Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A model for the spread and control of pandemic influenza in an isolated geographical region

Identifieur interne : 001601 ( Istex/Corpus ); précédent : 001600; suivant : 001602

A model for the spread and control of pandemic influenza in an isolated geographical region

Auteurs : M. G Roberts ; M. Baker ; L. C Jennings ; G. Sertsou ; N. Wilson

Source :

RBID : ISTEX:4AF55F93C64140115BE92CCED61779639466B7AC

Abstract

In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with 02.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.

Url:
DOI: 10.1098/rsif.2006.0176

Links to Exploration step

ISTEX:4AF55F93C64140115BE92CCED61779639466B7AC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A model for the spread and control of pandemic influenza in an isolated geographical region</title>
<author>
<name sortKey="Roberts, M G" sort="Roberts, M G" uniqKey="Roberts M" first="M. G" last="Roberts">M. G Roberts</name>
<affiliation>
<mods:affiliation>Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey UniversityPrivate Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: m.g.roberts@massey.ac.nz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, M" sort="Baker, M" uniqKey="Baker M" first="M" last="Baker">M. Baker</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jennings, L C" sort="Jennings, L C" uniqKey="Jennings L" first="L. C" last="Jennings">L. C Jennings</name>
<affiliation>
<mods:affiliation>Canterbury Health Laboratories, Canterbury District Health BoardPO Box 151, Christchurch, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sertsou, G" sort="Sertsou, G" uniqKey="Sertsou G" first="G" last="Sertsou">G. Sertsou</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, N" sort="Wilson, N" uniqKey="Wilson N" first="N" last="Wilson">N. Wilson</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4AF55F93C64140115BE92CCED61779639466B7AC</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1098/rsif.2006.0176</idno>
<idno type="url">https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001601</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001601</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A model for the spread and control of pandemic influenza in an isolated geographical region</title>
<author>
<name sortKey="Roberts, M G" sort="Roberts, M G" uniqKey="Roberts M" first="M. G" last="Roberts">M. G Roberts</name>
<affiliation>
<mods:affiliation>Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey UniversityPrivate Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: m.g.roberts@massey.ac.nz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, M" sort="Baker, M" uniqKey="Baker M" first="M" last="Baker">M. Baker</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jennings, L C" sort="Jennings, L C" uniqKey="Jennings L" first="L. C" last="Jennings">L. C Jennings</name>
<affiliation>
<mods:affiliation>Canterbury Health Laboratories, Canterbury District Health BoardPO Box 151, Christchurch, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sertsou, G" sort="Sertsou, G" uniqKey="Sertsou G" first="G" last="Sertsou">G. Sertsou</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, N" sort="Wilson, N" uniqKey="Wilson N" first="N" last="Wilson">N. Wilson</name>
<affiliation>
<mods:affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of The Royal Society Interface</title>
<idno type="ISSN">1742-5689</idno>
<idno type="eISSN">1742-5662</idno>
<imprint>
<publisher>The Royal Society</publisher>
<pubPlace>London</pubPlace>
<date type="e-published">2006</date>
<date type="published">2007</date>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="325">325</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
<idno type="ISSN">1742-5689</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1742-5689</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with 02.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.</div>
</front>
</TEI>
<istex>
<corpusName>rsl</corpusName>
<author>
<json:item>
<name>M.G Roberts</name>
<affiliations>
<json:string>Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey UniversityPrivate Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</json:string>
<json:string>E-mail: m.g.roberts@massey.ac.nz</json:string>
</affiliations>
</json:item>
<json:item>
<name>M Baker</name>
<affiliations>
<json:string>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>L.C Jennings</name>
<affiliations>
<json:string>Canterbury Health Laboratories, Canterbury District Health BoardPO Box 151, Christchurch, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>G Sertsou</name>
<affiliations>
<json:string>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>N Wilson</name>
<affiliations>
<json:string>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mathematical epidemiology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>infectious diseases</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>exotic infections</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pandemic influenza</value>
</json:item>
</subject>
<articleId>
<json:string>rsif20060176</json:string>
</articleId>
<arkIstex>ark:/67375/V84-J8L152ZP-4</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with 02.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.</abstract>
<qualityIndicators>
<score>5.558</score>
<pdfWordCount>3782</pdfWordCount>
<pdfCharCount>23128</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>6</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<pdfWordsPerPage>630</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>148</abstractWordCount>
<abstractCharCount>950</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>A model for the spread and control of pandemic influenza in an isolated geographical region</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of The Royal Society Interface</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1742-5689</json:string>
</issn>
<eissn>
<json:string>1742-5662</json:string>
</eissn>
<publisherId>
<json:string>RSIF</json:string>
</publisherId>
<volume>4</volume>
<issue>13</issue>
<pages>
<first>325</first>
<last>330</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/V84-J8L152ZP-4</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - multidisciplinary sciences</json:string>
</wos>
<scienceMetrix>
<json:string>1 - general</json:string>
<json:string>2 - general science & technology</json:string>
<json:string>3 - general science & technology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Biomaterials</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biophysics</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biotechnology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1098/rsif.2006.0176</json:string>
</doi>
<id>4AF55F93C64140115BE92CCED61779639466B7AC</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">A model for the spread and control of pandemic influenza in an isolated geographical region</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>The Royal Society</publisher>
<pubPlace>London</pubPlace>
<availability>
<licence>© 2006 The Royal Society</licence>
</availability>
<date type="published">2007</date>
<date type="Copyright" when="2006">2006</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">A model for the spread and control of pandemic influenza in an isolated geographical region</title>
<author xml:id="author-0000">
<persName>
<surname>Roberts</surname>
<forename type="first">M.G</forename>
</persName>
<affiliation>
<orgName type="institution">Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey University</orgName>
<address>
<addrLine>Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Baker</surname>
<forename type="first">M</forename>
</persName>
<affiliation>
<orgName type="institution">Wellington School of Medicine & Health Sciences, Otago University</orgName>
<address>
<addrLine>Wellington, New Zealand</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Jennings</surname>
<forename type="first">L.C</forename>
</persName>
<affiliation>
<orgName type="institution">Canterbury Health Laboratories, Canterbury District Health Board</orgName>
<address>
<addrLine>PO Box 151, Christchurch, New Zealand</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<surname>Sertsou</surname>
<forename type="first">G</forename>
</persName>
<affiliation>
<orgName type="institution">Wellington School of Medicine & Health Sciences, Otago University</orgName>
<address>
<addrLine>Wellington, New Zealand</addrLine>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Wilson</surname>
<forename type="first">N</forename>
</persName>
<affiliation>
<orgName type="institution">Wellington School of Medicine & Health Sciences, Otago University</orgName>
<address>
<addrLine>Wellington, New Zealand</addrLine>
</address>
</affiliation>
</author>
<idno type="istex">4AF55F93C64140115BE92CCED61779639466B7AC</idno>
<idno type="ark">ark:/67375/V84-J8L152ZP-4</idno>
<idno type="publisher-id">rsif20060176</idno>
<idno type="DOI">10.1098/rsif.2006.0176</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of The Royal Society Interface</title>
<idno type="hwp">royinterface</idno>
<idno type="publisher-id">RSIF</idno>
<idno type="pISSN">1742-5689</idno>
<idno type="eISSN">1742-5662</idno>
<imprint>
