b11">
<titleInfo>
<title>Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors</title>
</titleInfo>
<name type="personal">
<namePart type="given">JP</namePart>
<namePart type="family">Sheridan</namePart>
</name>
<name type="personal">
<namePart type="given">SA</namePart>
<namePart type="family">Marsters</namePart>
</name>
<name type="personal">
<namePart type="given">RM</namePart>
<namePart type="family">Pitti</namePart>
</name>
<genre>journal</genre>
<note>Sheridan JP Marsters SA Pitti RM Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors Science 1997 277 818 21</note>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>277</number>
</detail>
<extent unit="pages">
<start>818</start>
<end>21</end>
<list>818-21</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b12">
<titleInfo>
<title>Measles virus induces functional TRAIL production by human dendritic cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">PO</namePart>
<namePart type="family">Vidalain</namePart>
</name>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Azocar</namePart>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Lamouille</namePart>
</name>
<genre>journal</genre>
<note>Vidalain PO Azocar O Lamouille B Measles virus induces functional TRAIL production by human dendritic cells J Virol 2000 74 556 9</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>556</start>
<end>9</end>
<list>556-9</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b13">
<titleInfo>
<title>Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy</title>
</titleInfo>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Raftery</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Schwab</namePart>
</name>
<name type="personal">
<namePart type="given">SM</namePart>
<namePart type="family">Eibert</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Samstag</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Walczak</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Schonrich</namePart>
</name>
<genre>journal</genre>
<note>Raftery MJ Schwab M Eibert SM Samstag Y Walczak H Schonrich G Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy Immunity 2001 15 997 1009</note>
<relatedItem type="host">
<titleInfo>
<title>Immunity</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>997</start>
<end>1009</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b14">
<titleInfo>
<title>Dendritic cells induce the death of human papillomavirus-transformed keratinocytes</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Hubert</namePart>
</name>
<name type="personal">
<namePart type="given">SL</namePart>
<namePart type="family">Giannini</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Vanderplasschen</namePart>
</name>
<genre>journal</genre>
<note>Hubert P Giannini SL Vanderplasschen A Dendritic cells induce the death of human papillomavirus-transformed keratinocytes FASEB J 2001 15 2521 3</note>
<relatedItem type="host">
<titleInfo>
<title>FASEB J</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>2521</start>
<end>3</end>
<list>2521-3</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b15">
<titleInfo>
<title>Frontline: induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">DB</namePart>
<namePart type="family">Muller</namePart>
</name>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Raftery</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kather</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Giese</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Schonrich</namePart>
</name>
<genre>journal</genre>
<note>Muller DB Raftery MJ Kather A Giese T Schonrich G Frontline: induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus Eur J Immunol 2004 34 941 51</note>
<relatedItem type="host">
<titleInfo>
<title>Eur J Immunol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>941</start>
<end>51</end>
<list>941-51</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b16">
<titleInfo>
<title>HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Lichtner</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Maranon</namePart>
</name>
<name type="personal">
<namePart type="given">PO</namePart>
<namePart type="family">Vidalain</namePart>
</name>
<genre>journal</genre>
<note>Lichtner M Maranon C Vidalain PO HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes AIDS Res Hum Retroviruses 2004 20 175 82</note>
<relatedItem type="host">
<titleInfo>
<title>AIDS Res Hum Retroviruses</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>175</start>
<end>82</end>
<list>175-82</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b17">
<titleInfo>
<title>H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Guan</namePart>
</name>
<name type="personal">
<namePart type="given">KF</namePart>
<namePart type="family">Shortridge</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Krauss</namePart>
</name>
<genre>journal</genre>
<note>Guan Y Shortridge KF Krauss S H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China J Virol 2000 74 9372 80</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>9372</start>
<end>80</end>
<list>9372-80</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b18">
<titleInfo>
<title>Adsorption of influenza hemagglutinins and virus by red blood cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">GK</namePart>
<namePart type="family">Hirst</namePart>
</name>
<genre>journal</genre>