<publisher>The Royal Society</publisher>
<pubPlace>London</pubPlace>
<date type="e-published">2006</date>
<date type="published">2007</date>
<biblScope unit="vol">4</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="325">325</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.40" when="2020-03-31">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en">
<p>In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with
<formula rend="inline">
<graphic url="325equ18"></graphic>
</formula>
<hi rend="subscript">0</hi>
=2.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>Research Article</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords>
<term>mathematical epidemiology</term>
<term>infectious diseases</term>
<term>exotic infections</term>
<term>pandemic influenza</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-03-31" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus rsl not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">royinterface</journal-id>
<journal-id journal-id-type="publisher-id">RSIF</journal-id>
<journal-title>Journal of The Royal Society Interface</journal-title>
<issn pub-type="ppub">1742-5689</issn>
<issn pub-type="epub">1742-5662</issn>
<publisher>
<publisher-name>The Royal Society</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">rsif20060176</article-id>
<article-id pub-id-type="doi">10.1098/rsif.2006.0176</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A model for the spread and control of pandemic influenza in an isolated geographical region</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Roberts</surname>
<given-names>M.G</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baker</surname>
<given-names>M</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jennings</surname>
<given-names>L.C</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sertsou</surname>
<given-names>G</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wilson</surname>
<given-names>N</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey University</institution>
<addr-line>Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Wellington School of Medicine & Health Sciences, Otago University</institution>
<addr-line>Wellington, New Zealand</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<institution>Canterbury Health Laboratories, Canterbury District Health Board</institution>
<addr-line>PO Box 151, Christchurch, New Zealand</addr-line>
</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Author for correspondence (
<email>m.g.roberts@massey.ac.nz</email>
)</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>28</day>
<month>11</month>
<year>2006</year>
</pub-date>
<pub-date pub-type="ppub">
<day>22</day>
<month>04</month>
<year>2007</year>
</pub-date>
<volume>4</volume>
<issue>13</issue>
<fpage>325</fpage>
<lpage>330</lpage>
<history>
<date date-type="received">
<day>3</day>
<month>10</month>
<year>2006</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>10</month>
<year>2006</year>
</date>
</history>
<permissions>
<copyright-statement>© 2006 The Royal Society</copyright-statement>
<copyright-year>2006</copyright-year>
</permissions>
<self-uri content-type="pdf" xlink:href="325.pdf"></self-uri>
<abstract xml:lang="en">
<p>In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with
<inline-formula>
<inline-graphic xlink:href="325equ18"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.</p>
</abstract>
<kwd-group>
<kwd>mathematical epidemiology</kwd>
<kwd>infectious diseases</kwd>
<kwd>exotic infections</kwd>
<kwd>pandemic influenza</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>1. Introduction</title>
<p>When a pandemic of an emerging infectious disease threatens, there are considerable advantages to isolated geographical regions. New Zealand is one example of such isolation, and this study addresses the threat to the country from pandemic influenza. Travel times from any other major land mass mean that the importation of infection through surface contamination is unlikely, and those arriving by sea would have had time to express symptoms en route. Hence, if pandemic influenza were to reach the country, the most probable scenario would be that an epidemic had already started elsewhere, and the virus would be introduced to New Zealand by an infected traveller. A response plan for dealing with such an event has been formulated (
<xref ref-type="bibr" rid="bib9">Jennings 2005</xref>
;
<xref ref-type="bibr" rid="bib2">Coker & Mournier-Jack 2006</xref>
). The major point of entry to the country is Auckland, which is also by far the biggest city and the most probable region for an epidemic to be initiated.</p>
<p>We presupposed a single unintentional introduction of a virus by an airline passenger, not detected by screening at the border. We used a structured Kermack–McKendrick integral equation model to describe the spread of a novel influenza-like virus in an isolated population. We used model parameters consistent with other published models of influenza, and investigated the ability of a range of control scenarios to contain the outbreak. It is anticipated that if and when an influenza pandemic begins, observations from other countries and regions will enable us to revise our parameters, and all our calculations will be repeated. In the meantime, it is believed that the model and parameters are based on reasonable estimates of what could happen, and these results are assisting the planning of a response.</p>
<p>The model is summarized in
<xref ref-type="fig" rid="fig1">figure 1</xref>
, and described in
<xref ref-type="sec" rid="sec7">appendix A</xref>
. Similar models have previously been used to evaluate control policies for severe acute respiratory syndrome (SARS;
<xref ref-type="bibr" rid="bib14">Roberts 2004</xref>
,
<xref ref-type="bibr" rid="bib15">2006</xref>
) and smallpox (
<xref ref-type="bibr" rid="bib1">Aldis & Roberts 2005</xref>
).
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Schematic of the model structure. The locations at which infection occurs were as follows: 1, within the household; 2, at school; 3, within the workplace; 4, within the community.</p>
</caption>
<graphic xlink:href="325fig1"></graphic>
</fig>
</p>
<p>A feature of the model is that susceptibles are treated as a homogeneous group, but the incidence of infection is structured according to the location where the infection takes place. The locations at which infection occurs are within the household, at school, within the workplace and within the community. Those that were infected at location ℓ infect others at location
<italic>k</italic>
at a rate proportional to the component
<italic>W</italic>
<sub>
<italic>k</italic>
</sub>
of the mixing matrix
<bold>
<italic>W</italic>
</bold>
, which is scaled so that ‖
<bold>
<italic>W</italic>
</bold>
‖=1. It was proved by
<xref ref-type="bibr" rid="bib16">Roberts (submitted)</xref>
that the final size equation for this model is the same as that for the unstructured model (
<xref ref-type="bibr" rid="bib18">Kermack & McKendrick 1927</xref>
;
<xref ref-type="bibr" rid="bib3">Diekmann & Heesterbeek 2000</xref>
and references therein),
<disp-formula id="fd1.1">
<label>(1.1)</label>
<graphic xlink:href="325equ19"></graphic>
</disp-formula>
where
<italic>P</italic>
is the proportion of the population that becomes infected over the course of the epidemic and
<inline-formula>
<inline-graphic xlink:href="325equ20"></inline-graphic>
</inline-formula>
<sub>0</sub>
is the basic reproduction number, defined as the expected number of secondary cases that would arise from a typical primary case introduced into a fully susceptible population (
<xref ref-type="bibr" rid="bib4">Diekmann
<italic>et al</italic>
. 1990</xref>
;
<xref ref-type="bibr" rid="bib3">Diekmann & Heesterbeek 2000</xref>
). It was also proved by
<xref ref-type="bibr" rid="bib16">Roberts (submitted)</xref>
that the proportion of the population infected at each location is proportional to the components of the eigenvector of
<bold>
<italic>W</italic>
</bold>
that corresponds to the unit eigenvalue. These results are used here to assess the performance of control measures designed to reduce the impact of an influenza epidemic, in terms of the reduction in the total number of infections that result.</p>
</sec>
<sec>
<title>2. Method</title>
<p>We solved the model numerically for values of the basic reproduction number
<inline-formula>
<inline-graphic xlink:href="325equ21"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0, 1.1 and 3.0, to determine the potential size and time-course of the epidemic in a region of one million people. The assumed parameter values are summarized in
<xref ref-type="table" rid="tbl1">table 1</xref>
. These are mostly taken from other published modelling exercises, and would be revised in the event of a pandemic as data become available. See the papers cited and their citations for details of the assumptions that led to these estimates. The exception is the assumed 95% uptake of antivirals. It was observed that 81% of passengers on a cruise ship took antiviral prophylaxis when offered during an outbreak of seasonal influenza (
<xref ref-type="bibr" rid="bib12">Miller
<italic>et al</italic>
. 2000</xref>
). As pandemic influenza is a more serious threat to health, a higher uptake was assumed.
<table-wrap id="tbl1">
<label>Table 1</label>
<caption>
<p>Summary of parameter values used in the model.</p>
</caption>
<table>
<thead>
<tr>
<th valign="bottom" align="left">parameter</th>
<th valign="bottom" align="left">value (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic reproduction number (
<xref ref-type="bibr" rid="bib5">Ferguson
<italic>et al</italic>
. 2005</xref>
,
<xref ref-type="bibr" rid="bib6">2006</xref>
;
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
;
<xref ref-type="bibr" rid="bib8">Germann
<italic>et al</italic>
. 2006</xref>
)</td>
<td>
<inline-formula>
<inline-graphic xlink:href="325equ12"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0(1.1, 3.0)</td>
</tr>
<tr>
<td>latent period (
<xref ref-type="bibr" rid="bib10">Longini
<italic>et al</italic>
. 2004</xref>
,
<xref ref-type="bibr" rid="bib11">2005</xref>
;
<xref ref-type="bibr" rid="bib13">Mills
<italic>et al</italic>
. 2004</xref>
;
<xref ref-type="bibr" rid="bib7">Gani
<italic>et al</italic>
. 2005</xref>
)</td>
<td>1.6 days (1.2, 2.0)</td>
</tr>
<tr>
<td>infectious period (
<xref ref-type="bibr" rid="bib13">Mills
<italic>et al</italic>
. 2004</xref>
;
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
)</td>
<td>4.1 days</td>
</tr>
<tr>
<td>proportion initially infected within the (
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
);</td>
<td></td>
</tr>
<tr>
<td>household</td>
<td>47%</td>
</tr>
<tr>
<td>school</td>
<td>24%</td>
</tr>
<tr>
<td>workplace</td>
<td>18%</td>
</tr>
<tr>
<td>community</td>
<td>11%</td>
</tr>
<tr>
<td>proportion of infectives symptomatic (
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
)</td>
<td>67%</td>
</tr>
<tr>
<td>relative infectivity of asymptomatics (
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
)</td>
<td>50%</td>
</tr>
<tr>
<td>efficacy of antivirals (
<xref ref-type="bibr" rid="bib5">Ferguson
<italic>et al</italic>
. 2005</xref>
;
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. 2005</xref>
)</td>
<td>60%</td>
</tr>
<tr>
<td>uptake of antivirals</td>
<td>95%</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>We investigated the potential effects of control measures based on social distancing by determining how their implementation would modify the mixing matrix
<bold>
<italic>W</italic>
</bold>
to form a new matrix
<bold>
<italic>W</italic>
</bold>
<sub>
<italic>c</italic>
</sub>
. The basic reproduction number under control is then
<inline-formula>
<inline-graphic xlink:href="325equ22"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
=‖
<bold>
<italic>W</italic>
</bold>
<sub>
<italic>c</italic>
</sub>
<inline-formula>
<inline-graphic xlink:href="325equ23"></inline-graphic>
</inline-formula>
<sub>0</sub>
. Hence, we determined the ‘threshold’ control effort, which reduces
<inline-formula>
<inline-graphic xlink:href="325equ24"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
to 1. For example, reducing transmission in schools would multiply the second row of the matrix
<bold>
<italic>W</italic>
</bold>
by a factor
<italic>c</italic>
to obtain
<bold>
<italic>W</italic>
</bold>
<sub>
<italic>c</italic>
</sub>
. The threshold value determined was that value of
<italic>c</italic>
which led to ‖
<bold>
<italic>W</italic>
</bold>
<sub>
<italic>c</italic>
</sub>
‖=1/
<inline-formula>
<inline-graphic xlink:href="325equ25"></inline-graphic>
</inline-formula>
<sub>0</sub>
and hence
<inline-formula>
<inline-graphic xlink:href="325equ26"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
=1.</p>
<p>Finally, we postulated 12 control scenarios that combined social distancing, targeted antiviral treatment and antiviral prophylaxis (TATP) and home quarantine. For each, we calculated the value of
<inline-formula>
<inline-graphic xlink:href="325equ27"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
and the proportion of the population infected in an epidemic under the application of selected control scenarios. The scenarios are summarized as follows.
<list list-type="order">
<list-item>
<p>No intervention.</p>
</list-item>
<list-item>
<p>Close schools. Transmission at school ceases.</p>
</list-item>
<list-item>
<p>Close workplaces (70% compliance). Transmission at work is reduced to 30% of the no intervention level.</p>
</list-item>
<list-item>
<p>Close schools and workplaces. A combination of ii and iii above.</p>
</list-item>
<list-item>
<p>TATP. Antiviral treatment of cases prevents 45.6% of all transmission, and when combined with antiviral prophylaxis of home contacts, this leads to an overall reduction of 65.2% of within-household transmission. This is calculated as follows: 80% of transmission is due to symptomatic cases (see
<xref ref-type="table" rid="tbl1">table 1</xref>
) and 95% uptake of antivirals combined with 60% efficacy prevents 57% of this. Hence, out of the transmission that would occur without intervention, 20% is from asymptomatic cases, 45.6% is prevented by antiviral treatment and 34.4% continues from symptomatic cases. Antiviral prophylaxis of home contacts prevents a further 57% of the 34.4% of transmission due to symptomatic cases within the same household.</p>
</list-item>
<list-item>
<p>Home quarantine (70% compliance). Health authorities recommend that members of a household with a symptomatic case remain at home for 6 days and 70% comply. Hence, 56% (equal to 70% of 80%) of all transmission from those infected within their own household is prevented.</p>
</list-item>
<list-item>
<p>Home quarantine (50% compliance). Hence, 40% of transmission from household contacts is prevented.</p>
</list-item>
<list-item>
<p>Close schools and home quarantine. A combination of 2 and 4 above.</p>
</list-item>
<list-item>
<p>Close schools and TATP. A combination of 2 and 5 above.</p>
</list-item>
<list-item>
<p>TATP and home quarantine. A combination of 5 and 6 above. Hence, 66.9% (equal to 70% of the 80% of transmission that would result from symptomatic cases who comply with quarantine, plus 46.6% of the other 30% (of the 80%) prevented by antivirals) of transmission from those infected at home, 65.2% of within-household transmission and 45.6% of all other transmission (see v above) are prevented.</p>
</list-item>
<list-item>
<p>Close schools, TATP and quarantine. A combination of 2, 5 and 6 above.</p>
</list-item>
<list-item>
<p>Close schools and workplaces, TATP and quarantine. A combination of 4–6 above.</p>
</list-item>
</list>
</p>
<p>For all scenarios, it was assumed that if transmission were reduced at one location, there would be no compensatory increase in transmission elsewhere.</p>
</sec>
<sec>
<title>3. Results</title>
<sec>
<title>3.1 The uncontrolled epidemic</title>
<p>The solution of the final size equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
is shown in
<xref ref-type="fig" rid="fig2">figure 2</xref>
. When
<inline-formula>
<inline-graphic xlink:href="325equ28"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0,
<italic>P</italic>
=0.7968, which implies that 79.7% of the population will be infected in an epidemic. The solutions for
<inline-formula>
<inline-graphic xlink:href="325equ29"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1 and
<inline-formula>
<inline-graphic xlink:href="325equ30"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0 imply that 17.6% or 94.0%, respectively, would be infected. The results from some recent simulation exercises for pandemic influenza are also presented in
<xref ref-type="fig" rid="fig2">figure 2</xref>
for comparison.