<note>Hirst GK Adsorption of influenza hemagglutinins and virus by red blood cells J Exp Med 1942 76 195 209</note>
<relatedItem type="host">
<titleInfo>
<title>J Exp Med</title>
</titleInfo>
<part>
<date>1942</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>195</start>
<end>209</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b19">
<titleInfo>
<title>Isolation and identification of viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Payment</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Trudel</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Payment</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Trudel</namePart>
</name>
<genre>book</genre>
<note>Payment P Trudel M Payment P Trudel M Isolation and identification of viruses Methods and techniques in virology 1993 New York Marcel Dekker 19 38</note>
<relatedItem type="host">
<titleInfo>
<title>Methods and techniques in virology</title>
</titleInfo>
<originInfo>
<publisher>Marcel Dekker. </publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
</originInfo>
<part>
<date>1993</date>
<extent unit="pages">
<start>19</start>
<end>38</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b20">
<titleInfo>
<title>Improved fluorescent bioassay for the detection of tumor necrosis factor activity</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Levesque</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Paquet</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Page</namePart>
</name>
<genre>journal</genre>
<note>Levesque A Paquet A Page M Improved fluorescent bioassay for the detection of tumor necrosis factor activity J Immunol Methods 1995 178 71 6</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol Methods</title>
</titleInfo>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>178</number>
</detail>
<extent unit="pages">
<start>71</start>
<end>6</end>
<list>71-6</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b21">
<titleInfo>
<title>Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">HK</namePart>
<namePart type="family">Law</namePart>
</name>
<name type="personal">
<namePart type="given">CY</namePart>
<namePart type="family">Cheung</namePart>
</name>
<name type="personal">
<namePart type="given">HY</namePart>
<namePart type="family">Ng</namePart>
</name>
<genre>journal</genre>
<note>Law HK Cheung CY Ng HY Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells Blood 2005 106 2366 74</note>
<relatedItem type="host">
<titleInfo>
<title>Blood</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<extent unit="pages">
<start>2366</start>
<end>74</end>
<list>2366-74</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b22">
<titleInfo>
<title>Re-emergence of fatal human influenza A subtype H5N1 disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Peiris</namePart>
</name>
<name type="personal">
<namePart type="given">WC</namePart>
<namePart type="family">Yu</namePart>
</name>
<name type="personal">
<namePart type="given">CW</namePart>
<namePart type="family">Leung</namePart>
</name>
<genre>journal</genre>
<note>Peiris JS Yu WC Leung CW Re-emergence of fatal human influenza A subtype H5N1 disease Lancet 2004 363 617 9</note>
<relatedItem type="host">
<titleInfo>
<title>Lancet</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>363</number>
</detail>
<extent unit="pages">
<start>617</start>
<end>9</end>
<list>617-9</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b23">
<titleInfo>
<title>A primate model to study the pathogenesis of influenza A (H5N1) virus infection</title>
</titleInfo>
<name type="personal">
<namePart type="given">GF</namePart>
<namePart type="family">Rimmelzwaan</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Kuiken</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">van Amerongen</namePart>
</name>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Besterbroer</namePart>
</name>
<name type="personal">
<namePart type="given">RA</namePart>
<namePart type="family">Fouchier</namePart>
</name>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Osterhaus</namePart>
</name>
<genre>journal</genre>
<note>Rimmelzwaan GF Kuiken T van Amerongen G Besterbroer TM Fouchier RA Osterhaus AD A primate model to study the pathogenesis of influenza A (H5N1) virus infection Avian Dis 2003 47 931 3</note>
<relatedItem type="host">
<titleInfo>
<title>Avian Dis</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>47</number>
</detail>
<extent unit="pages">
<start>931</start>
<end>3</end>
<list>931-3</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b24">
<titleInfo>
<title>Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis</title>
</titleInfo>
<name type="personal">
<namePart type="given">MF</namePart>
<namePart type="family">Roe</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Bloxham</namePart>
</name>
<name type="personal">
<namePart type="given">DK</namePart>
<namePart type="family">White</namePart>
</name>
<name type="personal">
<namePart type="given">RI</namePart>
<namePart type="family">Ross-Russell</namePart>
</name>
<name type="personal">
<namePart type="given">RT</namePart>
<namePart type="family">Tasker</namePart>
</name>
<name type="personal">
<namePart type="given">DR</namePart>
<namePart type="family">O’Donnell</namePart>
</name>
<genre>journal</genre>
<note>Roe MF Bloxham DM White DK Ross-Russell RI Tasker RT O’Donnell DR Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis Clin Exp Immunol 2004 137 139 45</note>