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>The proportion of the population infected in an epidemic, as a function of the basic reproduction number
<inline-formula>
<inline-graphic xlink:href="325equ3"></inline-graphic>
</inline-formula>
<sub>0</sub>
, and as predicted by the final size equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
. The symbols are the results from models of pandemic influenza obtained by the following authors: uptriangles,
<xref ref-type="bibr" rid="bib5">Ferguson
<italic>et al</italic>
. (2005)</xref>
; downtriangles,
<xref ref-type="bibr" rid="bib6">Ferguson
<italic>et al</italic>
. (2006)</xref>
; squares,
<xref ref-type="bibr" rid="bib11">Longini
<italic>et al</italic>
. (2005)</xref>
; circles,
<xref ref-type="bibr" rid="bib8">Germann
<italic>et al</italic>
. (2006)</xref>
; star,
<xref ref-type="bibr" rid="bib17">Wu
<italic>et al</italic>
. (2006)</xref>
.</p>
</caption>
<graphic xlink:href="325fig2"></graphic>
</fig>
</p>
<p>Numerically solving the structured epidemic model without any control intervention for
<inline-formula>
<inline-graphic xlink:href="325equ31"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0 resulted in an epidemic lasting approximately 100 days (
<xref ref-type="fig" rid="fig3">figure 3</xref>
). The other numerical results obtained (not shown) resulted in incidence curves of a similar shape, except that for
<inline-formula>
<inline-graphic xlink:href="325equ32"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0, the epidemic was completed in approximately 80 days and for
<inline-formula>
<inline-graphic xlink:href="325equ33"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1, the epidemic lasted over 600 days. It was confirmed that the final size equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
estimates the proportion of the population infected in an epidemic, and that the distribution of cases among infection locations (see
<xref ref-type="table" rid="tbl1">table 1</xref>
) is determined by the eigenvector of
<bold>
<italic>W</italic>
</bold>
that corresponds to the unit eigenvalue.
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>Results from the structured model when
<inline-formula>
<inline-graphic xlink:href="325equ4"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0 and no control is applied. (
<italic>a</italic>
) The incidence of infection. Curves are (from bottom to top) as follows:
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>1</sub>
(
<italic>t</italic>
), incidence in the household;
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>1</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>2</sub>
(
<italic>t</italic>
), incidence in the household and schools;
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>1</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>2</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>3</sub>
(
<italic>t</italic>
), incidence in the household, schools and workplaces; and
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>1</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>2</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>3</sub>
(
<italic>t</italic>
)+
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>4</sub>
(
<italic>t</italic>
), total incidence. (
<italic>b</italic>
) Curves are (from bottom to top) as follows:
<italic>S</italic>
(
<italic>t</italic>
)/
<italic>N</italic>
, the proportion susceptible; and 1−
<italic>R</italic>
(
<italic>t</italic>
)/
<italic>N</italic>
, the proportion susceptible plus the proportion infected.</p>
</caption>
<graphic xlink:href="325fig3"></graphic>
</fig>
</p>
</sec>
<sec>
<title>3.2 The controlled epidemic</title>
<p>The threshold values for the level of control required to prevent epidemics are presented in
<xref ref-type="table" rid="tbl2">table 2</xref>
. These are the values at which
<inline-formula>
<inline-graphic xlink:href="325equ34"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
=1.0. These show, for example, that if
<inline-formula>
<inline-graphic xlink:href="325equ35"></inline-graphic>
</inline-formula>
<sub>0</sub>
were 1.1 then transmission in schools would need to be reduced to 63% of its previous (no control) level to prevent epidemics, but this could also be achieved by reducing transmission to 45% in workplaces or to 80% in both schools and workplaces. Note that these values are the percentage of the pre-control value, hence the figure of 80% translates to a 20% reduction in transmission.
<table-wrap id="tbl2">
<label>Table 2</label>
<caption>
<p>The threshold quantity by which transmission at specified locations should be multiplied to prevent an epidemic if
<inline-formula>
<inline-graphic xlink:href="325equ13"></inline-graphic>
</inline-formula>
<sub>0</sub>
were equal to 1.1, 2.0 or 3.0. Note: the long dash signifies not achievable, as eliminating all transmission at that location would not reduce
<inline-formula>
<inline-graphic xlink:href="325equ14"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
below 1.</p>
</caption>
<table>
<thead>
<tr>
<th valign="bottom" align="left">location control applied</th>
<th valign="bottom">
<inline-formula>
<inline-graphic xlink:href="325equ15"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1</th>
<th valign="bottom">
<inline-formula>
<inline-graphic xlink:href="325equ16"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0</th>
<th valign="bottom">
<inline-formula>
<inline-graphic xlink:href="325equ17"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>household</td>
<td align="char">0.74</td>
<td align="char">0.055</td>
<td></td>
</tr>
<tr>
<td>schools</td>
<td align="char">0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>workplaces</td>
<td align="char">0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schools and workplaces</td>
<td align="char">0.80</td>
<td align="char">0.15</td>
<td></td>
</tr>
<tr>
<td>community</td>
<td align="char">0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>all locations</td>
<td align="char">0.90</td>
<td align="char">0.50</td>
<td align="char">0.33</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>The values of
<inline-formula>
<inline-graphic xlink:href="325equ36"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
, the basic reproduction number under control, calculated for 12 specific control interventions and
<inline-formula>
<inline-graphic xlink:href="325equ37"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0 are presented in
<xref ref-type="fig" rid="fig4">figure 4</xref>
. If
<inline-formula>
<inline-graphic xlink:href="325equ38"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
>1.0 for an intervention, then the final size equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
was used to compute
<italic>P</italic>
, the proportion of the population that would be infected if those control measures were in place throughout the epidemic. These are also shown in
<xref ref-type="fig" rid="fig4">figure 4</xref>
. The equivalent results for
<inline-formula>
<inline-graphic xlink:href="325equ39"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1 and
<inline-formula>
<inline-graphic xlink:href="325equ40"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0 are shown in
<xref ref-type="fig" rid="fig5">figure 5</xref>
.
<fig id="fig4">
<label>Figure 4</label>
<caption>
<p>Results from control interventions when
<inline-formula>
<inline-graphic xlink:href="325equ5"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0. The basic reproduction number under control (
<inline-formula>
<inline-graphic xlink:href="325equ6"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
) and the proportion of the population infected in an epidemic (
<italic>P</italic>
) if
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
>1. The numbers on the horizontal axis specify the control scenarios: 1. no control; 2. close schools; 3. close workplaces; 4. 2 and 3 combined; 5. TATP; 6. quarantine (70%); 7. quarantine (50%); 8. 2 and 6 combined; 9. 2 and 5 combined; 10. 5 and 6 combined; 11. 2, 5 and 6 combined; 12. 2, 3, 5 and 6 combined. For further details see text.</p>
</caption>
<graphic xlink:href="325fig4"></graphic>
</fig>
<fig id="fig5">
<label>Figure 5</label>
<caption>
<p>Results from control interventions when (
<italic>a</italic>
)
<inline-formula>
<inline-graphic xlink:href="325equ8"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1 and (
<italic>b</italic>
)
<inline-formula>
<inline-graphic xlink:href="325equ9"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0. The basic reproduction number under control (
<inline-formula>
<inline-graphic xlink:href="325equ10"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
) and the proportion of the population infected in an epidemic (
<italic>P</italic>
) if
<inline-formula>
<inline-graphic xlink:href="325equ11"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
>1. The numbers on the horizontal axis specify the control scenarios, see the legend to
<xref ref-type="fig" rid="fig4">figure 4</xref>
.</p>
</caption>
<graphic xlink:href="325fig5"></graphic>
</fig>
</p>
</sec>
</sec>
<sec>
<title>4. Discussion</title>
<p>We have constructed and analysed a model for the transmission of a virus, using only the parameter values in
<xref ref-type="table" rid="tbl1">table 1</xref>
. These are based on those in the literature, but they are still only educated guesses. Until a form of pandemic influenza transmitted between humans emerges, we can only base the parameters on previous influenza epidemics in different social conditions and due to different strains of the virus. However, the model has been constructed so that the parameters may be changed and the results revised should a pandemic eventuate. As the results are sensitive to the parameter values, they should only be taken to indicate what could happen should these parameters prove to be approximately correct.</p>
<p>The final size of the epidemic, as computed, shows that should the basic reproduction number (
<inline-formula>
<inline-graphic xlink:href="325equ41"></inline-graphic>
</inline-formula>
<sub>0</sub>
) be equal to 2.0 we could expect nearly 80% of the population to become infected. The population here is a homogeneously mixing community of one million people, motivated by the City of Auckland (population approx. 1.2 million). The epidemic would peak at approximately 65 days, with peak incidence of approximately 43 000 new cases per day. Increasing
<inline-formula>
<inline-graphic xlink:href="325equ42"></inline-graphic>
</inline-formula>
<sub>0</sub>
to 3.0 results in a faster epidemic infecting more than 90% of the population. For different size populations the proportion infected is determined only by
<inline-formula>
<inline-graphic xlink:href="325equ43"></inline-graphic>
</inline-formula>
<sub>0</sub>
, but a larger population size results in an epidemic that takes longer to complete.</p>
<p>The proportion of the population that is infected in an epidemic, as determined by equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
, is plotted in
<xref ref-type="fig" rid="fig2">figure 2</xref>
, where it is compared with the results obtained by other authors from simulation models for outbreaks of pandemic influenza. The results suggest that the final size equation
<xref ref-type="disp-formula" rid="fd1.1">(1.1)</xref>
overestimates the proportion infected in an epidemic as determined by the more complex models, except in the case of
<xref ref-type="bibr" rid="bib17">Wu
<italic>et al</italic>
. (2006)</xref>
. This could be due, in part, to several reasons, apart from the obvious one that the structure of all these models is more complicated and the equation does not necessarily apply. For example, with a stochastic, spatially structured, individual-based model, local exhaustion of susceptible contacts will occur. In addition, the analytic final size equation is for the proportion infected over an infinite time-scale, whereas numerical simulations often cease when the incidence becomes small and the epidemic ‘is largely over’ (
<xref ref-type="bibr" rid="bib5">Ferguson
<italic>et al</italic>
. 2005</xref>
). For complicated models, it is not always clear how the value of
<inline-formula>
<inline-graphic xlink:href="325equ44"></inline-graphic>
</inline-formula>
<sub>0</sub>
relates to the parameters in the model, and the supplementary information to
<xref ref-type="bibr" rid="bib8">Germann
<italic>et al</italic>
. (2006)</xref>
provides a discussion of this point. Hence, there are reasons for uncertainty about the points plotted in
<xref ref-type="fig" rid="fig2">figure 2</xref>
, in both the vertical and horizontal directions.</p>
<p>We have modelled control measures in two ways. We represented social distancing by reducing the amount of transmission occurring at one or more locations. If this were applied uniformly across all locations and at a level sufficient to prevent a major outbreak, then transmission would need to be multiplied by 1/
<inline-formula>
<inline-graphic xlink:href="325equ45"></inline-graphic>
</inline-formula>
<sub>0</sub>
to achieve
<inline-formula>
<inline-graphic xlink:href="325equ46"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
=1. The results in
<xref ref-type="table" rid="tbl2">table 2</xref>
also show the effects of social distancing applied to specific locations, for example if
<inline-formula>
<inline-graphic xlink:href="325equ47"></inline-graphic>
</inline-formula>
<sub>0</sub>
were equal to 2.0, it would be necessary to eliminate 85% of transmission that takes place in schools and workplaces to prevent a major epidemic. This assumes that there is no compensatory increase in transmission, for example within the household. One can envisage that closing schools could result in increased household transmission, as the children would spend more time at home, and possibly the parents too. However, there could be a considerable educational component associated with taking this action, leading to improved hygiene and decreased transmission within the household. Hence, we have taken a neutral position, assuming no change in the model. If
<inline-formula>
<inline-graphic xlink:href="325equ48"></inline-graphic>
</inline-formula>
<sub>0</sub>
were less than 2.0, then the prospects for control would be more optimistic.</p>
<p>Some specific control strategies have been investigated, with the results presented in
<xref ref-type="fig" rid="fig4">figures 4</xref>
and
<xref ref-type="fig" rid="fig5">5</xref>
. All of the strategies successful in preventing an epidemic, with
<inline-formula>
<inline-graphic xlink:href="325equ49"></inline-graphic>
</inline-formula>
<sub>0</sub>
=2.0 (
<inline-formula>
<inline-graphic xlink:href="325equ50"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
<1), involved TATP, with the assumption of 95% uptake and 60% efficacy. However, the strategy of closing schools (100% compliance) combined with either closing workplaces or home quarantine (70% compliance; no. 4 and 8 in
<xref ref-type="fig" rid="fig4">figure 4</xref>
) resulted in values of
<inline-formula>
<inline-graphic xlink:href="325equ51"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
just over 1. These strategies, combined with a modest amount of antiviral coverage would be sufficient to reduce
<inline-formula>
<inline-graphic xlink:href="325equ52"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
below 1. Under the low basic reproduction number assumption (
<inline-formula>
<inline-graphic xlink:href="325equ53"></inline-graphic>
</inline-formula>
<sub>0</sub>
=1.1), all strategies considered apart from closing schools were sufficient to contain epidemics. Under the high basic reproduction number assumption (
<inline-formula>
<inline-graphic xlink:href="325equ54"></inline-graphic>
</inline-formula>
<sub>0</sub>
=3.0), the only strategies sufficient to contain epidemics involved the use of antivirals, school closure and home quarantine. These results are derived assuming that there is no delay from the start of the epidemic until putting the strategy in place. As the scenario is that a pandemic has started elsewhere and is subsequently imported, it is reasonable to assume that the authorities have a response plan in place and the delay is minimal. Hence, the proportion infected will be approximately as calculated. This caveat does not affect the basic reproduction number under control (
<inline-formula>
<inline-graphic xlink:href="325equ55"></inline-graphic>
</inline-formula>
<sub>
<italic>c</italic>
</sub>
) for each strategy.</p>
<p>Experiments with different contact structures in the model have shown the overall results to be quite robust, depending only on
<inline-formula>
<inline-graphic xlink:href="325equ56"></inline-graphic>
</inline-formula>
<sub>0</sub>
for total numbers infected, and on the latent and infectious periods, and therefore the generation time, for the incidence curve for the epidemic. The number of infections that take place within the household, within school or the workplace, or within the wider community is determined by the assumed percentages at the beginning of an epidemic (
<xref ref-type="table" rid="tbl1">table 1</xref>