<relatedItem type="host">
<titleInfo>
<title>Clin Exp Immunol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>137</number>
</detail>
<extent unit="pages">
<start>139</start>
<end>45</end>
<list>139-45</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b25">
<titleInfo>
<title>Proinflammatory response during Ebola virus infection of primate models: possible involvement of tumor necrosis factor receptor superfamilly</title>
</titleInfo>
<name type="personal">
<namePart type="given">LE</namePart>
<namePart type="family">Hensley</namePart>
</name>
<name type="personal">
<namePart type="given">HA</namePart>
<namePart type="family">Young</namePart>
</name>
<name type="personal">
<namePart type="given">PB</namePart>
<namePart type="family">Jahrling</namePart>
</name>
<name type="personal">
<namePart type="given">TW</namePart>
<namePart type="family">Geisbert</namePart>
</name>
<genre>journal</genre>
<note>Hensley LE Young HA Jahrling PB Geisbert TW Proinflammatory response during Ebola virus infection of primate models: possible involvement of tumor necrosis factor receptor superfamilly Immunol Lett 2002 80 169 79</note>
<relatedItem type="host">
<titleInfo>
<title>Immunol Lett</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>80</number>
</detail>
<extent unit="pages">
<start>169</start>
<end>79</end>
<list>169-79</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b26">
<titleInfo>
<title>Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Zeng</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Fournier</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Schirrmacher</namePart>
</name>
<genre>journal</genre>
<note>Zeng J Fournier P Schirrmacher V Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus Virology 2002 297 19 30</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>297</number>
</detail>
<extent unit="pages">
<start>19</start>
<end>30</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b27">
<titleInfo>
<title>Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Kassis</namePart>
</name>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Larrous</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Estaquier</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Bourhy</namePart>
</name>
<genre>journal</genre>
<note>Kassis R Larrous F Estaquier J Bourhy H Lyssavirus matrix protein induces apoptosis by a TRAIL-dependent mechanism involving caspase-8 activation J Virol 2004 78 6543 55</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>78</number>
</detail>
<extent unit="pages">
<start>6543</start>
<end>55</end>
<list>6543-55</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b28">
<titleInfo>
<title>IFN-gamma mediates a novel antivival activity through dynamic modulation of TRAIL and TRAIL receptor expression</title>
</titleInfo>
<name type="personal">
<namePart type="given">LM</namePart>
<namePart type="family">Sedger</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Shows</namePart>
</name>
<name type="personal">
<namePart type="given">RA</namePart>
<namePart type="family">Blanton</namePart>
</name>
<genre>journal</genre>
<note>Sedger LM Shows DM Blanton RA IFN-gamma mediates a novel antivival activity through dynamic modulation of TRAIL and TRAIL receptor expression J Immunol 1999 163 920 6</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>163</number>
</detail>
<extent unit="pages">
<start>920</start>
<end>6</end>
<list>920-6</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b29">
<titleInfo>
<title>Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Kamohara</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Matsuyama</namePart>
</name>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Shimozato</namePart>
</name>
<genre>journal</genre>
<note>Kamohara H Matsuyama W Shimozato O Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils Immunology 2004 111 186 94</note>
<relatedItem type="host">
<titleInfo>
<title>Immunology</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>111</number>
</detail>
<extent unit="pages">
<start>186</start>
<end>94</end>
<list>186-94</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b30">
<titleInfo>
<title>NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation</title>
</titleInfo>
<name type="personal">
<namePart type="given">WJ</namePart>
<namePart type="family">Wurzer</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Ehrhardt</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Pleschka</namePart>
</name>
<genre>journal</genre>
<note>Wurzer WJ Ehrhardt C Pleschka S NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation J Biol Chem 2004 279 30931 7</note>
<relatedItem type="host">
<titleInfo>
<title>J Biol Chem</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>279</number>
</detail>
<extent unit="pages">
<start>30931</start>
<end>7</end>
<list>30931-7</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b31">
<titleInfo>
<title>Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Ishikawa</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Nakazawa</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Yoshinari</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Minami</namePart>
</name>
<genre>journal</genre>
<note>Ishikawa E Nakazawa M Yoshinari M Minami M Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice J Virol 2005 79 7658 63</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>79</number>
</detail>