). As these weights also determine to a great extent the success or otherwise of control measures, they should be a prime target for scrutiny should a pandemic eventuate.</p>
</sec>
</body>
<back>
<app-group>
<app id="sec7">
<title>Appendix A</title>
<p>The model as described in the text and
<xref ref-type="fig" rid="fig1">figure 1</xref>
may be represented by a set of integral equations, which are as follows:
<disp-formula>
<graphic xlink:href="325equ57"></graphic>
</disp-formula>
<disp-formula>
<graphic xlink:href="325equ58"></graphic>
</disp-formula>
<disp-formula>
<graphic xlink:href="325equ59"></graphic>
</disp-formula>
where
<italic>N</italic>
is the population size (assumed constant),
<italic>S</italic>
(
<italic>t</italic>
) is the number in the population that are susceptible (immunologically naive to the emerging virus and assumed to equal the whole population prior to the epidemic), the components of the vector
<inline-formula>
<inline-graphic xlink:href="325equ7"></inline-graphic>
</inline-formula>
(
<italic>t</italic>
) are equal to the incidence of infection at each location and
<italic>R</italic>
(
<italic>t</italic>
)=
<italic>N</italic>
|
<bold>
<italic>r</italic>
</bold>
(
<italic>t</italic>
)| is the expected number removed from the epidemic (those that have been infected and are no longer infectious). The function
<italic>g</italic>
(
<italic>τ</italic>
) is the probability that an individual infected at time zero has ceased to be infectious by time
<italic>τ</italic>
. The vector
<bold>
<italic>e</italic>
</bold>
is a unit vector, with its only non-zero component that which signifies the location
<italic>community</italic>
, hence
<italic>δ</italic>
(
<italic>t</italic>
)
<bold>
<italic>e</italic>
</bold>
is the incidence of the index case. The matrix
<bold>
<italic>W</italic>
</bold>
weights the contacts between the infection groups and is scaled so that ‖
<bold>
<italic>W</italic>
</bold>
‖=1. For a vector, |…| signifies the sum of the components, for a matrix, ‖…‖ signifies the largest eigenvalue (spectral radius). We assume that those infected within their own household (location 1) do not go on to infect others within the same household, hence
<italic>W</italic>
<sub>11</sub>
=0. That is, secondary within-household infections may occur, but we neglect tertiary within-household infections. We also assume that individuals may attend school (location 2) or work (location 3) but not both, hence
<italic>W</italic>
<sub>23</sub>
=
<italic>W</italic>
<sub>32</sub>
=0. In the absence of any other information, and in the absence of control measures, we have assumed that contact rates at each location are independent of the location at which an individual is infected (
<xref ref-type="bibr" rid="bib14">Roberts 2004</xref>
,
<xref ref-type="bibr" rid="bib15">2006</xref>
). Hence, the non-zero entries in each row of
<bold>
<italic>W</italic>
</bold>
are set equal and
<disp-formula>
<graphic xlink:href="325equ60"></graphic>
</disp-formula>
The infectivity function is defined by
<disp-formula>
<graphic xlink:href="325equ61"></graphic>
</disp-formula>
This is a suitable approximation to an infectivity function, where nobody is infectious before
<italic>τ</italic>
<sub>
<italic>a</italic>
</sub>
days or after
<italic>τ</italic>
<sub>
<italic>d</italic>
</sub>
days post-exposure, maximum infectivity occurs between
<italic>τ</italic>
<sub>
<italic>b</italic>
</sub>
and
<italic>τ</italic>
<sub>
<italic>c</italic>
</sub>
days after exposure and contact rates are constant. It is consistent with a mean latent period of
<italic>T</italic>
<sub>
<italic>E</italic>
</sub>
=(
<italic>τ</italic>
<sub>
<italic>a</italic>
</sub>
+
<italic>τ</italic>
<sub>
<italic>b</italic>
</sub>
)/2 days and a mean infectious period of
<italic>T</italic>
<sub>
<italic>I</italic>
</sub>
=(
<italic>τ</italic>
<sub>
<italic>d</italic>
</sub>
+
<italic>τ</italic>
<sub>
<italic>c</italic>
</sub>
<italic>τ</italic>
<sub>
<italic>b</italic>
</sub>
<italic>τ</italic>
<sub>
<italic>a</italic>
</sub>
)/2 days. Hence, we set (
<italic>τ</italic>
<sub>
<italic>a</italic>
</sub>
,
<italic>τ</italic>
<sub>
<italic>b</italic>
</sub>
,
<italic>τ</italic>
<sub>
<italic>c</italic>
</sub>
,
<italic>τ</italic>
<sub>
<italic>d</italic>
</sub>
)=(1.2, 2.0, 5.3, 6.1) days.</p>
</app>
</app-group>
<ack>
<p>This project was commissioned and funded by the New Zealand Ministry of Health, and the material was contained in an unpublished report to the Ministry. The authors are very grateful for the information and comments provided by staff in the Public Health Directorate, Ministry of Health (including Alyson Baker, Martin Bonné, John Boyd, Andreya Brown, Andrea Forde, Alison Roberts, David Sinclair and Paul White). They are also grateful for the input of the external peer reviewers, Angela McLean and Patricia Priest. The views expressed are those of the authors, and do not necessarily reflect the views of the New Zealand Ministry of Health.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="bib1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aldis</surname>
<given-names>G.K</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>M.G</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>An integral equation model for the control of a smallpox outbreak</article-title>
<source>Math. Biosci</source>
<volume>195</volume>
<fpage>1</fpage>
<lpage>22</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1016/j.mbs.2005.01.006">doi:10.1016/j.mbs.2005.01.006</ext-link>
</citation>
</ref>
<ref id="bib2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coker</surname>
<given-names>R.J</given-names>
</name>
<name>
<surname>Mournier-Jack</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Pandemic influenza preparedness in the Asia-Pacific region</article-title>
<source>Lancet</source>
<volume>368</volume>
<fpage>886</fpage>
<lpage>889</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1016/S0140-6736(06)69209-X">doi:10.1016/S0140-6736(06)69209-X</ext-link>
</citation>
</ref>
<ref id="bib3">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Diekmann</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Heesterbeek</surname>
<given-names>J.A.P</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Mathematical epidemiology of infectious diseases: model building, analysis and interpretation</article-title>
<publisher-loc>Chichester, UK</publisher-loc>
:
<publisher-name>Wiley</publisher-name>
</citation>
</ref>
<ref id="bib4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diekmann</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Heesterbeek</surname>
<given-names>J.A.P</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>J.A.J</given-names>
</name>
</person-group>
<year>1990</year>
<article-title>On the definition and computation of the basic reproduction ratio
<italic>R</italic>
<sub>0</sub>
in models for infectious diseases in heterogeneous populations</article-title>
<source>J. Math. Biol</source>
<volume>28</volume>
<fpage>365</fpage>
<lpage>382</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1007/BF00178324">doi:10.1007/BF00178324</ext-link>
</citation>
</ref>
<ref id="bib5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D.A.T</given-names>
</name>
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meeyai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Iamsirithaworn</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>D.S</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Strategies for containing an emerging influenza pandemic in Southeast Asia</article-title>
<source>Nature</source>
<volume>437</volume>
<fpage>209</fpage>
<lpage>214</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1038/nature04017">doi:10.1038/nature04017</ext-link>
</citation>
</ref>
<ref id="bib6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D.A.T</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cajka</surname>
<given-names>J.C</given-names>
</name>
<name>
<surname>Cooley</surname>
<given-names>P.C</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>D.S</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Strategies for mitigating an influenza pandemic</article-title>
<source>Nature</source>
<volume>442</volume>
<fpage>448</fpage>
<lpage>452</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1038/nature04795">doi:10.1038/nature04795</ext-link>
</citation>
</ref>
<ref id="bib7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gani</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Medlock</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Leach</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Potential impact of antiviral drug use during influenza pandemic</article-title>
<source>Emerg. Infect. Dis</source>
<volume>11</volume>
<fpage>1355</fpage>
<lpage>1362</lpage>
.</citation>
</ref>
<ref id="bib8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germann</surname>
<given-names>T.C</given-names>
</name>
<name>
<surname>Kadau</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Longini</surname>
<given-names>I.M</given-names>
</name>
<name>
<surname>Macken</surname>
<given-names>C.A</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Mitigation strategies for pandemic influenza in the United States</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<volume>103</volume>
<fpage>5935</fpage>
<lpage>5940</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1073/pnas.0601266103">doi:10.1073/pnas.0601266103</ext-link>
</citation>
</ref>
<ref id="bib9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jennings</surname>
<given-names>L</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>New Zealand's preparedness for the next influenza pandemic</article-title>
<source>N.Z. Med. J</source>
<volume>118</volume>
<fpage>1</fpage>
<lpage>3</lpage>
.</citation>
</ref>
<ref id="bib18">
<citation citation-type="other">Kermack, W. O. & McKendrick, A. G. 1927 Contributions to the mathematical theory of epidemics. I.