<extent unit="pages">
<start>7658</start>
<end>63</end>
<list>7658-63</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b32">
<titleInfo>
<title>Human lymphocyte apoptosis after exposure to influenza A virus</title>
</titleInfo>
<genre>journal</genre>
<note>Human lymphocyte apoptosis after exposure to influenza A virus J Virol 2001 75 5921 9</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>75</number>
</detail>
<extent unit="pages">
<start>5921</start>
<end>9</end>
<list>5921-9</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b33">
<titleInfo>
<title>Influenza A virus-induced apoptosis is a multifactorial process: exploiting reverse genetics to elucidate the role of influenza A virus proteins in virus-induced apoptosis</title>
</titleInfo>
<name type="personal">
<namePart type="given">SJ</namePart>
<namePart type="family">Morris</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Nightingale</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Smith</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Sweet</namePart>
</name>
<genre>journal</genre>
<note>Morris SJ Nightingale K Smith H Sweet C Influenza A virus-induced apoptosis is a multifactorial process: exploiting reverse genetics to elucidate the role of influenza A virus proteins in virus-induced apoptosis Virology 2005 335 198 211</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>335</number>
</detail>
<extent unit="pages">
<start>198</start>
<end>211</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b34">
<titleInfo>
<title>Recent developments in avian influenza research epidemiology and immunoprophylaxis</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Tollis</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Di Trani</namePart>
</name>
<genre>journal</genre>
<note>Tollis M Di Trani L Recent developments in avian influenza research epidemiology and immunoprophylaxis Vet J 2002 164 202 15</note>
<relatedItem type="host">
<titleInfo>
<title>Vet J</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>164</number>
</detail>
<extent unit="pages">
<start>202</start>
<end>15</end>
<list>202-15</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b35">
<titleInfo>
<title>Reovirus-induced apoptosis is mediated by TRAIL</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Clarke</namePart>
</name>
<name type="personal">
<namePart type="given">SM</namePart>
<namePart type="family">Meintzer</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Gibson</namePart>
</name>
<genre>journal</genre>
<note>Clarke P Meintzer SM Gibson S Reovirus-induced apoptosis is mediated by TRAIL J Virol 2000 74 8135 9</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>8135</start>
<end>9</end>
<list>8135-9</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b36">
<titleInfo>
<title>Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3</title>
</titleInfo>
<name type="personal">
<namePart type="given">LM</namePart>
<namePart type="family">de Oliveira Pinto</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Garcia</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Lecoeur</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Rapp</namePart>
</name>
<name type="personal">
<namePart type="given">ML</namePart>
<namePart type="family">Gougeon</namePart>
</name>
<genre>journal</genre>
<note>de Oliveira Pinto LM Garcia S Lecoeur H Rapp C Gougeon ML Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1 (TNFR1)- and TNFR2-mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase-8 and caspase-3 Blood 2002 99 1666 75</note>
<relatedItem type="host">
<titleInfo>
<title>Blood</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>99</number>
</detail>
<extent unit="pages">
<start>1666</start>
<end>75</end>
<list>1666-75</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b37">
<titleInfo>
<title>Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kotelkin</namePart>
</name>
<name type="personal">
<namePart type="given">EA</namePart>
<namePart type="family">Prikhod’ko</namePart>
</name>
<name type="personal">
<namePart type="given">JI</namePart>
<namePart type="family">Cohen</namePart>
</name>
<name type="personal">
<namePart type="given">PL</namePart>
<namePart type="family">Collins</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Bukreyev</namePart>
</name>
<genre>journal</genre>
<note>Kotelkin A Prikhod’ko EA Cohen JI Collins PL Bukreyev A Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand J Virol 2003 77 9156 72</note>
<relatedItem type="host">
<titleInfo>
<title>J Virol</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>77</number>
</detail>
<extent unit="pages">
<start>9156</start>
<end>72</end>
<list>9156-72</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b38">
<titleInfo>
<title>TRAIL and apoptosis induction by TNF-family death receptors</title>
</titleInfo>
<name type="personal">
<namePart type="given">SL</namePart>
<namePart type="family">Wang</namePart>
</name>
<name type="personal">
<namePart type="given">WS</namePart>
<namePart type="family">El-Deiry</namePart>
</name>
<genre>journal</genre>
<note>Wang SL El-Deiry WS TRAIL and apoptosis induction by TNF-family death receptors Oncogene 2003 22 8628 33</note>
<relatedItem type="host">
<titleInfo>
<title>Oncogene</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>8628</start>
<end>33</end>
<list>8628-33</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b39">
<titleInfo>