<italic>Proc. R. Soc. A</italic>
<bold>115</bold>
, 700–721. (Reprinted in
<italic>Bull. Math. Biol</italic>
.
<bold>53</bold>
, 33–55 (1991).)</citation>
</ref>
<ref id="bib10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longini</surname>
<given-names>I.M</given-names>
</name>
<name>
<surname>Halloran</surname>
<given-names>M.E</given-names>
</name>
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Containing pandemic influenza with antiviral agents</article-title>
<source>Am. J. Epidemiol</source>
<volume>159</volume>
<fpage>623</fpage>
<lpage>633</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1093/aje/kwh092">doi:10.1093/aje/kwh092</ext-link>
</citation>
</ref>
<ref id="bib11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longini</surname>
<given-names>I.M</given-names>
</name>
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ungchusak</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hanshaoworakul</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D.A.T</given-names>
</name>
<name>
<surname>Halloran</surname>
<given-names>M.E</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Containing pandemic influenza at the source</article-title>
<source>Science</source>
<volume>309</volume>
<fpage>1083</fpage>
<lpage>1087</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1126/science.1115717">doi:10.1126/science.1115717</ext-link>
</citation>
</ref>
<ref id="bib12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>J.M</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>T.W</given-names>
</name>
<name>
<surname>Maloney</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hockin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kertesz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Klimov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cetron</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Cruise ships: high-risk passengers and the global spread of new influenza viruses</article-title>
<source>Clin. Infect. Dis</source>
<volume>31</volume>
<fpage>433</fpage>
<lpage>438</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1086/313974">doi:10.1086/313974</ext-link>
</citation>
</ref>
<ref id="bib13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mills</surname>
<given-names>C.E</given-names>
</name>
<name>
<surname>Robins</surname>
<given-names>J.M</given-names>
</name>
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Transmissibility of 1918 pandemic influenza</article-title>
<source>Nature</source>
<volume>432</volume>
<fpage>904</fpage>
<lpage>906</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1038/nature03063">doi:10.1038/nature03063</ext-link>
</citation>
</ref>
<ref id="bib14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>M.G</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Modelling strategies for minimizing the impact of an imported exotic infection</article-title>
<source>Proc. R. Soc. B</source>
<volume>271</volume>
<fpage>2411</fpage>
<lpage>2415</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1098/rspb.2004.2865">doi:10.1098/rspb.2004.2865</ext-link>
</citation>
</ref>
<ref id="bib15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>M.G</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Modeling strategies for containing an invading infection</article-title>
<source>Math. Popul. Stud</source>
<volume>13</volume>
<fpage>205</fpage>
<lpage>214</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1080/08898480600950473">doi:10.1080/08898480600950473</ext-link>
</citation>
</ref>
<ref id="bib16">
<citation citation-type="other">Roberts, M. G. Submitted. The final size equation for a structured Kermack-McKendrick epidemic model.</citation>
</ref>
<ref id="bib17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J.T</given-names>
</name>
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>G.M</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Reducing the impact of the next influenza pandemic using household-based public health interventions</article-title>
<source>PLoS Med</source>
<volume>3</volume>
<fpage>1532</fpage>
<lpage>1540</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/doi:10.1371/journal.pmed.0030361">doi:10.1371/journal.pmed.0030361</ext-link>
</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A model for the spread and control of pandemic influenza in an isolated geographical region</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>A model for the spread and control of pandemic influenza in an isolated geographical region</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.G</namePart>
<namePart type="family">Roberts</namePart>
<affiliation>Centre for Mathematical Biology, Institute of Information & Mathematical Sciences, Massey UniversityPrivate Bag 102 904, North Shore Mail Centre, Auckland, New Zealand</affiliation>
<affiliation>E-mail: m.g.roberts@massey.ac.nz</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Baker</namePart>
<affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.C</namePart>
<namePart type="family">Jennings</namePart>
<affiliation>Canterbury Health Laboratories, Canterbury District Health BoardPO Box 151, Christchurch, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Sertsou</namePart>
<affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Wilson</namePart>
<affiliation>Wellington School of Medicine & Health Sciences, Otago UniversityWellington, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>The Royal Society</publisher>
<place>
<placeTerm type="text">London</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-04-22</dateIssued>
<dateCreated encoding="w3cdtf">2006-11-28</dateCreated>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">In the event of an influenza pandemic, the most probable way in which the virus would be introduced to an isolated geographical area is by an infected traveller. We use a mathematical model, structured on the location at which infection occurs and based on published parameters for influenza, to describe an epidemic in a community of one million people. The model is then modified to reflect a variety of control strategies based on social distancing measures, targeted antiviral treatment and antiviral prophylaxis and home quarantine, and the effectiveness of the strategies is compared. The results suggest that the only single strategy that would be successful in preventing an epidemic (with 02.0) is targeted antiviral treatment and prophylaxis, and that closing schools combined with either closing work places or home quarantine would only prevent such an epidemic if these strategies were combined with a modest level of antiviral coverage.</abstract>
<subject>
<topic>mathematical epidemiology</topic>
<topic>infectious diseases</topic>
<topic>exotic infections</topic>
<topic>pandemic influenza</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of The Royal Society Interface</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1742-5689</identifier>
<identifier type="eISSN">1742-5662</identifier>
<identifier type="PublisherID">RSIF</identifier>
<identifier type="PublisherID-hwp">royinterface</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>325</start>
<end>330</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="bib1">
<titleInfo>
<title>An integral equation model for the control of a smallpox outbreak</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.K</namePart>
<namePart type="family">Aldis</namePart>
</name>
<name type="personal">
<namePart type="given">M.G</namePart>
<namePart type="family">Roberts</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Math. Biosci</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>195</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>22</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1016/j.mbs.2005.01.006</identifier>
<identifier type="doi">10.1016/j.mbs.2005.01.006</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib2">
<titleInfo>
<title>Pandemic influenza preparedness in the Asia-Pacific region</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.J</namePart>
<namePart type="family">Coker</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Mournier-Jack</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Lancet</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>368</number>
</detail>
<extent unit="pages">
<start>886</start>
<end>889</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1016/S0140-6736(06)69209-X</identifier>
<identifier type="doi">10.1016/S0140-6736(06)69209-X</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib3">
<titleInfo>
<title>Mathematical epidemiology of infectious diseases: model building, analysis and interpretation</title>
</titleInfo>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Diekmann</namePart>
</name>
<name type="personal">
<namePart type="given">J.A.P</namePart>
<namePart type="family">Heesterbeek</namePart>
</name>
<genre>book</genre>
</relatedItem>
<relatedItem type="references" displayLabel="bib4">
<titleInfo>
<title>On the definition and computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations</title>
</titleInfo>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Diekmann</namePart>
</name>
<name type="personal">
<namePart type="given">J.A.P</namePart>
<namePart type="family">Heesterbeek</namePart>
</name>
<name type="personal">
<namePart type="given">J.A.J</namePart>
<namePart type="family">Metz</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Math. Biol</title>
</titleInfo>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<extent unit="pages">
<start>365</start>
<end>382</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1007/BF00178324</identifier>
<identifier type="doi">10.1007/BF00178324</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib5">
<titleInfo>
<title>Strategies for containing an emerging influenza pandemic in Southeast Asia</title>
</titleInfo>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Ferguson</namePart>
</name>
<name type="personal">
<namePart type="given">D.A.T</namePart>
<namePart type="family">Cummings</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Cauchemez</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Fraser</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Riley</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Meeyai</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Iamsirithaworn</namePart>