<title>Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and independent pathways</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Suliman</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Lam</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Datta</namePart>
</name>
<name type="personal">
<namePart type="given">RK</namePart>
<namePart type="family">Srivastava</namePart>
</name>
<genre>journal</genre>
<note>Suliman A Lam A Datta R Srivastava RK Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and independent pathways Oncogene 2001 20 2122 33</note>
<relatedItem type="host">
<titleInfo>
<title>Oncogene</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>2122</start>
<end>33</end>
<list>2122-33</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b40">
<titleInfo>
<title>Apoptosis and ameliorated listeriosis in TRAIL-null mice</title>
</titleInfo>
<name type="personal">
<namePart type="given">SJ</namePart>
<namePart type="family">Zheng</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Jiang</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Shen</namePart>
</name>
<name type="personal">
<namePart type="given">YH</namePart>
<namePart type="family">Chen</namePart>
</name>
<genre>journal</genre>
<note>Zheng SJ Jiang J Shen H Chen YH Apoptosis and ameliorated listeriosis in TRAIL-null mice J Immunol 2004 173 5652 8</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>173</number>
</detail>
<extent unit="pages">
<start>5652</start>
<end>8</end>
<list>5652-8</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b41">
<titleInfo>
<title>Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Lunemann</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Waiczies</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Ehrlich</namePart>
</name>
<genre>journal</genre>
<note>Lunemann JD Waiczies S Ehrlich S Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells J Immunol 2002 168 4881 8</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>168</number>
</detail>
<extent unit="pages">
<start>4881</start>
<end>8</end>
<list>4881-8</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b42">
<titleInfo>
<title>Down-regulation of normal human T cell blast activation: roles of APO2L/TRAIL, FasL, and c-FLIP, Bim, or Bcl-x isoform expression</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Bosque</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Pardo</namePart>
</name>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Martinez-Lorenzo</namePart>
</name>
<genre>journal</genre>
<note>Bosque A Pardo J Martinez-Lorenzo MJ Down-regulation of normal human T cell blast activation: roles of APO2L/TRAIL, FasL, and c-FLIP, Bim, or Bcl-x isoform expression J Leukoc Biol 2005 77 568 78</note>
<relatedItem type="host">
<titleInfo>
<title>J Leukoc Biol</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>77</number>
</detail>
<extent unit="pages">
<start>568</start>
<end>78</end>
<list>568-78</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b43">
<titleInfo>
<title>NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Hayakawa</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Screpanti</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Yagita</namePart>
</name>
<genre>journal</genre>
<note>Hayakawa Y Screpanti V Yagita H NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy J Immunol 2004 172 123 9</note>
<relatedItem type="host">
<titleInfo>
<title>J Immunol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>172</number>
</detail>
<extent unit="pages">
<start>123</start>
<end>9</end>
<list>123-9</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="b44">
<titleInfo>
<title>Consultation on human influenza A/H5: avian influenza A (H5N1) infection in humans</title>
</titleInfo>
<name type="personal">
<namePart type="given">JH</namePart>
<namePart type="family">Beigel</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Farrar</namePart>
</name>
<name type="personal">
<namePart type="given">AM</namePart>
<namePart type="family">Han</namePart>
</name>
<genre>journal</genre>
<note>Beigel JH Farrar J Han AM Consultation on human influenza A/H5: avian influenza A (H5N1) infection in humans N Engl J Med 2005 353 1374 85</note>
<relatedItem type="host">
<titleInfo>
<title>N Engl J Med</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>353</number>
</detail>
<extent unit="pages">
<start>1374</start>
<end>85</end>
<list>1374-85</list>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA</identifier>
<identifier type="ark">ark:/67375/HXZ-H64517FP-C</identifier>
<identifier type="DOI">10.1086/500954</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2006 by the Infectious Diseases Society of America</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-17</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/record.json</uri>
</json:item>
</metadata>
<covers>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA/covers/tiff</uri>
</json:item>
</covers>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-H64517FP-C/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001797 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001797 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6ADFA73BD5AB2AE9E6248B3C9C89DFD6566DB7BA
   |texte=   Functional Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Production by Avian Influenza Virus–Infected Macrophages
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021