</name>
<name type="personal">
<namePart type="given">D.S</namePart>
<namePart type="family">Burke</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>437</number>
</detail>
<extent unit="pages">
<start>209</start>
<end>214</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1038/nature04017</identifier>
<identifier type="doi">10.1038/nature04017</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib6">
<titleInfo>
<title>Strategies for mitigating an influenza pandemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Ferguson</namePart>
</name>
<name type="personal">
<namePart type="given">D.A.T</namePart>
<namePart type="family">Cummings</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Fraser</namePart>
</name>
<name type="personal">
<namePart type="given">J.C</namePart>
<namePart type="family">Cajka</namePart>
</name>
<name type="personal">
<namePart type="given">P.C</namePart>
<namePart type="family">Cooley</namePart>
</name>
<name type="personal">
<namePart type="given">D.S</namePart>
<namePart type="family">Burke</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>442</number>
</detail>
<extent unit="pages">
<start>448</start>
<end>452</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1038/nature04795</identifier>
<identifier type="doi">10.1038/nature04795</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib7">
<titleInfo>
<title>Potential impact of antiviral drug use during influenza pandemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Gani</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Hughes</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Fleming</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Griffin</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Medlock</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Leach</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Emerg. Infect. Dis</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>1355</start>
<end>1362</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="bib8">
<titleInfo>
<title>Mitigation strategies for pandemic influenza in the United States</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.C</namePart>
<namePart type="family">Germann</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Kadau</namePart>
</name>
<name type="personal">
<namePart type="given">I.M</namePart>
<namePart type="family">Longini</namePart>
</name>
<name type="personal">
<namePart type="given">C.A</namePart>
<namePart type="family">Macken</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>103</number>
</detail>
<extent unit="pages">
<start>5935</start>
<end>5940</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1073/pnas.0601266103</identifier>
<identifier type="doi">10.1073/pnas.0601266103</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib9">
<titleInfo>
<title>New Zealand's preparedness for the next influenza pandemic</title>
</titleInfo>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Jennings</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>N.Z. Med. J</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>118</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>3</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="bib18">
<titleInfo>
<title>Proc. R. Soc. A</title>
</titleInfo>
<genre>other</genre>
<note>Kermack, W. O. & McKendrick, A. G. 1927 Contributions to the mathematical theory of epidemics. I. Proc. R. Soc. A 115, 700721. (Reprinted in Bull. Math. Biol. 53, 3355 (1991).)</note>
</relatedItem>
<relatedItem type="references" displayLabel="bib10">
<titleInfo>
<title>Containing pandemic influenza with antiviral agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">I.M</namePart>
<namePart type="family">Longini</namePart>
</name>
<name type="personal">
<namePart type="given">M.E</namePart>
<namePart type="family">Halloran</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Nizam</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Yang</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Am. J. Epidemiol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>159</number>
</detail>
<extent unit="pages">
<start>623</start>
<end>633</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1093/aje/kwh092</identifier>
<identifier type="doi">10.1093/aje/kwh092</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib11">
<titleInfo>
<title>Containing pandemic influenza at the source</title>
</titleInfo>
<name type="personal">
<namePart type="given">I.M</namePart>
<namePart type="family">Longini</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Nizam</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Xu</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Ungchusak</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Hanshaoworakul</namePart>
</name>
<name type="personal">
<namePart type="given">D.A.T</namePart>
<namePart type="family">Cummings</namePart>
</name>
<name type="personal">
<namePart type="given">M.E</namePart>
<namePart type="family">Halloran</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>309</number>
</detail>
<extent unit="pages">
<start>1083</start>
<end>1087</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1126/science.1115717</identifier>
<identifier type="doi">10.1126/science.1115717</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib12">
<titleInfo>
<title>Cruise ships: high-risk passengers and the global spread of new influenza viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.M</namePart>
<namePart type="family">Miller</namePart>
</name>
<name type="personal">
<namePart type="given">T.W</namePart>
<namePart type="family">Tam</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Maloney</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Fukuda</namePart>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Cox</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Hockin</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Kertesz</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Klimov</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Cetron</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Clin. Infect. Dis</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>433</start>
<end>438</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1086/313974</identifier>
<identifier type="doi">10.1086/313974</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib13">
<titleInfo>
<title>Transmissibility of 1918 pandemic influenza</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.E</namePart>
<namePart type="family">Mills</namePart>
</name>
<name type="personal">
<namePart type="given">J.M</namePart>
<namePart type="family">Robins</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Lipsitch</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>432</number>
</detail>
<extent unit="pages">
<start>904</start>
<end>906</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1038/nature03063</identifier>
<identifier type="doi">10.1038/nature03063</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib14">
<titleInfo>
<title>Modelling strategies for minimizing the impact of an imported exotic infection</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.G</namePart>
<namePart type="family">Roberts</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. R. Soc. B</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>271</number>
</detail>
<extent unit="pages">
<start>2411</start>
<end>2415</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1098/rspb.2004.2865</identifier>
<identifier type="doi">10.1098/rspb.2004.2865</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib15">
<titleInfo>
<title>Modeling strategies for containing an invading infection</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.G</namePart>
<namePart type="family">Roberts</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Math. Popul. Stud</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>205</start>
<end>214</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1080/08898480600950473</identifier>
<identifier type="doi">10.1080/08898480600950473</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="bib16">
<titleInfo>
<title>Roberts, M. G. Submitted. The final size equation for a structured Kermack-McKendrick epidemic model.</title>
</titleInfo>
<genre>other</genre>
<note>Roberts, M. G. Submitted. The final size equation for a structured Kermack-McKendrick epidemic model.</note>
</relatedItem>
<relatedItem type="references" displayLabel="bib17">
<titleInfo>
<title>Reducing the impact of the next influenza pandemic using household-based public health interventions</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.T</namePart>
<namePart type="family">Wu</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Riley</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Fraser</namePart>
</name>
<name type="personal">
<namePart type="given">G.M</namePart>
<namePart type="family">Leung</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>PLoS Med</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>1532</start>
<end>1540</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/doi:10.1371/journal.pmed.0030361</identifier>
<identifier type="doi">10.1371/journal.pmed.0030361</identifier>
</relatedItem>
<identifier type="istex">4AF55F93C64140115BE92CCED61779639466B7AC</identifier>
<identifier type="ark">ark:/67375/V84-J8L152ZP-4</identifier>
<identifier type="DOI">10.1098/rsif.2006.0176</identifier>
<identifier type="href">325.pdf</identifier>
<identifier type="ArticleID">rsif20060176</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2006 The Royal Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-W19DTZ70-2">RSL</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-03</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-J8L152ZP-4/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001601 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001601 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4AF55F93C64140115BE92CCED61779639466B7AC
   |texte=   A model for the spread and control of pandemic influenza in an isolated geographical region
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021